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Abstract: To lessen damages from landslides, the key challenge is to predict 
the events precisely and accurately. The objective of this study is to assess 
landslide susceptibility in the study area. To achieve this objective, a detailed 
landslide inventory has been prepared based on imagery data and frequent field 
visits of 153 rock slides and 44 debris slides. Nine landslide factors were 
prepared initially and their relationships with each other and with the type of 
landslide was analysed. Information gain ratio measure is used to eliminate 
triggering factors with least score. Train_test_split method was used to classify 
the dataset into training and testing groups. Decision tree classification model 
of machine learning was applied for landslide susceptibility model (LSM). The 
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performance was evaluated using classification report and receiver operating 
characteristic (ROC) curve. Results obtained have proven that the decision tree 
classification model performed well with good accuracy in forecasting 
landslide susceptibility. 

Keywords: landslide susceptibility modelling; LSM; machine learning; 
decision tree classification. 
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1 Introduction 

Landslide is a hazard in form of mass movement mainly occurred in hilly or mountainous 
terrain causing an extensive loss to the economy and human settlements (Loi et al., 
2017). The landslide events are quite frequent during monsoon season (July to 
September) in India induced by episodic rainfall (Bhambri et al., 2016; Ambrosi et al., 
2018). The Kullu-Rohtang Pass transport corridor is highly susceptible to landslides and 
the construction activities along the road corridor have put an additional threat inducing 
these events. Rapid urbanisation has increased the demand for more land and thus 
increasing the frequency of landslides incidents (Singh and Pandey, 1996). LSM is very 
useful in order to assess landslide hazard and risk, also it is considered very helpful for 
land use planning and environmental impact assessment. This method has emerged very 
convenient and beneficial for policy makers and engineers for making and executing 
appropriate policies and strategies to lessen landslides risk (Sassa, 2017). Landslides can 
be classified into many categories based on various deformation patterns (Hunger et al., 
2014). The conditions influencing the occurrence of any landslide event are different for 
each landslide. For example, the rock slide occurs majorly on steep mountains while 
debris slide takes place on gentle slope. Therefore, it becomes crucial to perform the 
landslide susceptibility assessment by considering the distinctions between these types of 
landslides. Landslide susceptibility model (LSM) can be grouped under two major 
categories: qualitative and quantitative assessment. Qualitative assessment comprises of 
methods which are primarily based on inventories, comprehension and knowledge, while 
quantitative assessment includes physically-based techniques and data induced models 
(Hussin et al., 2016). The data-based models include decision tree, Naïve Bayes,  
k-nearest neighbour (KNN) and so forth. In data-based model, the machine learning 
models are observed more efficient and have performed better than traditional models 
such as analytic, experience and opinion-based models. 

Machine learning models have been practiced in many research areas like data mining 
(Maheshwar et al., 2015), pattern recognition (Narayanan et al., 2016), medical diagnosis 
(Goyal and Maheshwar, 2019; Maheshwar and Kumar, 2019) and artificial intelligence 
(Ghahramani, 2015) and have shown better results. Different machine learning models 
have been used for landslide identification and susceptibility modelling (Wang et al., 
2021; Arabameri et al., 2021). Before executing LSM, it is better to understand the 
landslide mechanism and different triggering factors causing the landslides. Feature 
selection methods can be used to analyse the correlation among the triggering factors and 
occurrence of landslide events. These methods provide powerful techniques to select the 
major triggering factors for LSM. 

The primary purpose of this study is to recognise the different types of landslides and 
their triggering factors along the transport corridor from Kullu to Rohtang Pass. This 
transport corridor suffers from massive landslides during monsoon season due to the 
presence of unstable slope in the area. So, an accurate LSM is required which can be 
helpful in taking suitable and appropriate landslide risk mitigation measures. This study 
focuses on developing a machine learning-based LSM model with better spatial 
agreement and good accuracy for the research area. In this study, information gain is used 
as attribute selection measure and then the decision tree machine learning model is 
applied on the reduced dataset. The results showed that the decision tree model achieve a 
quite satisfactory predictive accuracy. Anaconda tool with Python programming language 
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has been used to carry out the programming and experimental related work. The reason 
for using Python programming language is its simplicity and enriched libraries for 
carrying out machine learning related research. 

Figure 1 Demarcation of the study area (see online version for colours) 
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2 Study area 

2.1 General features 

In the present study, the transport corridor (NH-21) from Kullu-Rohtang Pass having a 
length of 90 km has been selected for LSM. Geographically, this area lies between the 
latitudes 32°0′0″N to 32°20′0″N and longitudes 77°5′0″E to 77°15′0″E (Figure 1). In this 
study, a buffer of one kilometre on both sides of the road has been taken for LSM. 

The selected area comes under lesser Himalaya mountain ranges having an uneven 
geomorphology with average to high elevation ranging from 1,279 m to 3,979 m from 
mean sea level (MSL). The average rainfall in this area is about 1,363 mm. Maximum 
number of landslides from Kullu to Rohtang Pass are mainly recorded in the months of 
July to September as the rainfall is maximum in these months. The maximum and 
minimum temperature varies from 25° Celsius to 4° Celsius. 

There are different varieties of soil found in the study area such as brown hill soil, red 
loamy soil and mountain meadow soil. Agricultural practices are done predominantly in 
mountain cut terraces and river terraces. Thrusts like Vaikrita, Jutogh and Kullu are also 
found in the study area. These thrusts are dynamic in nature and play a significant role in 
neo-tectonics of this area. The location of the study area is along the banks of the river 
Beas which is the main source of drainage. The drainage pattern of the river Beas in the 
study area reflects primary stage of dendritic pattern with visible sign of parallel dendritic 
and trellis patterns in between. The urbanisation, mining, road construction and 
deforestation are major activities which increase the vulnerability of landslide 
occurrences (Saha et al., 2005). The occurrence of landslide events along the transport 
corridor affects the transportation and sometimes even completely cut off the supply lines 
affecting the economic activities adversely. 

2.2 Landslide type 

The type of a landslide depends on various environmental, local and regional terrain 
conditions. In the study area, two landslide types have been identified: 

1 Rock slide: Rock slide (Hunger et al., 2014) is a major type of landslide that mostly 
occurs in multistage patterns [Figure 2(a)]. Most of the rock slides occurrences are 
due to the gravitational pressure and erosional influences. On steep mountainous 
ridges due to the development of large structural joints, the occurrence of large scale 
rock slide is quite often. Constructional activities in gentle slope terrain are the main 
reason behind happenings of these events as the slope may lose the equilibrium state 
under the influence of artificial cutting. 

2 Debris slide: Debris slide (Iverson, 2015) is the downward movement of the 
combination of rocks material, organic matters, loose soil, water in the form of slurry 
with size of sand particles of at least 50% of flowing material, flowing down the 
slope [Figure 2(b)]. Debris slide mainly occurs because of intense water flow, speedy 
snowmelt which is eroding and mobilising loose rocks and soil particles. 
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Figure 2 Landslide types, (a) rock slide (b) debris slide (see online version for colours) 

  
(a)     (b) 

3 Methodology 

3.1 Landslide triggering factors analysis 

In this study, the methods used for landslide triggering factors analysis include 
information gain ratio (IGR) and decision tree classifier. 

3.1.1 Information gain ratio 
IGR is well known and widely used attribute method of selection (Quinlan, 1996;  
Tien Bui et al., 2016). Attributes having higher value of the IGR have higher ability of 
prediction for the model. Assuming, the training data D comprises of n number of 
samples. The information required to categories a sample in D is obtained by 

( )2
1

( ) log
m

i
i

Info D p
=

= −  (1) 

Here m is used to denote the number of various classes and pi is the probability that a 
sample in D associates to class ci and is computed by |Ci,D|/|D|. For each triggering factor 
A, which divides the training data D into v partitions (D1, D2, …, Dv) the information gain 
is calculated by using 
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The IGR for factor A is calculated as: 
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Here SplitInfoA is calculated by using the following formula: 
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3.2 Decision tree classification 

Classification (Bertsimas and Dunn, 2017; Dinov, 2018) is a supervised learning 
technique of machine learning. Decision tree learning is one among many classification 
models which uses the decision tree as a predictive model that maps a given testing 
sample to one of the predefined class of the data. In decision tree classification model, all 
internal nodes indicate a test on an attribute while the leaf nodes show the class label 
(Figure 3). The branch shows the results of the test conducted on the attribute at internal 
node. 

At each level of the decision tree, the triggering factors are decided by the splitting 
principle. The splitting principle uses the attribute selection method to find the best 
triggering factor to be used as split point. A triggering factor with maximum IGR value is 
used as the split-point. 

For this study, initially nine triggering factors are considered. Two factors with least 
IGR values are eliminated. So rest seven factors with higher IGR values are used as split 
points. The splitting principal is applied for deciding the triggering factors at each level. 

Figure 3 Decision tree for landslide prediction 

 

So, if a sample, X, is given for which the landslide type class is unknown, the triggering 
factors values of the sample are tested for the decision tree. An approach from the root 
node to the leaf node is traced. The leaf node tells the class of landslide type to which the 
given sample belongs. 

4 Data preparation and analysis 

In this study, ASTER DEM with 30m spatial resolution has been used for topographic 
analysis. Benchmarks have been digitised from the survey of India (SoI) topographic 
sheet nos. 52 H/3 and 52 H/4 on the scale 1:50, 000. Analysis of geographic and 
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topographic variables such as aspect, slope, elevation, relative relief, distance to road and 
distance to drainage is done by using ASTER DEM, USGS (Table 1). 

Google Earth and Landsat 8 OLI, USGS are used for preparing land use and land 
cover (LULC) data and landslide inventory map. Geological and geomorphological data 
is prepared by using geological quadrangle maps, GSI and ground water prospects maps 
by NRSA for preparing lineament density data. Landslide locations, types, frequency and 
year of occurrence have been collected from BRO, Manali and PWD, Kullu. 

4.1 Landslide inventory 

The basic principle of LSM is based on detailed landslide inventory. A definitive, 
dependable and precise landslide inventory data is very important for predicting accuracy 
of landslide (Pandey et al., 2021). Frequent field visits for inspection and exploration 
were performed to examine the factors influencing the landslide in the selected area. Fifty 
four landslides had been recorded by BRO along the transport corridor in 2011. This 
inventory was further updated and the number of landslides increased to 96 in 2012. It 
was updated to 143 in 2015. Detailed field investigation of 54 landslides occurred along 
the transport corridor was carried out using Global Position System (GPS) and Google 
earth images in 2018 (Table 2). Spatial temporal map has been prepared using 18 years 
(2000 to 2018) landslide data collected from BRO, Manali and PWD, Kullu. A total of 
197 landslides were identified with 153 of rock slides and 44 of debris slides. 
Table 1 Types and sources of dataset 

Data type Database Resolution and scale Data derivative 
Topographic 
map 

Survey of India (SoI) RF 1: 50, 000 Boundary of the study area, 
transport route 

Imagery 
data 

Google Earth, Landsat 
8 

30 meter Land use and land cover, 
landslide inventory map 

ASTER 
DEM 

USGS 30 meter Slope, aspect, road, drainage, 
elevation and relative relief 

map 
Landslide 
data 

BRO, Manali, PWD, 
Kullu and NDMA 

govt. reports 

 Landslide locations, 
frequency, types of landslide, 

year of occurrence, road 
damage and cost 

Ancillary 
data 

Geological Quadrangle 
Map, GSI 

1:250,000 Geology and geomorphology 
map 

 GSI and Ground Water 
Prospects Map by 

NRSA 

1:250,000 and 
1:50,000 

Lineament density map 

Notes: United States Geological Survey (USGS), Border Road Organization (BRO), 
Public Work Department (PWD), Geological Survey of India (GSI), National 
Disastrous Management Authority (NDMA) and National Remote Sensing 
Agency (NRSA). 
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Table 2 Characteristics of the landslides occurred along the Kullu-Rohtang Pass transport 
corridor (2018) 

 

La
nd

sli
de

 ID
 

La
nd

sli
de

 
lo

ca
tio

n 
(k

m
) 

La
nd

sli
de

 ty
pe

 
Sl

op
e 

(d
eg

re
e)

 
LU

LC
 

El
ev

at
io

n 
(m

) 
Li

ne
am

en
t 

de
ns

ity
 

D
is

ta
nc

e 
to

 
ro

ad
 (m

) 
G

eo
lo

gy
 a

nd
 

ge
om

or
ph

ol
og

y 
D

is
ta

nc
e 

to
 

dr
ai

na
ge

 (m
) 

L 
1 

0–
2.

35
 

Ro
ck

 sl
id

e 
45

–6
0 

Se
ttl

em
en

t 
<1

,0
00

 
M

ed
iu

m
 

20
0–

40
0 

Sc
hi

st 
an

d 
qu

ar
tz

ite
 

10
0–

20
0 

L 
2 

2.
35

–2
.8

6 
Ro

ck
 sl

id
e 

45
–6

0 
Se

ttl
em

en
t 

<1
,0

00
 

M
ed

iu
m

 
20

0–
40

0 
Sl

at
e,

 li
m

es
to

ne
 p

hy
lit

e 
10

0–
20

0 
L3

 
2.

86
–3

.7
8 

Ro
ck

 sl
id

e 
45

–6
0 

Se
ttl

em
en

t 
<1

,0
00

 
M

ed
iu

m
 

20
0–

40
0 

Sl
at

e,
 li

m
es

to
ne

 p
hy

lit
e 

10
0–

20
0 

L 
4 

3.
78

–4
.6

1 
Ro

ck
 sl

id
e 

0–
15

 
Se

ttl
em

en
t 

<1
,0

00
 

M
ed

iu
m

 
20

0–
40

0 
Sl

at
e,

 li
m

es
to

ne
 p

hy
lit

e 
10

0–
20

0 
L 

5 
4.

61
–4

.9
2 

Ro
ck

 sl
id

e 
0–

15
 

Se
ttl

em
en

t 
<1

,0
00

 
M

ed
iu

m
 

20
0–

40
0 

Q
ua

rtz
ite

 sc
hi

st 
10

0–
20

0 
L 

6 
4.

92
–1

3.
85

 
Ro

ck
 sl

id
e 

45
–6

0 
Se

ttl
em

en
t 

<1
,0

00
 

M
ed

iu
m

 
20

0–
40

0 
Q

ua
rtz

ite
 sc

hi
st 

10
0–

20
0 

L 
7 

13
.8

5–
14

.2
5 

D
eb

ris
 sl

id
e 

45
–6

0 
D

en
se

 fo
re

st 
<1

,0
00

 
M

ed
iu

m
 

20
0–

40
0 

Q
ua

rtz
ite

 sc
hi

st 
10

0–
20

0 
L 

8 
14

.2
5–

15
.5

8 
D

eb
ris

 sl
id

e 
45

–6
0 

D
en

se
 fo

re
st 

<1
,0

00
 

H
ig

h 
<2

00
 

Q
ua

rtz
ite

 sc
hi

st 
<1

00
 

L 
9 

15
.5

8–
16

.2
3 

Ro
ck

 sl
id

e 
15

–3
0 

D
en

se
 fo

re
st 

<1
,0

00
 

H
ig

h 
<2

00
 

Q
ua

rtz
ite

 sc
hi

st 
<1

00
 

L 
10

 
16

.2
3–

17
.3

9 
Ro

ck
 sl

id
e 

15
–3

0 
D

en
se

 fo
re

st 
<1

,0
00

 
H

ig
h 

<2
00

 
Q

ua
rtz

ite
 sc

hi
st 

<1
00

 
L 

11
 

17
.3

9–
19

.0
8 

Ro
ck

 sl
id

e 
45

–6
0 

Se
ttl

em
en

t 
<1

,0
00

 
H

ig
h 

<2
00

 
Q

ua
rtz

ite
 sc

hi
st 

<1
00

 
L 

12
 

19
.0

8–
19

.7
6 

Ro
ck

 sl
id

e 
45

–6
0 

Se
ttl

em
en

t 
<1

,0
00

 
H

ig
h 

<2
00

 
G

G
G

 
<1

00
 

L 
13

 
19

.7
6–

22
.6

4 
Ro

ck
 sl

id
e 

45
–6

0 
Se

ttl
em

en
t 

1,
00

0–
2,

00
0 

H
ig

h 
<2

00
 

G
G

G
 

<1
00

 
L 

14
 

22
.6

4–
23

.7
9 

Ro
ck

 sl
id

e 
45

–6
0 

Se
ttl

em
en

t 
1,

00
0–

2,
00

0 
M

ed
iu

m
 

20
0–

40
0 

G
FD

 
10

0–
20

0 
L 

15
 

23
.7

9–
27

.8
3 

D
eb

ris
 sl

id
e 

45
–6

0 
A

gr
ic

ul
tu

re
 

1,
00

0–
2,

00
0 

M
ed

iu
m

 
20

0–
40

0 
G

FD
 

10
0–

20
0 

L 
16

 
27

.8
3–

28
.6

4 
Ro

ck
 sl

id
e 

45
–6

0 
A

gr
ic

ul
tu

re
 

1,
00

0–
2,

00
0 

M
ed

iu
m

 
20

0–
40

0 
G

FD
 

10
0–

20
0 

L 
17

 
28

.6
4–

30
.4

2 
Ro

ck
 sl

id
e 

45
–6

0 
A

gr
ic

ul
tu

re
 

1,
00

0–
2,

00
0 

M
ed

iu
m

 
20

0–
40

0 
G

FD
 

10
0–

20
0 

L 
18

 
30

.4
2–

31
.6

6 
Ro

ck
 sl

id
e 

45
–6

0 
A

gr
ic

ul
tu

re
 

1,
00

0–
2,

00
0 

Lo
w

 
>4

00
 

G
FD

 
>2

00
 

L 
19

 
31

.6
6–

33
.7

2 
D

eb
ris

 sl
id

e 
0–

15
 

Se
ttl

em
en

t 
1,

00
0–

2,
00

0 
Lo

w
 

>4
00

 
G

FD
 

>2
00

 
L 

20
 

33
.7

2–
35

.2
 

Ro
ck

 sl
id

e 
45

–6
0 

Se
ttl

em
en

t 
1,

00
0–

2,
00

0 
Lo

w
 

>4
00

 
G

FD
 

>2
00

 

N
ot

es
: G

ra
ni

te
 g

ne
iss

 a
nd

 g
ra

ni
to

id
 (G

G
G

), 
gl

ac
io

-fl
uv

ia
l d

ep
os

its
 (G

FD
), 

hi
gh

ly
 d

iss
ec

te
d 

hi
ll 

an
d 

va
lle

y 
(H

D
H

V
) a

nd
 b

io
tit

ie
 sc

hi
st,

 k
yn

ite
 g

ne
iss

 
(B

SK
G

). 



   

 

   

   
 

   

   

 

   

   10 Nirbhav et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Table 2 Characteristics of the landslides occurred along the Kullu-Rohtang Pass transport 
corridor (2018) (continued) 
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Table 2 Characteristics of the landslides occurred along the Kullu-Rohtang Pass transport 
corridor (2018) (continued) 
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The types of landslide, i.e., rock slide and debris slide are according to the records of 
BRO, Manali and PWD, Kullu. The landslide inventory is prepared using Geographic 
Information System (GIS) software (ArcGIS 9.3) with the help of satellite imageries and 
GPS way points [Figure 4(a)]. The largest and the smallest landslides mapped along the 
transport corridor were 4,000 m3 and 120 m3 respectively. The highest number of 
landslides occurred on the terrain or steep slopes are due to geological conditions, 
continuous deformation of structures in the topography and enormous amount of road 
cuts in cracked rocks. The maximum landslide (rock slide and debris slide) prone area 
lies between 45° to 60° and 60° to 80° slope classes. 

4.2 Landslide triggering factors 

As per the field investigations and evaluation of data, initially nine causing factors were 
arranged for the assessment of landslide susceptibility: lineament density, slope, 
elevation, relative relief, aspect, LULC, geology and geomorphology, distance to road 
and distance to drainage (Champati Ray et al., 2007; Cao et al., 2021). Continuous factors 
(slope, elevation, lineament density and so on) had been discretised using their 
normalised values which are calculated by using analytical hierarchical process (AHP) 
model (Saaty, 1990). 

4.2.1 Slope 
The slope was categorised in to five categories: very gentle (0–15°), gentle (15°–30°), 
moderate (30°–45°), steep (45°–60°), very steep (>60°) [Figure 4(b)]. The rock slides are 
mainly found in steep and very steep slopes while debris occurs in moderate and steep 
slopes. The normalised values of gentle, very gentle, moderate, steep and very steep 
slopes were 0.0335, 0.0580, 0.1118, 0.2523, and 0.5443 respectively. 

4.2.2 Elevation 
The elevation in the study area was divided into four categories: (<1,000 m),  
(1,000–2,000 m), (2,000–3,000 m), (>3,000 m) [Figure 4(c)]. The normalised values of 
these categories were 0.0903, 0.0461, 0.1807 and 0.6827 respectively. The landslide had 
highest normalised value of 0.6827 and occurred frequently in range of (>3,000 m). 

4.2.3 Land use and land cover 
LULC is an important triggering factor causing the landslide. LULC was classified into 
six categories: dense forest, agriculture, sparse forest, settlement, barren land and snow 
cover [Figure 4(d)]. The normalised values for these categories were 0.0373, 0.1854, 
0.1438, 0.2035, 0.3981 and 0.0316 respectively. From the normalised value mentioned 
above, it can be inferred that landslide occurs quite frequently in barren land areas. 
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Figure 4 (a) Landslide inventory map (b) Slope (c) Elevation (d) LULC (e) Geology and 
geomorphology (f) Lineament density (g) Aspect (h) Distance to road (i) Distance to 
drainage (j) Relative relief (see online version for colours) 

 
(a)     (b) 

 
(c)     (d) 
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Figure 4 (a) Landslide inventory map (b) Slope (c) Elevation (d) LULC (e) Geology and 
geomorphology (f) Lineament density (g) Aspect (h) Distance to road (i) Distance to 
drainage (j) Relative relief (continued) (see online version for colours) 

 
(e)     (f) 

 
(g)     (h) 
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Figure 4 (a) Landslide inventory map (b) Slope (c) Elevation (d) LULC (e) Geology and 
geomorphology (f) Lineament density (g) Aspect (h) Distance to road (i) Distance to 
drainage (j) Relative relief (continued) (see online version for colours) 

 
(i)     (j) 

4.2.4 Geology and geomorphology 
Geology and geomorphology is an important feature in landslide study. The study area 
was divided into eight categories: highly dissected hill and valley, snow cover, schist and 
quartzite, granitic gneiss and granitoid, glacio-fluvial deposits and quaternary alluvium, 
quartzite schist, carbonaceous slate and limestone, biotite schist and kynite gneiss  
[Figure 4(e)]. The normalised values for these categories were 0.3320, 0.0744, 0.0321, 
0.0369, 0.0266, 0.2113, 0.1049 and 0.1489 respectively. The highest normalised value of 
highly dissected hill and valley shows that it has more impact in causing the landslide 
comparing to other categories. 

4.2.5 Lineament density 
Lineament can be defined as the lines of landscape representing the geometric pattern of 
rocks. Lineament density is an important triggering factor that affects the phenomenon of 
landslides. It was categorised into three categories: low, medium and high [Figure 4(f)]. 
Normalised values for these categories were 0.0681, 0.1542 and 0.7775 respectively. 
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4.2.6 Aspect 
Aspect was divided into nine categories: flat, north, northeast, east, southeast, south, 
southwest, west and northwest [Figure 4(g)]. The respective normalised values for these 
categories were 0.0432, 0.2827, 0.0182, 00289, 0.0895, 0.2423, 0.1508, 0.015 and 
0.0624. 

4.2.7 Distance to road 
Construction of roads brings the changes in the natural topography and leads to 
landslides. The study area was divided into three zones classifying the impact of 
landslides occurred along the road corridor [Figure 4(h)]. The three zone categories were: 
<200 m, 200–400 m and >400 m with normalised values 0.6810, 0.0688 and 0.2500 
respectively. 

4.2.8 Distance to drainage 
Distance to drainage is also among the main conditioning factors in landslide 
susceptibility analysis process. The proximity of slope to streams makes the slope more 
unstable and exposed to landslide events. The distance to drainage was divided into three 
categories: <100 m, 100–200 m and >200 m [Figure 4(i)]. The normalised values for 
these categories were 0.6494, 0.2941 and 0.0563 respectively. 

4.2.9 Relative relief 
Difference between the highest and lowest elevation of a particular area is termed as 
relative relief. Relative relief was also categorised into three categories: <101 m,  
101–184 m, >184 m [Figure 4(j)]. The normalised values for these categories were 
0.6695, 0.2668 and 0.0635 respectively. 

5 Results and analysis 

5.1 Landslide susceptibility analysis 

To analyse landslide susceptibility, following methods have been performed: 

5.1.1 Multi-collinearity problem analysis 
Machine learning models respond even to the slight changes in data in their needed 
range. Therefore, AHP method was used to normalise each triggering factor in a range of 
[0.01, 0.99]. This normalised data acts as an input to the machine learning model while 
the landslide susceptibility index (debris slide: 0, rock slide: 1) acts as the output. 
train_test_split method of classification model was used to divide the data in 70% 
training samples and 30% testing samples to estimate the accuracy of the model. 

The performance of the susceptibility model can be influenced by the  
multi-collinearity among the triggering factors. To evaluate the multi-collinearity among 
the nine triggering factors, tolerance and variance inflation factors (VIF) were applied. A 
tolerance of less than 0.2 or a VIF of 5 or above leads to multi-collinearity problem 
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(O’Brien, 2007). The smallest tolerance in the data is 0.331 and the highest VIF among 
these is 3.025 (Table 3). 
Table 3 Multi-collinearity of factors 

Factor VIF Tolerance 
Slope 1.252 0.799 
Elevation 2.961 0.338 
LULC 1.266 0.790 
Distance to road 2.171 0.461 
Distance to drainage 1.513 0.661 
Geology/geomorphology 2.005 0.499 
Lineament 3.025 0.331 

5.1.2 Selection and elimination of unimportant triggering factors 
Initially, nine factors are arranged accordingly and observed as the landslide causing 
factors. IGR method has been applied to access the relevance of every individual causing 
factor. The gain ratio of all nine causing factor can be seen in Figure 5. The triggering 
factors with high gain ratio value are more important. It is evident from the outcome that 
lineament density has the highest gain ratio with a value of 1.77. 

Figure 5 IGR for triggering factors (see online version for colours) 

 

Table 4 Predictive accuracy with elimination of unimportant factors 

Model Eliminating unimportant factors AUROC 
Model-1 Without eliminating any factor 0.875 
Model-2 Eliminating relative relief 0.892 
Model-3 Eliminating relative relief, aspect 0.979 
Model-4 Eliminating relative relief, aspect, distance to drainage 0.923 
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Though, all the factors are relevant for landslide prediction, but it is clear from the Figure 
6 that the least important factors may reduce the predictive accuracy of the model (Pham 
et al., 2016). In process of finding the important triggering factors, two least important 
factors were eliminated at a time and the decision tree classification model was used to 
predict the accuracy. 

As given in Table 4, the predicted accuracy of this model is improved when the 
irrelevant triggering factors are removed from the dataset. 

The maximum accuracy is achieved when two irrelevant factors are eliminated. Thus, 
relative relief and aspect are eliminated from the dataset. 

5.1.3 Landslide susceptibility modelling 
Decision tree classification model of machine learning was executed to evaluate the 
susceptibility of the landslides dataset (Figure 6). As discussed earlier in  
Subsection 5.1.2, seven relevant triggering factors namely lineament density, slope, 
elevation, LULC, geology and geomorphology, distance to road and distance to drainage 
were determined to generate the LSM. The parameters for decision tree classifier are 
shown in Table 5. 

Figure 6 Flowchart of LSM and prediction 
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Table 5 Parameters of decision tree classifier 

Factor Value Note 
Criterion Entropy Measures the quality of split 
min_samples_leaf 1 Minimum number of samples required to be at a leaf node 
Splitter Best Strategy used to choose the split at each node 
min_sample_split 2 Minimum number of sample required to split and internal 

node 
min_impurity_decrease 0.0 Measure of impurity at a node split 

5.2 Validation and ROC curve 

5.2.1 Using classification report of the model 
To evaluate the effectiveness of this LSM, validation is the most important component. 
With the triggering factors selected as discussed in Subsection 5.1.2, the decision tree 
classification model achieve predictive accuracy of 90.7% which is quite satisfactory 
(Figure 7). 

Figure 7 (a) Original dataset visualisation in 2D (b) Result visualisation in 2D  
(see online version for colours) 

  
(a)     (b) 

Figure 7(a) shows the plot of dataset in two-dimensions for better visualisation. Though 
the actual data consists of seven triggering factors, each representing the dimension of 
data but it is practically not possible to visualise this data with all the seven triggering 
factors as one can better visualise up to three-dimensions only. In this study, two-
dimensions have been used to display both data and result using principal component 
analysis (PCA) technique. PCA (Svante et al., 1987) is mainly used to reduce the 
dimensionality of the data and returns principal components that can be used to display 
the data in lower dimensions. Figure 7(b) shows the results observed by applying the 
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decision tree classifier on the data in two-dimensions. The classification report of the 
decision tree model of machine learning is shown in Table 6. 

Precision and recall are two important metrics for model evaluation. Precision 
measures the result relevancy and is calculated by using equation (5). If the model has 
high precision value then it indicates that the false positive rate of the model is low. 
Recall measures the percentage of total relevant results that this model classifies correctly 
and is calculated by using equation (6). If the recall value is high, it shows the false 
negative rate of the model is low. For a model to be more accurate the value of precision 
and recall should be high. 
Table 6 Classification report of model 

Class Precision Recall F1-score 
0 0.75 1.00 0.86 
1 1.00 0.87 0.93 

So, from precision and recall values (Table 6), it can be inferred that model has good 
precision and recall value and hence good accuracy. 

( ) p

p p

T
precision P

T F
=

+
 (5) 

( ) p

p n

T
recall R

T F
=

+
 (6) 

In equations above, 

• Tp = total number of true positive samples 

• Fp = total number of false positive samples 

• Fn = total number of false negative sample 

• (Tp + Fp) represents the actual results and (Tp + Fn) represents the predicted results. 

F1-score can be defined as the harmonic mean of precision and recall and can be 
calculated by using the equation (7). Higher the value of f1-score, better the model is. 

1- 2 P Rf score
P R

×=
+

 (7) 

5.2.2 Using ROC curve 
Receiver operating characteristic (ROC) curve is a probability curve that summarises the 
trade of true positive rate and false positive rate of a predictive model. It is the most 
widely used evaluation metric for checking the performance of a classification model. 
Area under the ROC curve (AUROC) is applied to evaluate the model’s execution and a 
model with larger area under AUROC is considered as the best. Figure 8(c) shows that 
the AUROC of the model with the selected triggering factors is 0.979 which is greater 
than that of AUROCs generated with different sets of triggering factors. 
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Figure 8 (a) Without eliminating any factor (b) Eliminating relative relief (c) Eliminating relative 
relief and aspect (d) Eliminating relative relief, aspect and distance to drainage  
(see online version for colours) 

  
(a)     (b) 

  
(c)     (d) 

6 Discussion 

In this study area, two different types of landslides were discussed: rock slide and debris 
slide. Each triggering factor has its different importance for a landslide occurrence. For 
example, lineament density had dominant effect on a landslide while relative relief had 
least role to play in case of landslide. Machine learning model (decision tree classifier) 
performed well for LSM and assessment with an AUROC of 0.979. This indicates that 
machine learning models can be applied to complex nonlinear problems like landslide 
prediction. One major concern must be notified that machine learning model performance 
is sensitive to data and may differ from case to case. The error in a LSM is comprised of 
false negative class and false positive class of data as shown in confusion matrix Table 7. 
Table 7 Confusion matrix 

 Actual class 
Predicted class True positive False positive 

False negative True negative 
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False positive class predicts areas as landslides prone that are actually not. This may 
restrict the land use and can lead to economy loss by not using that land for economic 
activities. However, if the landslide prone area is predicted as a stable slope erroneously, 
i.e., false negative portion increased, it may lead to serious landslide disaster and loss. 
Further studies of landslide susceptibility assessment, should have the prime focus on the 
methods to minimise the false negative error. 

7 Conclusions 

LSM and assessment is necessary for proper land use planning in mountain areas to 
reduce the disaster risks. In this study, Kullu to Rohtang Pass has been considered as the 
research study area and two different types of landslides are observed, the rock slide and 
the debris slide. Lineament density, slope, elevation, LULC, geology and 
geomorphology, distance to road and distance to drainage were important triggering 
factors for landslide prediction. IGR was the basis to evaluate the significance of each 
triggering factor. The four models with various eliminated factors exhibited that the 
irrelevant factors had negative effect on LSM and should be eliminated to achieve high 
predictive accuracy. 

Decision tree classification model of machine learning was followed to accomplish 
LSM. The classification report and ROC curve were applied to assess the performance. 
The final outcomes show an accuracy of 90.7% and AUROC value of 0.979. Results 
demonstrate that decision tree classifier for landslide prediction performed well with 
good accuracy and can be beneficiary for decision making. This prefatory analysis would 
help engineers to develop suitable plans for carrying out engineering projects in the study 
area. The present study has many different directions for future research. Implementing 
different machine learning models and comparing their performances with decision tree 
machine learning model for landslide susceptibility in the study area will be an 
interesting topic of work. Further this work can be extended by using other feature 
selection techniques for selecting best data to fit the machine learning model. 
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