Weighted edge sampling for static graphs
by Muhammad Irfan Yousuf; Raheel Anwar
International Journal of Data Mining, Modelling and Management (IJDMMM), Vol. 15, No. 4, 2023

Abstract: Graph sampling provides an efficient yet inexpensive solution for analysing large graphs. The purpose of sampling a graph is to extract a small representative subgraph from a big graph so that the sample can be used in place of the big graph for studying and analysing it. In this paper, we propose a new sampling method called weighted edge sampling. In this method, we give equal weight to all the edges in the beginning. During the sampling process, we sample an edge with the probability proportional to its weight. When an edge is sampled, we increase the weight of its neighbouring edges and this increases their probability to be sampled. Our method extracts the neighbourhood of a sampled edge more efficiently than previous approaches. We evaluate the efficacy of our sampling approach empirically using several real-world datasets. We find that our method produces better samples than the previous approaches. Our results show that our samples better estimate the degree and path length of the original graphs whereas our samples are less efficient in estimating the clustering coefficient of a graph.

Online publication date: Mon, 30-Oct-2023

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Data Mining, Modelling and Management (IJDMMM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com