
   

  

   

   
 

   

   

 

   

   110 Int. J. Automation and Control, Vol. 18, No. 1, 2024    
 

   Copyright © 2024 Inderscience Enterprises Ltd. 
 
 

   

   
 

   

   

 

   

       
 

H∞ stabilisation of discrete time-delayed systems with 
anti-windup approach 

Komal Agrawal*, Nehal Srivastava and  
Richa Negi 
Department of Electrical Engineering, 
Motilal Nehru National Institute of Technology, 
Prayagraj, Uttar Pradesh, 211002, India 
Email: komal@mnnit.ac.in 
Email: nihal9532@gmail.com 
Email: richa@mnnit.ac.in 
*Corresponding author 

Vipin Chandra Pal 
Department of Electronics and Instrumentation Engineering, 
National Institute of Technology Silchar, 
Assam, 788010, India 
Email: vipin@ei.nits.ac.in 
Email: vipin.vchandra@gmail.com 

Abstract: This paper is devoted to analysing the stability of a discrete  
time-delayed system subjected to saturation. To ensure the asymptotic stability 
of the closed-loop system, an anti-windup compensator has been designed 
where the anti-windup gains are calculated via linear matrix inequality (LMI) 
technique. The accomplishment of the system has been investigated using H∞ 
technique to tackle external interference. By employing Wirtinger inequality 
with reciprocal convex inequality, delay-dependent solution of the system 
ensures the asymptotic stability of the system. An optimisation methodology is 
given to maximise the basin of attraction. Numerical illustrations prove the 
efficacy of the proposed criterion. 
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1 Introduction 

Saturation is a familiar phenomenon discussed in the real world. Most dynamical systems 
suffer from the problem of actuator saturation nonlinearities. Actuator degrades the 
performance of the system resulting in instability of the system. The popular techniques 
used to design controllers to mitigate the effect of saturation are: 

1 scheduled controllers (Wang and Sun, 2022) 

2 constrained model predictive control (Yu et al., 2021) 

3 anti-windup compensators (Moreno-Valenzuela, 2022). 

Anti-windup is a classical technique to deal with saturation. Scheduled controllers are 
used in aerospace industry, model predictive controllers in chemical industries while  
anti-windup compensators are employed in control systems with actuator saturation. 

The basic concept of anti-windup strategy is to modify a pre-designed controller to 
weaken the impact of saturation on a system. This is done by introducing an additional 
feedback loop in the existing control system to minimise the issues originated by 
saturation (Ofodile et al., 2021). Primitive research on anti-windup design decreases the 
effect of saturation using direct way by minimising the difference between actuator 
output and input (Astrom and Rundqwist, 1989; Franklin et al., 2010). Thereafter, 
indirect methods were used to diminish saturation effect by improving closed-loop 
performance and stability of the system (Kothare et al., 1994; Kapoor et al., 1998; 
Kothare and Morari, 1999; Cao et al., 2002; Hu et al., 2002). Various techniques for 
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synthesis of anti-windup compensators have been developed and are widely used in 
industries (Wen et al., 2022). 

Time delayed systems have emerged as a topic of keen attention among the 
researchers (Sun and Mao, 2019; Wu et al., 2020; Chang et al., 2021; Venkatesh et al., 
2021, 2022; Mao et al., 2022; Swarnakar, 2022; Agrawal et al., 2023) during past three 
decades. Delays are deliberately introduced in physical system model due to unmodelled 
inertia of system components, measurement, computational delays, transport and 
transmission lags. In realistic system design, time-delays should be taken into account in 
various applications such as neural network, long transmission lines in pneumatic 
systems, control in congestion analysis, echo cancellation, multipath propagation in 
mobile communication, thermal process, chemical process and many more (Chen and 
Wang, 2021; Yang et al., 2021, 2022). 

The consequence of external interference is unavoidable in practical systems. Lot of 
literature is available that discussed the stability issues (Pal and Negi, 2018; Wang and 
Sun, 2022). To curtail the consequences of disturbance and perturbation, H∞ technique 
emerges to be most appropriate strategy for discrete systems (Du et al., 2021; Yong et al., 
2021). A state feedback H∞ controller has been synthesised for uncertain discrete delayed 
system described by triple Lyapunov Krasovskii functional (LKF) with actuator 
saturation and external interference (Pal and Negi, 2018). 

Many papers deal with development of appropriate Lyapunov functions to analyse the 
stability of discrete-time systems with delays (Gao and Chen, 2007; Zhang et al., 2008; 
Kwon et al., 2013; Xu et al., 2014; Feng et al., 2015; Nam et al., 2015). Several 
techniques are available for the estimation of forward difference namely, free weighting 
matrix (FWM)-based method, inequality based method and many more to tackle the sum 
terms. (FWM)-based method is computationally demanding due to the involvement of 
free weighting matrices. Inequality based methods such as the Jensen inequality (Gu, 
2003), improved Jensen inequalities (Moon et al., 2001; Zhang et al., 2005; Park et al., 
2011), reciprocally convex combination inequality, Wirtinger’s inequality (Liu and 
Fridman, 2012) and Wirtinger-based integral inequality (Seuret and Gouaisbaut, 2013a, 
2013b) have been reported. Criteria obtained by Wirtinger inequality method provide less 
conservative results than those developed by Jensen inequality method. However, all 
these methods convey conservatism to some extent. 

Although an anti-windup compensator has been designed to tackle the saturation 
nonlinearty subjected to linear time varying delay systems by using Jensen’s inequality 
(Negi et al., 2012) or Wirtinger inequality (Pal et al., 2020, Singh et al., 2021). To the 
best of authors’ knowledge none of the work has been accomplished with the 
consideration of saturation nonlinearity, external disturbances by using the Wirtinger 
inequality to derive the less conservative results for discrete time delayed systems. To 
bridge this gap, the present work is motivated by aforesaid papers to take up the problem 
of a discretised delayed system with anti-windup compensator designed for this stability 
criterion using Wirtinger inequality and exponential decaying disturbance for stability 
analysis of the system. The novelty of the paper is that a H∞ controller is designed for a 
discrete time-delayed system with saturating actuator, disturbance and anti-windup 
strategy using Wirtinger inequality to stabilise the system considered. 

The contribution of the paper is as follows: 

1 A novel output feedback H∞ controller with anti-windup strategies is designed  
for discrete time-delayed system subjected to input saturation and disturbance 
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employing Wirtinger inequality and reciprocal convex inequality to reduce/diminish 
the influence of wind up phenomenon and disturbance. 

2 Optimisation technique is used to calculate basin of attraction for different delay 
range. 

3 Application of Wirtinger inequality and reciprocal convex approach to the system 
establishes less conservative results than the existing ones. 

4 Numerical example is specified to prove advantage of the results obtained. 

The paper is organised as follows. Section 2 introduces the system considered. By 
exploiting discrete time-delayed system in context to LMI based conditions with 
saturation and H∞ controller, the global asymptotic stability is established in Section 3. In 
Section 4, numerical instances are specified to prove the advantage of the obtained 
results. 

Notations: q×n is the set of q × n real matrices, q denotes set of q × 1 real matrices, 
P > 0 (≥ 0) denotes that P is real symmetric and positive definite (positive semidefinite) 
matrix, 0 is a null matrix or null vector, I is an identity matrix with appropriate 
dimension, max ( )λ A  denotes maximum eigen value of any given matrix ,A  symbol ‘*’ 

represents symmetric terms in symmetric matrix, ||.|| represents norm of matrix or vector, 

He(A) = A + AT, diag(A, B) denotes block diagonal matrix 
0

,
0

A

B

 
 
 

 
2

2
0

( )
i

i




 w w  

is l2 norm of signal w(i)  l2{(0, ∞)}, if ||w||2 < ∞. 

2 System description 

Consider the following discrete-time system consisting of actuator saturation,  
time-varying delay, and disturbance: 

   ( 1) ( ) ( )( ) ( )d wg    x Ax A x B w B u      (1a) 

( ) ( )y Cx   (1b) 

( ) ( ) ( )z z z C x D w    (1c) 

( ) ( ), , 1, ..., 0u ug g     x     (1d) 

where x()  n, u()  m, y()  p and z(k)  m are state, input, measured and 
controlled output vectors respectively. The external interference in system is denoted as 
w()  q. Matrices A, Ad, B, C, Dz, Cz are constant matrices of appropriate dimensions, 
and g() is the time-varying delay satisfying 

( )u lg g g   (2) 

where gu and gl are constant non-negative integers representing the upper and lower 
bounds respectively. 

For system (1), the dynamic output stabilising controller is given as 

( 1) ( ) ( )c c c c  x A x B y    (3a) 
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( ) ( ) ( )c c c c xv C D Cx    (3b) 

where ( ) cn
c x   denotes controller state and vc() is the controller output. Ac, Bc, Cc, 

Dc are constant controller matrices. 
The input u is subjected to the amplitude constraint defined as 

0( ) ( ) 0( )i i i  u u u  (4) 

where u0(i) > 0, i = 1, …, m, represents the control amplitude bounds. Thus, the actual 
control signal given into the plant is 

   ( ) ( ) ( ) ( )c c c csat sat  u v C x D Cx     (5) 

The saturation nonlinearities are given by 

 
0( ) ( ) 0( )

( ) 0( ) ( ) 0( )( )

0( ) ( ) 0( )

if

if , 1, ..., ,( )

if

i c i i

c i i c i ic i

i c i i

sat i m

  
    
 

u v u

v u v uv

u v u

  (6) 

Substituting (5) in (1), we obtain 

   
 

( ) ( ) ( )( ) ( ) ( )

( ) ( )

d w c c c

c c c

g     

 Ψ

x Ax A x B w B C x D Cx

B C x D Cx

      

 
 (7) 

where 

( ) ( )v sat Ψ v v  (8) 

An anti-windup term given as Ec(sat(vc()) – vc()) can be injected to controller as 
follows 

 ( 1) ( ) ( ) ( ) ( )c c c c c c c c    Ψx A x B Cx E C x D Cx      (9) 

Now extended state vector can be defined as 

1
( 1) ( )

( 1) , ( ) .
( 1)

cn n q

c

    
          0

x w
ξ W

x








 (10) 

and the matrices 

   

, , , ,

, ,

c

c c d
d

nc c

c c w w

       
          
       

 

00

0 0 0

0

A BD C BC A B
A A B R

IB C A

K D C C B B

 (11) 

Utilising (1)–(11), closed-loop system is represented as 

     ( ) ( ) ( )( ) ( )d wc+1 = g    Ψξ Aξ A ξ B WKξB RE       (12) 

The initial condition as in (Negi et al., 2012) is 

 0 0( ), , 1, ...., 0 be ,ξ u ug g φ     ξ ξ    (13) 
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The basin of attraction of the origin of (12) is defined as 

 0( ), , 1, ...., 0 : lim 0,ξ u ug g φ


 
     

 
Γ  ξ


    (14) 

Definition 1 (Negi et al., 2012): Consider a matrix ( )cm n n   and define the 
polyhedral set as (15) 

( )
0( ) 0( )( ) ( ); ,( )

1, 2, ...,

cη η
i ii iu u

i m

    
 

 
  ξ K ξ 

 (15) 

Definition 2 (Silva and Tarbouriech, 2005): 

    ( ) 0( ) ( )T   Ψ ΨD ξKξ Kξ     (16) 

where ξ()  ℓ and D  m×m is a positive definite diagonal matrix. 

 Lemma 1 (Seuret et al., 2015): “In a given symmetric positive definite matrix  
U = n×n, the sequence of a discrete-time variable x() in [ , 0] ,ng    where 

g ≥ 1, the inequality is as follows: 

0
0 0

1 11

1
( ) ( ) 1

3
1

T

T

p g

p p g
Ug

g 

 
                 


0

Ξ Ξ
Ω Ω

0Ξ Ξ

U

U  (17) 

where Ω(p) = x(p) – x(p – 1), 

0 (0) ( ),g  Ξ x x  

0

1
2

(0) ( ) ( ).
1

p g

g p
g 

   
 Ξ x x x  

In some practical systems having time-varying delay, the factor 
1

1

g

g

 
  

 is difficult 

to tackle. Hence, it is removed using Lemma 2.” 

 Lemma 2 (Seuret et al., 2015): “In a given symmetric positive definite matrix  
U = n×n, the sequence of a discrete-time variable x() in [ , 0] ,n    where 

g ≥ 1, the following inequality holds: 

0
0 0

1 11

1
( ) ( ) ,

3

T

T

p g

p p
g 

     
      

     
 Ξ Ξ

Ω Ω
Ξ Ξ

U
U

U




 (18) 

where 

( ) ( ) ( 1),p p p  Ω x x  

0 (0) ( ),g  Ξ x x  
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0

1
2

(0) ( ) ( ).
1 p g

g p
g 

   
 Ξ x x x ” 

 Lemma 3 (Park et al., 2011): “For any vectors σ1, σ2 matrices T, S and real numbers 
1 ≥ 0, 2 ≥ 0 satisfying 

1 2, 1,
*

 
   

 
0

T S

T
   (19a) 

if 0 ( 1, 2),k k k  0   (19b) 

then 

1 1
1 21 2

2 21 2

1 1
.

*

T

T T      
        

     

T S
T T

T 
 

   
 

 (19c) 

In this section, the main results are discussed as follows: 

3 Main results 

The objective of this article is to obtain: 

a anti-windup gain Ec 

b a largest possible scalar δ, such that asymptotic stability of closed-loop system (12) 
is achieved for all time varying delays fulfilling (2) 

c an estimate of basin of attraction Xδ  Γ where 

( ), , 1, ...., 0 : max | ( ) |δ ξ u u ξX g g δ


      
 

  


    (20) 

Now, using above system and Lemmas, Theorem 1 is stated as follows. 

Theorem 1: For the scalars , σ, gl, gu, satisfying 0 ≤ gl ≤ gu consider system (12) if there 
exists symmetric matrices ( ) ( )

1 2 3diag( , , ) , ( 1, 2)c cn n n n      0 0P P P P Q   
( ) ( ) ( ) ( ) ( ) ( ), ( 1, 2) , ( 1, 2) ,c c c c c cn n n n n n n n n n n n              0 0W R    a diagonal 

positive definite matrix ( ), , ,c cm m m n n n m         matrices S( = 1, 2, 3, 4) 

with suitable dimensions fulfilling inequalities (21)–(23) 

1

2

2

*

* *

 
   
 
 

0 0

0






R

φ R S

R

 (21) 

2
0( )

, 1, 2, ...,
T T
i i

i i i

P K
i m

K hu

 
   

0   



 (22) 
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where 
 2 2

1

1
h

σ



 

yields 

11 1 1

22 23 24 1 2 2 4

33 34 36 37

44 23 4

1

2 4

2

11

ˆ ˆ2 6

* 6 6 2 2

* *

* * * 2 2 6

* * * * 12

* * * * * 12 4

* * * * * * 12

ˆ ˆ* * * * * * * 2 g

T T T T
l lh z

T T T
l lhd d d

T T

T T
l

g g

g g

g





 



 



   



¥ 0 0 0 0 0 C

¥ ¥ ¥ 0 0 0 0 0 0

¥ ¥ 0 ¥ ¥ 0 0 0

¥ 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0

Δ

R R A A A

R R S S

A A A

S S R

R

R S

R

B B




2

2 2 1 2 

3 3 2 3

ˆ

* * * * * * * * g

* * * * * * * * *

* * * * * * * * * * 2 +

* * * * * * * * * * * 2 +

* * * * * * * * * * * *

T
lh

T T T
w l w l w zg  







 
 
 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
  

0

I

0 0 0 0

0 0

0

0

B

B B B D

X X R X

X X R X

I



 (23) 

 

22 2 3 1 2 1 2 11 1 2 1 1

23 2 1 2 3 4 24 1 2 3 4

33 2 1 2 3 41 2 3 4

34 2 1 2 3 4 36 2 3 4

37 2 2 4 44 2 3 2

1 1 1

4 4 4 ,

2 , ,

8 ,

2 , 6 2 2 ,

6 2 2 , 4 ,

diag , 3

T T T T

T T

           
         

         

        
      



¥ ¥

¥ ¥

¥

¥ ¥

¥ ¥


P P Q Q R R P P Q R

R S S S S S S S S

R S S S S S S S S

R S S S S R S S

R S S R P Q

R R R  2 2 2

1 2 2 2

3 4

, diag , ,, 3

ˆˆ , ( ),

lh u l

c

t t

g g g



  

   

 
  
 

R R R

B B RE A A I

S S
S

S S

 

then for the gain matrix 1,c
E   the closed-loop system (12) has a stipulated H∞ 

interference attenuation level  for all primary conditions satisfying Γδ ≤ 1 and the 
region of asymptotic stability is defined by an ellipsoid 

   2 2 2 2, 1 ; 1 .cn n Tε ξ ξ ξ    P σ P σ   (24) 

and an estimate of basin of attraction is given by 

           
       

2
max max max max max1 231 2

max max1 22 2 1.1 1

δ l lh l u l

l lhl u l

δ λ g λ g λ g λ λg g

g λ g λg g g

      
     

Q QPP P

R R
 (25) 

Proof of Theorem 1 is given in Appendix A. 

Remark 1: Primary guess for a positive definite symmetric matrix X1 could be  
X1 = c(ATA + I)–1. 

Remark 2: Although the complexities of space and time have increased but the 
conservativeness of stability is reduced in terms of discrete delay system, as seen in 
previous papers. There is a trade-off between space and time complexities and 
conservativeness. The dimension/size of the undertaken system is 13 × 13, as seen in 
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equation (23). It is a large order system; it occupies sufficient RAM/system memories. 
Since the simulation is performed on 2.26 GHz, exploring the optimum solution of the 
defined problem takes significant time. To optimise space and time complexities for the 
defined problem (12), a high-end computation platform is required. 

Corollary 1: For the scalars , σ, gl, gu, satisfying 0 ≤ gl ≤ gu consider system (12) if 
there exists symmetric matrices ( ) ( )

1 2 3diag( , , ) , ( 1, 2)c cn n n n      0 0P P P P R   
( ) ( ) ( ) ( ) ( ) ( ), ( 1, 2) , ( 1, 2) ,c c c c c cn n n n n n n n n n n n              0 0Q W    a diagonal 

positive definite matrix ( ), , ,c cm m m n n n m         matrices S ( = 1, 2, 3, 

4) such that (21)–(22) hold, for the gain matrix 1
c

E   the closed-loop system (12) 
is globally asymptotically stable for all initial conditions satisfying Γδ ≤ 1 with prescribed 
H∞ disturbance attenuation level . 

Proof: Consider . K  It follows that (14) is verified for all ( ) ,cn nξ   then (23) 

corresponds to (26) yields 

11 1 1
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

 (26) 

Basin of attraction 

Theorem 2: Consider the closed-loop system (12) with the initial conditions (13), the 
maximum attraction basin can be estimated if r is minimised where 

     
  

1 2 3 4 5 6

7

2 1

2 1

l l lu l u l l

u l u l

r r g r r g r r g rg g g g g

rg g g g

       

   
 (27) 

subjected to (21)–(23) and 

1 1 2 2 3 3 4 1 5 2

6 1 7 2

, , , , ,

,

r r r r r

r r

         
   

0 0 0 0 0

0 0

I P I P I P I Q I Q

I R I R
 (28) 

has a feasible solution for the weighting parameters ri > 0, i = 1, 2, …, 11, positive 
definite symmetric matrices ( ) ( ) ( ) ( )( 1, 2, 3) , ( 1, 2) ,c c c cn n n n n n n n

k kk k        QP  
( ) ( ) ( ) ( ) ( ) ( )( 1, 2) , ( 1, 2) , ( 1, ..., 4) ,c c c c cn n n n n n c n n n n n n

k k kk k k               0 0W R X  
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a diagonal positive definite matrix ( ), , ,c cm m m n n n m         matrices  

Sk (k = 1, 2, 3, 4). 

The gain 1
c

E   provides attraction basin by max 1/ 2,δ  E  where 

         
           
max max max max 131 2

max max max2 1 22 21 1

l lu l

l lhu l l u l

λ g λ λ g λg g

λ g λ g λg g g g g

   

      

2E QPP P

Q R R
 (29) 

Proof of Theorem 2 is given in Appendix B. 

4 Numerical examples 

This section provides examples to depict essence of the main results. 

Example 1: Consider the discrete time system (1) with controller (3) 

 

 

0.8 0 0.1 0.1 1 0.04 0.18
, , , ,

0 0.97 0 0.01 0 0 0

0.2 0.0 1.0 20.0
, , 0.1 0.1 ,

0.16 0.084 0.0 0.0

0.01 0 0.01 0
0.0 0.0 , , ,

0.007 0.008 0.006 0.002

0.

d

c c c

c w z

z

         
                 

   
          

   
     

   



A A B C

A B C

D B C

D 0.05 0.05
006 0.005

, 0.01, ( ) 0.05 0.05 .
0.002 0.006

T
e e  

      
 

w   

 

The saturated control signal (6) is given into the plant where 0( ) [1 1] .T
iu   By utilising 

the LMI workbench (Gahinet et al., 1995), the LMI constraints (21)–(23) asserted  
in Theorem 1 are encountered feasible for 1 ( ) 45, 1.003g    and 

 1 0.1738 0.1309 .
T

c
   E   

The trajectories of plant states and controller states are revealed in Figures 1 and 2 for 
initial plant states 0 [6 6] .Tx    The states of the plant given by x1() and x2() 

converge to zero (see Figure 1). As shown in Figure 2, the controller states given by 
xc1() and xc2() also converge to zero. The plot of plant input u() and unconstrained 
controller output vc() is displayed in Figure 3. Thus, anti-windup gain stabilises the 
system in presence of delay. The maximised estimate of basin of attraction provided by 
anti-windup gain is given by δmax = 9.5054 × 10–6. 

A comparison of maximum allowed gu obtained using Theorem 1 and criteria used in 
(Negi et al., 2012; Xu et al., 2012; Qian et al., 2015) for global asymptotic stability of the 
system is depicted in Table 1. It is clear from Table 1 that Theorem 1 produces superior 
results than in Negi et al. (2012), Xu et al. (2012) and Qian et al. (2015). 
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Figure 1 Plant states trajectory (see online version for colours) 
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Figure 2 Controller states trajectory (see online version for colours) 
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Figure 3 Plot of vc() and u() (see online version for colours) 
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Table 1 Comparison of delay ranges for stability analysis of system using different techniques  

Method Delay range (gl ≤ g() ≤ gu) Nonlinearities 

Theorem 2  
(Negi et al., 2012) 

1 ≤ g() ≤ 5 System with saturation and 
delay 

Theorem 1  
(Xu et al., 2012) 

1.4 ≤ g() ≤ 3.8 System with saturation, delay 
and interference 

Theorem 1  
(Qian et al., 2015) 

1 ≤ g() ≤ 4 System with saturation, delay 
and interference 

Theorem 2  
(Qian et al., 2015) 

1 ≤ g() ≤ 3 System with saturation, delay 
and interference 

Corollary 2  
(Pal and Negi, 2018) 

1 ≤ g() ≤ 9 With saturation, time varying 
delay, external interference 
and uncertainties with H∞ 
level λ = 1 

Theorem 1, Corollary 1  
(de Souza et al., 2019) 

1 ≤ g() ≤ 11 With saturation, time varying 
delay 

Theorem 1  
(Chen et al., 2019) 

1 ≤ g() ≤ 5 With saturation, time varying 
delay and uncertainty 

Theorem 6  
(Singh et al., 2022) 

1 ≤ g() ≤ 11 With saturation, time varying 
delay, external interference 
and uncertainties with H∞ 
level λ = 0.8 

Theorem 3.1 [proposed work] 1 ≤ g() ≤ 45 System with saturation, 
stabilising controller, delay 
and interference 

Remark 3: This strategy utilises all information correctly. Hence, the system reaches the 
error band correctly and settles down soon. It suffers from disadvantage that all the 
system parameters are responsible for the stability of the system but we cannot put 
stability criterion on some parameters. In the considered study, the design of override 
controller may be seen as a main limitation. 

5 Conclusions 

The problem for discrete time delay systems with input saturation and disturbance using 
anti-windup strategies is analysed in this paper. Time varying delay is considered here. A 
delay-dependent approach is utilised along with Wirtinger inequality and reciprocal 
convex inequality. It is shown in example that the delay range 1 ≤ g() ≤ 45 has 
increased as compared to the previous existing results. An analogous LMI based  
anti-windup gain is evaluated. Estimate of basin of attraction of the origin is obtained for 
the system considered with various time delay ranges. 

As demonstrated in Meng et al. (2010), the idea of delay partition may result in less 
conservative stability criteria. Thus, the same problem can be done using delay 
partitioning, for 1D or 2D systems or by introducing various nonlinearities such as 
uncertainty and finite wordlength. The extension of the proposed work may be seen in the 
field of telecommunication along with probability density distribution communication 
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delay by event-triggered mechanism (Gu et al., 2022a) and for network fault detection in 
interval type-2 adaptive memory-event-triggered mechanism (Gu et al., 2022b). 
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Appendix A 

Proof: When disturbance is present in a system (12), disturbance attenuation can be 
intended in sense of H∞ by considering the following equation (A1) 

  2( ) ( ) ( ) ( ) ( ).( ) T Tv   z z w wx       (A1) 

Consider a Lyapunov function as 

       1 2 3 ,( ) ( ) ( ) ( )V V V V  ξ ξ ξ ξ     (A2a) 

with 

 1 22 ( ) ( ),( ) TV k   Pξ    (A2b) 
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The augmented vector is defined as 



   

 

   

   
 

   

   

 

   

   126 K. Agrawal et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

       1 2 3( ) ( ) ( ) ( ) ( ) ,( ) ( )T T T T T T T T
l u v v v wg g g    Ψξ ξ ξ ξ Kξ          (A4) 

where 

1
1

( ) ( ),
1

l
l i g

v i
g  


  ξ





  (A5) 

2

( )

1
( ) ( ),

( ) 1

lg

l i g

v i
g g



 


   ξ



 




 (A6) 

2

( )

3
2

1
( ) ( ).

( ) 1

g

i g

v i
g g



 


   ξ

 






 (A7) 

The forward difference of Lyapunov function (A1) along the trajectories of the system 
(12) is 
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On applying Lemma 1 and 2 on (A15) we get 
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Using (A9)–(A17), we have following inequality 
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 is given by (16), 
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2 2
11 1 2 1

ˆ ˆ ˆ ˆ ˆ( )T T T
l lhg g    A I R A A R A A P A  

2 2
13 1 2

ˆ ˆ ˆT T T
d d dl lhg g   A R A A R A A PA  

2 2
18 1 2 1

ˆ ˆ ˆˆ ˆ ˆT T T
l lhg g    B R B A R B A P A  

2 2
19 1 1 1 2

ˆ ˆ ˆT T T T
w w w w z zl lhg g     A PB PB A R B A R B C D  

2 2
33 1 1 2

T T T
d d dd d l d lhg g   A P A A R A A R A  

38 1
ˆT

d  A P B  

2 2
39 1 1 2

T T T
w w wd d l d lhg g   A P B A R B A R B  

2 2
88 1 2 1

ˆ ˆ ˆ ˆ ˆ ˆT T T
l lhg g   B R B B R B B P B  

2 2
89 1 1 2

ˆ ˆ ˆT T T
w w wl lhg g    B PB B R B B R B  

2 2 2
99 1 1 2

T T T T
w w w w w w z zl lhg g δ     B P B B R B B R B I D D  

On applying Schur’s complement on (A19) we get 
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 (A20) 

Pre and post multiplying (A20) by  1 ,, , , , , , , , ,diag I I I I I I I D I I I  

yields 
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 (A21) 

The LMI conditions (21)–(22) together with () < 0 are sufficient conditions for 
asymptotic stability of the system (12). For zero initial condition, it can be shown that 

2 2 2
2 2|| ( ) || || ( ) || .wz    The satisfaction of LMI (22) for all initial states Γδ < 1, follows 

that ξT()Pξ() < 1 + 2σ2. So the trajectories of the system starting from Γδ < 1 will 
remain within ellipsoid given by ε(P, 1 + 2σ2). 

The steps involved to solve the inequalities (21)–(23) are explained in Pseudo code 1 
and Flow chart 1. 

Pseudo code 1 

Step 1 We will set the upper delay bound gu satisfying 1 ≤ gl ≤ g() ≤ gu and check the 
LMIs (21)–(22) of Theorem 1. If they hold, go to Step 2. 

Step 2 Now we will set gu = gu + 1 and check LMIs (21)–(22) of Theorem 1. 
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Step 3 If there exist integer gu such that (21)–(22) hold, then we will repeat Step 2. 

If not, we will stop the process and obtain the maximum upper delay bound as gu – 1. 
Step by step visibility is shown in Figure A1. 

Figure A1 Flowchart to solve inequalities (21)–(23) 

1 l ug g 
ug

1ug 

1u ug g 

 

Appendix B 

Proof: The satisfaction of relation (28) implies that 

         
   

max 1 max 2 max 3 max 4 max 51 231 2

max 6 max 71 2

, , , , ,

,  

λ r λ r λ r λ r λ r

λ r λ r

    

 

I I I I IQ QPP P

I IR R
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From (25), one has / .δδ   2E  Thus, if we minimise (27), δ is being maximised. In 
other words, the optimisation problem given in Theorem 2 orients the solution of  
(21)–(23) in order to obtain domain of attraction as large as possible. 


