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Abstract: In the era of artificial intelligence, and particularly machine learning 
and deep learning models, the availability of large datasets is crucial to develop 
innovative and effective services, especially in the healthcare field. In this 
context, one essential requirement is access to verified information for 
contextualising/enriching the data. The SAMBIAS project analysed in this 
study involves the implementation of a software platform for data sharing in 
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clinical scenarios, with the main objective of providing specific medical 
datasets to improve the competitiveness of the healthcare organisation from a 
general point of view. The platform, which is accessible via the web, provides 
on-demand, augmented sets of clinical situations, based on the enormous 
amounts of data that are collected by the health information systems of 
healthcare organisations. The case under investigation here is the Casa di Cura 
Tortorella s.p.a., Salerno, Italy. The implications of this platform are discussed 
in terms of more efficient performance. 

Keywords: healthcare; artificial intelligence; machine learning; deep learning; 
data augmentation; business process management; business process 
improvement. 
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1 Introduction 

When reasoning about the adoption of artificial intelligence (AI) in healthcare, and 
particularly in radiology, one of the most important medical specialties in terms of health 
impact and related costs, a significant problem arises: the use of medical images in the 
related healthcare process involves patient privacy issues, making the dissemination of 
clinical data very complex. This is because the procedures for anonymisation, storage, 
and dissemination are not always optimal, and are sometimes even impossible, due to 
strict internal policies or emergency circumstances (Houfani et al., 2022). Obtaining 
permission from the patient to disseminate their clinical data, even if anonymously, is 
often problematic; for instance, in the European Union (EU), it is still often mandatory to 
comply with the General Data Protection Regulation (GDPR No. 2016/679), although in 
practice it is not requested any more in most cases. 

In addition to these considerations, it is worth mentioning the difficulty of making 
certain types of diagnoses, regardless of their rate of occurrence, due to the possibility of 
imbalance between positive and negative samples in the dataset. In this case, further 
obstacles to the efficiency of healthcare processes may arise that are related to the 
categorisation of data; even when diagnostic facilities are able to perform the entire 
dissemination procedure, the data may not be labelled for a specific type of pathology or 
technical intervention, for example in the segmentation of pathological areas (Khan et al., 
2020). 

To solve these problems, several methodologies based on the most advanced 
information and communication technologies (ICTs) can be used, for example to increase 
the available number of samples in the dataset. The most common techniques in this area 
are related to data augmentation (DA); these methods aim to artificially increase the 
available number of samples, as mentioned above, and can be applied to one-dimensional 
data represented by signals of single or multiple types, such as measurements made using 
an electrocardiogram (Nita et al., 2022). 

Other techniques are specific to two-dimensional data such as images, and often aim 
to manipulate chromatic components or to perform geometric operations through affine 
transformations. These solutions generally operate on the data under investigation while 
leaving the original data still valid, and generate further data with proper care, meaning 
that the new data are generally not required to be re-certified by an expert. 

In recent years, thanks to the widespread use of AI, numerous solutions have emerged 
to create artificial data from real data with very high fidelity. Naturally, concerns over 
‘deep fakes’ and the generation of synthetic images more generally are very different 
situations from the context of medical data; in the former case, if a generation error 
occurs, meaning that the fidelity and the quality of the generated image are not 
satisfactory, it is not necessary to solve that problem as a matter of maximum priority. In 
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addition, the generation of appropriately labelled medical data may not eliminate the need 
for an expert who can validate those data. 

Based on these considerations, a project focusing on AI in healthcare that aimed to 
enable DA in the field of medical images, entitled ‘SAMBIAS’, was carried out in the 
Casa di Cura Tortorella s.p.a., Salerno, Italy. The underlying idea of this project was to 
verify whether and how AI in general (and DA more specifically) could help in 
improving the global effectiveness of the healthcare processes. The managerial and 
financial points of view were also taken into consideration in the current study 
(Cannavale et al., 2022; Jia et al., 2022), with particular reference to healthcare activities 
connected with the treatment of medical images in the area of radiology. 

2 Scientific background 

There are various types of diagnostic technologies in the medical field, of which the most 
well-known are computed tomography (CT) and magnetic resonance imaging (MRI). 
These techniques construct a view of the organ to be analysed. CT scans allow for  
three-dimensional scans of the affected area so that the body part can be viewed in 
sections, to give a localised view of the pathology, whereas MRI cannot provide a  
three-dimensional image but allows for differentiation based on tissue types and images 
of body sections in three different planes (axial, coronal, and sagittal). 

These data are considered sensitive, because despite being difficult to interpret, they 
provide important information about an individual’s health status, and this means that 
dissemination of data is difficult. To address this problem, scholars and professionals 
have started generating data that are similar to those of real patients. 

The generation of artificial data from real data has become widespread in recent 
years. Given the excellent performance of systems of this type, they have also begun to 
be used on sensitive images such as medical images, in an attempt to increase the number 
of samples available without raising the privacy issues discussed above that may be 
associated with individual patients. 

Some systems are specific to a single area of the body, for example those that target 
liver lesions (Frid-Adar et al., 2018) or malignant and benign nodules in the lung 
(Chuquicusma et al., 2018). The results are reviewed by a group of experts to verify the 
level of reliability of the processed image with respect to real or fake data. Other 
techniques attempt to generate entire portions of CT scans by using a priori knowledge 
about the data, extrapolated via an autoencoder, with generative knowledge. In this way, 
artificial neural networks (ANNs) can be forced to generate content that is similar to real 
observations, but with random differences that cannot be predicted. 

In a study by Frid-Adar et al. (2018), only lesion images from CT scans were 
considered for analysis; neither the three-dimensional image representing the CT nor the 
whole section of the liver image were used, but only the point at which the lesion 
appeared. More specifically, the lesions examined in their study were cysts, metastases, 
and haemangiomas (Figure 1 and Table 1). 

As explained in further detail below, the classical structure of a deep convolutional 
generative adversarial network (DCGAN) was adopted in this study to generate the 
augmented images. A DCGAN is a direct extension of a generative adversarial  
network (GAN) and is similar except that it explicitly uses convolutional and 
convolutional-transpose layers in the discriminator and generator, respectively. 
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Figure 1 Comparison of generated and real images: (a) classification accuracy, (b) operating 
augmentation only with the addition of synthesised images (see online version  
for colours) 

  
(a)      (b) 

Source: Frid-Adar et al. (2018) 

Table 1 Confusion matrices for classifiers using (a) only real data, (b) real and synthetic data 

True/auto Cyst Met Hem Sensitivity  True/auto Cyst Met Hem Sensitivity 
Cyst 52 1 0 98.1%  Cyst 53 0 0 100.00% 
Met 2 44 18 68.7%  Met 2 52 10 81.2% 
Hem 0 18 47 72.3%  Hem 1 13 51 78.5% 
Specificity 98.4% 83.9% 84.6%   Specificity 97.7% 89.0% 91.4%  

(a)     (b) 
Source: Frid-Adar et al. (2018) 

This type of software was first described in a study by Radford et al. (2015), in which the 
input to the generator was a random vector of 100 elements and the output was a 64x64 
image. The data were collected from the databases of Sheba Medical Centre, and were 
annotated by experienced radiologists, with the dataset containing 53 cysts, 64 
metastases, and 65 haemangiomas. 

In Figure 1(b), the variation in the accuracy depends on the number of samples and on 
the increase in their variance. In the final analysis, both the real and synthetic images 
were submitted to two expert radiologists, in order to verify the human analysis capability 
and the extent to which the synthetic images differed from real ones. 

The first expert reported results of 78% accuracy for the real data and 77.5% accuracy 
for the generated data, while the second expert assessed the percentage of correctly 
classified items as 69.2% for both types of data. A different DCGAN was then trained for 
each class. 

Tables 1(a) and 1(b) show the classification results from the use of simple 
augmentation and after enriching the dataset with synthetic data, respectively. It is 
evident that this treatment increased the performance of the classification methodology 
by providing more data, which were highly faithful, for use in the training and learning 
phases. 

In a study by Chuquicusma et al. (2018), images of benign/malignant nodules were 
generated using a DCGAN and submitted to two expert radiologists. A visual Turing test 
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(VTT) was then carried out in which the experts, before proceeding to the relative 
classification, were asked to determine whether the submitted image was real or 
synthetic. This methodology allowed the authors to investigate whether the quality of the 
images was reliable enough to deceive an expert, and if so, whether the quality of the 
generated image approximated that of the real data that were then classified by the expert. 

Figure 2 Nodule generation results: (a) low-grade nodules, (b) high-grade nodules, (c) malignant 
nodules, (d) benign nodules (see online version for colours) 

 
(a)     (b) 

 
(c)     (d) 

Source: Authors’ elaboration from Chuquicusma et al. (2018) 

In that study, the authors used as input a random vector of 100 elements, while the output 
image had a size of 56 × 56. A public dataset entitled Lung Image Database Consortium 
– Image Database Resource Initiative (LIDC-IDRI) was used, which consisted of 1,018 
CT thoracic screening images, with annotations and with staging information from one 
(least aggressive) to five (most aggressive). As shown in Figure 2, nodules with a 
diameter of 3 mm or more were annotated by at most four radiologists; the chosen 
nodules were those with an annotation from at least three radiologists, while nodules with 
an aggressiveness value of three were excluded. 

In that study, a total of 1,145 nodules were obtained after pre-processing, of which 
635 were benign and 510 were malignant. Tests were conducted using a class-specific 
network to be generated: a DCGAN for benign samples (with 114,000 iterations), a 
DCGAN for malignant samples (with 110,000 iterations), and a mixed test in which only 
one DCGAN was used for both classes (with 99,000 iterations). 

Figures 2(a) and 2(b) show a comparison of the generated nodules, with the low-
quality ones shown in red and the high-quality ones in green. From this comparison, it 
can be seen that there is no difference between the classes. In addition, it can be observed 
that the high-quality nodules have well-defined contours and no pixelation effects. 

Figures 2(c) and 2(d) show the malignant nodules and the benign ones, respectively. 
Of these, the nodules numbered 1 to 18 in both classes were generated by the DCGAN, 
while the remainder are the real ones. Eighteen VTTs were conducted by one radiologist 
with 14 years’ experience and another with four years’ experience. Each test contained 36 
high-quality samples, and the real and generated samples were pre-processed using an 
anisotropic diffusion filter (Perona-Malik). The experiments that were conducted are 
summarised as follows (see Figure 3 for further information about the false recognition 
rate, FRR): 
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• Experiments 1, 2, 3, 16, 17, and 18 (benign/malignant): the experts were asked to 
identify the generated nodules and the real ones. 

• Experiments 4, 5, 6, 13, 14, 15 (benign): the experts were asked to identify the 
generated nodules and the real ones, and to identify which of the nodules were 
benign, if any. 

• Experiments 7, 8, 9, 10, 11, 12 (malignant): the experts were asked to identify the 
generated nodules and the real ones, and to identify which of the nodules were 
malignant, if any. 

The results for each experiment in terms of the FRR are shown in Figure 3, with the 
exception of experiments 2, 5, 8, 11, 14, and 17, which used real data. The most 
experienced radiologist assessed synthetic nodes as real in 69% of the cases, while the 
least experienced radiologist was wrong in more than 99% of the cases. These tests 
indicate that the algorithm was able to generate data that highly resembled the originals, 
or at least resembled them enough to deceive two experts in the field. 

In a study by Wang et al. (2022), a priori knowledge of the CT was adopted and the 
spatial, shape, and size information was learned via an autoencoder. This methodology 
allowed the authors to increase the representativeness of the data, which were then used 
to train a conditional GAN (CGAN). More specifically, this study exploited the ability of 
GANs to perform domain-adaptation (which differs from the concept of transfer 
learning). The network in question was composed of multiple modules (autoencoder + 
GAN) and a random element; in this case, the generator was aided by knowledge about 
the real image when generating a dummy image, while the random vector helped to avoid 
mode collapse of the network on the same images (i.e., equal image deriving from 
different generations). 

In this basic structure, the first module consisted of a convolutional auto-encoder 
(CAE) that performed feature space encoding, both spatially and shape-wise. This 
methodology, as mentioned above, was adopted to ensure that the neural network could 
find a compact representation of the input data and relied on the ability to reconstruct the 
original data. 

Figure 3 FRR for the experiments on the generated nodules, where the percentage of nodules 
recognised as synthetic is indicated (see online version for colours) 

 

Source: Chuquicusma et al. (2018) 
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The encoding was then used to extract meaningful features for the remaining modules of 
the ANN. These features were refined before being used in the second module, which 
formed the heart of the generator. Since the goal was the generation of new images, a 
random vector was also given as input; this was changed from time to time, to provide 
the possibility of generating ever-changing data. This approach allowed the random 
distribution of the vector to be mapped onto a latent subspace that was the result of the 
learning process that the generator can express in a GAN. 

The two inputs, i.e., the encoding of the real data provided by the CAE and the 
expansion of the random vector, needed to be aggregated, so that they could form a single 
input to the data generation process. To further strengthen the ability of the generator to 
output ever-changing data, two additional random vectors were inserted into the 
reconstruction process, while the discriminator was a simple classifier composed of 
convolutional layers, which was used to recognise real data from fake data. The GAN 
was trained using Wasserstein’s loss, which provides a natural notion of dissimilarity for 
probability measures, together with the gradient penalty technique described by Zhang  
et al. (2019). 

3 Research methodology 

The design of the processing pipeline included an initial stage in which filtering and 
cleaning were applied to the image data coming from heterogeneous databases, with the 
intention of normalising the information contained in the digital archives. In the next 
phase of augmentation, other data (metadata) that were used in the subsequent 
investigation were added to the retrieved clinical information (e.g., geo-referencing the 
patient’s territory of origin, adding data on correlations with other family pathologies, 
standard classifications of pathologies) (Khan et al., 2020; Shaikh and Ali, 2020;  
El Samad et al., 2022). A generative ANN (GANN) is a generative artificial neural 
network that attempts to learn the data distribution of real samples. In this case, two 
ANNs are adopted: one called the generator (which generates the dummy data) and 
another one called the discriminator (which discriminates true data from false data). The 
two networks are in competition with each other according to the MiniMax game policy, 
as described in game theory. 

In essence, the generator attempts to trick the discriminator. Whenever the 
discriminator guesses correctly whether the data are real or fictitious, this information is 
used by the generator to change the type of images it produces, thus bringing the 
distribution of the data closer and closer to the real one and generating further data that 
are more and more similar to real data. A graphical schema of a GANN is shown in 
Figure 4. This type of network aims to achieve a Nash equilibrium, which is a fair  
trade-off between the ability of the generator to create bogus data and the ability of the 
discriminator to determine whether the submitted data are real or not. 

The second important technique used in this study is known as an autoencoder’; it is a 
structure composed of an ANN that attempts to reconstruct input data. Differently from a 
GANN, the vanilla autoencoder cannot be used to generate new data; in fact, as it can be 
observed in Figure 5, given as input a real data, the reconstructed output must be as equal 
to as possible (more specifically, an encoding of the input into a subspace representing a 
simplified, but more meaningful representation, takes place). 
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Figure 4 Structure of a GANN (see online version for colours) 

 

Source: Authors’ elaboration 

Figure 5 Architecture of the autoencoder (see online version for colours) 

 

Source: Authors’ elaboration 

This encoded element is then decoded to reconstruct the input. The encoding process may 
involve many encoding elements, the last of which represents the most compact and 
meaningful representation of the initial feature space. This type of representation is called 
‘latent representation’ and is typically used for inclusion in other methodologies to have a 
strong characterisation of the problem and the input to be processed. 

As a starting point for this study, the approach proposed by Wang et al. (2022) was 
adopted. In this methodology, there are two stages in the learning phase: the first is 
needed to create a deep and compact representation of the input images, and relies on an 
autoencoder, while in the second stage, the GANN is trained with the generator, which 
combines a random vector network with the learned representation to force the generator 
network to create images that are of the same type as the input, but with diverse graphical 
representations. 

To strengthen the learning of the latent representation, several modifications are made 
to the autoencoder and the discriminator; of these, the most reliable is the use of skip 
connections, which enhance the representation of the data while preserving the semantic 
meaning and providing an improved understanding of the spatial features in the 
reconstruction phase. Furthermore, the GANN was modified to form a CGAN, to which 
class constraints were added. The conditioning of a GAN is useful to steer the generation 
of images for a specific image, and in combination with the autoencoder latent 
representation exerts a strong influence over the quality and the ability of the neural 
network to generate a valid and specific image. 
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4 Data analysis 

The first stage of the analysis concerned the processing of the medical image data. CT 
scans were used for this purpose, as this approach allows for three-dimensional scans of 
the affected area, meaning that the body part can be divided into different sections for 
investigation and the pathology can be located efficiently. 

Image data were made available by the Casa di Cura Tortorella, a private hospital 
located in Salerno, Italy. This organisation was elected for this study since it uses state-
of-the-art technological tools and procedures in its clinical processes. 

All data were provided in Digital Imaging and COmmunication in Medicine 
(DICOM) format, an international standard that is used to manage medical images such 
as CT and MRI scans. Each DICOM image was categorised in a series. It generally 
equates to a specific type (modality) of data, or the position of a patient on the acquisition 
device. For the specific purposes of the experimental application in this study, it was of 
interest to select, among the available series, the number 202, since it is the one capable 
of reporting information regarding vasculopathy, in which there is strong research 
interest. All scans taken prior to 2020 were removed, as there was a change in the 
machinery and the acquisition technique used in the hospital. 
Table 2 Quantity of samples by class 

Class Quantity 
Vasculopathy 6,492 
No vasculopathy 4,700 

Source: Authors’ elaboration 

The dataset under analysis contained data on a total of 41 patients. From these data, 
images that could not be used (because they represented summary diagnostic information, 
or involved orientations different from the axial one or a region of the brain that did not 
provide information about the disease under study) were filtered out, leaving a total of 
11,192 images. All files were divided into two categories based on the disease status of 
the patient. 

The dataset imbalance about the ‘Vasculopathy’ class was manageable, with a 
difference in size between the two classes of less than 30%. Table 2 shows the total 
number of samples in each class. 

The data were randomly split, with 85% of the samples forming the training set and 
15% forming the testing set. To further validate the methodology, a validation process 
was applied at each step. The data used for validation were drawn from the training set, 
creating a new split of 10% of the data. The final training set therefore contained about 
75% of the whole dataset of images. 

The images were initially pre-processed. The first type of processing applied to this 
type of image involved transforming the intensity value of the component elements; 
originally, these images had values in terms of Hounsfield units (the so-called Hounsfield 
scale, deriving its name from Sir Godfrey Hounsfield, is a quantitative scale for 
describing radiodensity, and is frequently used in CT scans). These values can range from 
–1,024 to +3,071, where each range of values represents a specific physiological feature, 
for example bone, soft tissue, or brain tissue. For our case study of vasculopathy, a 
central window of values was chosen based on the internal acquisition statistics reported 
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in the DICOM files. It is possible to find a prevalence of a window of values centred on 
+40, with a range of ±40 units; this range specifically represents the so-called ‘grey 
matter’. 

Then, as is common for this type of task, several pre-processing techniques were 
applied to process the images and to allow the machine learning (ML) model to work to 
its full potential. After the data preparation phase, training of the feature extractor and the 
generative neural network were performed; the training phase of the feature extractor 
containing the so-called a priori knowledge was performed using a common ML metric 
known as binary cross entropy (Vincent et al., 2008). 

The network was then modified, as described above, by the use of skip connections. 
This kind of neural network learns a latent space in which the most relevant information 
about the input is represented in a compact form; following this, the learned 
representation is passed as part of the input to the generator, together with a random 
vector, which results in a secondary input branch. 

The GANN was trained in the usual way, with a combination of a generator and 
discriminator, using a Wasserstein distance with a gradient penalty (Gulrajani et al., 
2017). The output took the form of augmented data that preserved some features of the 
input data with random differences in the details. 

5 Results and discussion 

All tests were performed on the newly obtained dataset with the specific data enrichment 
deriving from the Casa di Cura Tortorella clinical databases, which were contextually 
necessary. Results are reported here for the learning of the feature extractor and the 
ability of the GANN to find an equilibrium between its inner components. 

The first stage involved evaluating the quality of the data reconstruction by the 
autoencoder. Figure 6 shows the behaviour of the loss value, which represents the 
variation in the error (where a lower value is better), and it can be seen from the curves 
whether the training phase has achieved a significant result (or not yet). 

Figure 6 Learning curves for the autoencoder with skip connections: the training loss is shown in 
orange, and validation loss in blue (see online version for colours) 

 

Source: Authors’ elaboration 

It can be observed that the two curves tend to converge towards a small number in the 
range [0.125–0.126]. Furthermore, their close proximity during learning means it is likely 
that there are no overfitting or underfitting problems. 
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The oscillations in the orange curve are due to the high variance in the data from 
shape to pixel values. These parameters are the most important elements in understanding 
the quality of the proposed neural network. 

Figure 7 Learning curves for the GANN architecture: (a) generator, (b) discriminator (see online 
version for colours) 

  
(a)     (b) 

Source: Authors’ elaboration 

The knowledge obtained in the first stage was used in the second stage as input to the 
GANN, and the learning curves for the generator and for the discriminator can be seen in 
Figures 7(a) and 7(b), respectively. The aim is to find an equilibrium where both plots are 
near to zero, and lower oscillations in the curves can be observed for both networks. 

The number of total iterations to reach a good equilibrium is higher than in the 
previous model; for the generator, the distance from zero tends to reduce at each step, 
with few fluctuations, while the discriminator generally approaches zero with variations 
on similar steps. The most significant difference is that as training proceeds, the distance 
from the optimal equilibrium does not seem to increase for the discriminator. These 
observations can be explained by the fact that the generator is becoming expert in 
generating artificial images that are very similar to the original ones, and at a certain 
point, the discriminator is deceived by these data. 

Again, the proximity of the training and the validation curves is important. Although 
these plots are rich in information, the most important test is the visualisation of the 
images generated by the GAN, as shown in Figure 8. 

Figure 8 CT images generated by CGAN 

  
(a)   (b) 

Source: Authors’ elaboration 
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Figure 8 CT images generated by CGAN (continued) 

  
(c)   (d) 

  
(e)   (f) 

Source: Authors’ elaboration 

6 Scientific and managerial implications 

The evidence resulting from the experiments conducted here may have several important 
implications for the adoption of AI models in radiology, in terms of increased 
competitiveness of the related processes. Of the potential range of implications, some 
seem to be particularly significant, from both a scientific and a managerial perspective. 

The most important benefits of the proposed DA could affect several aspects of the 
global healthcare process. These include more accurate and timely diagnoses (increased 
efficacy), reduction of misinterpretation (increased efficacy in terms of safety, and 
increased effectiveness in terms of judiciary problems), workflow optimisation (increased 
effectiveness), personalised treatments (increased efficacy, also in terms of related 
business intelligence, for example using data mining), and access to radiological care via 
distance evaluations (increased effectiveness) (Talha et al., 2010; Marcarelli, 2018; 
Pascarella et al., 2021; Kumar et al., 2023; Singh et al., 2023). 

At the same time, the most relevant implication for AI in healthcare, and more 
specifically radiological activity, which is under investigation in the current study, is the 
constant interaction of the software platform with the competence of the radiologist. ML 
and deep learning (DL) models can offer considerable support in regard to increasing the 
effectiveness of the overall clinical process, but only if continuously adopted under the 
supervision, coordination, and responsibility of healthcare specialists (Yang, 2022). 
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7 Limitations and future work 

This study is subject to several constraints. Potential solutions to the limitations described 
here could be reached by extending the investigation, suggesting possible avenues for 
improving the global impact of the current research, which in its present form 
undoubtedly represents an exploratory experiment. 

Firstly, this work considered as a case study the Casa di Cura Tortorella in Salerno, 
Italy, which was chosen as an extreme case since it had a very advanced health 
information system. Consequently, it is not possible to generalise the results of the 
research, meaning that enlarging the number of observed healthcare structures would be 
necessary to gain a deeper understanding of whether AI techniques, and ML and DL 
models in particular, could be widely used to improve the effectiveness of radiology 
activities. 

Secondly, the study was conducted in the form of an experiment, and a specific 
software platform was developed that accepted real medical images and created 
additional synthetic medical images that were as close as possible to real images with 
other specific characteristics, using additional clinical data provided by the Casa di Cura 
Tortorella health information system to contextualise and enrich the generated images. 
Another experiment (i.e., another software platform) may provide different results, and it 
therefore seems necessary, in future research, to extend the current investigation with 
other tests that could be performed by other software platforms. 

Thirdly, the study was conducted in the form of simulation, without carrying out 
checks between the generation of the augmented medical images (i.e., the simulated 
images) and the real medical images corresponding to the actual health status of the 
patient under analysis in the clinical situation. In other words, a comparison 
between/among real images, artificial images, and real images, with longitudinal 
verification, seems necessary for the global evolution of the experiment. 

8 Conclusions 

The use of AI techniques in the healthcare sector is still in its initial stages (Apell and 
Eriksson, 2023). The medical field, and radiology in particular, has traditionally been one 
of the areas that is most sensitive to the introduction of innovative technologies, and this 
is especially true in view of the tremendous impacts that various solutions arising from 
the world of AI may have (Vishwakarma et al., 2023). 

In the specific case of medical images, several methodologies based on ML and DL 
models may help in achieving valid and reliable DA (from a clinical point of view), 
which may translate into a more effective organisation (from a managerial and financial 
point of view). In the healthcare sector, the quality of medical treatment remains the 
fundamental pillar of the entire process, but the careful management of operations, 
processes, and activities is also essential, since we must balance the need for treatments 
that are ever more expensive with the need for affordable healthcare for the community. 

AI can offer support in this regard, as demonstrated by the results of the experiment 
conducted in this study (Feng et al., 2022). It is probable that in the very near future, 
debate will no longer centre on the possibility of using AI in a valid and reliable way in 
the medical field, but rather on how to use it to continually increase the effectiveness of 
the global healthcare process. The healthcare organisations that adopt AI in their 
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processes are likely to gain a competitive advantage with respect to their competitors, 
although the priority is naturally the impact on the health of the patient. 
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