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Abstract: In order to meet customer requirements and regulations, such as low 
carbon footprint, companies are implementing AI-enhanced applications in 
production. However, AI is often used in stand-alone applications and lacks 
integration into the overall life cycle of products. To address this gap, this 
article proposes a framework for improving circularity through data fusion 
methods in product inspection. Data fusion combines multiple sources of data, 
such as sensor and business data, to improve machine-based predictions. The 
framework analyses AI applications, prediction during inspection, and data 
fusion methods, and addresses challenges in integrating business data into 
predictions. It demonstrates how data fusion improves prediction quality and 
stability in inspection. The framework is applied and evaluated in a case study 
from the automotive sector, showing an increase in good-quality predictions 
based on sensor data, leading to improved resource efficiency and circularity. 
This framework can be applied to any sector seeking sustainable manufacturing 
(SM). 
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1 Introduction 

As societies and politics in many developed countries, among others in the European 
Union, strive for a zero-carbon future, industrial companies plan to move from 
cradle-to-grave supply chains to circular economies. This move requires holistic 
consideration of all value creation activities. The holistic review and rethink include any 
activities from the design of products that support safe, fair, and easy manufacturing, use, 
repair, end-of-life (EOL) activities, such as return, collection, identification, inspection, 
reuse, and remanufacturing to the development of ecosystems to deliver all required 
through-life services (Jayal et al., 2010). 

Life cycle assessment methods measure a set of indicators and calculate the impacts 
of alternative value creation chains quantitatively to determine the solution with a lower 
carbon footprint (Bilge et al., 2016). One of the key solutions with a lower carbon 
footprint is to consider today’s products as resources for the future and to increase the 
value created by those resources through multiple life cycles. Circularity refers to the 
closed-loop nature of a circular economy, where resources are used responsibly and 
efficiently, with minimal waste and negative environmental impact. By implementing 
strategies that keep products in circulation for multiple life cycles, creating a more 
sustainable and efficient economic model is possible. One key strategy for reducing 
carbon footprint is adopting a circular economy model, as proposed by authors such as 
Kate Raworth in ‘Doughnut Economics’ (Raworth, February 2017) and Walter R. Stahel 
in ‘The product life factor’ (Stahel, 1982) and Gunter Pauli in ‘The Blue Economy’ 
(Pauli, 2015). Circularity refers to the closed-loop nature of a circular economy, where 
resources are used responsibly and efficiently, with minimal waste and negative 
environmental impact. Strategies for achieving a circular economy include: designing 
products for disassembly and material recovery (Akanbi et al., 2019), implementing 
extended producer responsibility and product take-back schemes (Maitre-Ekern, 2021), 
fostering collaboration and partnerships in the supply chain (Islam and Huda, 2018), 
incorporating circular business models (Vermunt et al., 2019), and promoting circular 
consumption patterns through education and awareness campaigns. These strategies can 
be implemented by companies, governments, and individuals to create a more sustainable 
and efficient economic model, and also a lower carbon footprint. 

To keep products in circulation for multiple life cycles, the quality and efficiency of 
EOL activities that prepare them for reuse are crucial. These activities include inspecting 
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products to ensure that they meet the specifications for the EOL market or repairing and 
cleaning the product to bring it up to a satisfactory standard for reuse. Ensuring the 
quality of EOL activities enables multiple life cycles. In addition, it lowers the carbon 
footprint as part of a circular economy strategy. 

In the context of curative return management, inspection is a crucial step in: 
identifying the problem that has caused the product to be returned and determining the 
appropriate course of action to take. 

Curative return management is a process that involves taking steps to correct or 
remediate issues that arise in the supply chain, such as defective products or incorrect 
orders, and returning them to their point of origin or an appropriate destination. The goal 
of curative return management is to minimise the impact of these issues on the supply 
chain, reduce costs associated with returns, and improve customer satisfaction. 

Decisions about whether to accept product returns for reprocessing or reject 
out-of-specification products also impact the quality of EOL activities. This article is 
about improving decision-making for life cycle enhancement of product returns. The 
better the quality of decision-making, the higher the value of EOL and return activities 
and the better the contribution to circularity. 

The recent boom in artificial intelligence (AI) has accompanied a rise in AI-enhanced 
applications in production and EOL. The scientific production engineering community 
has positively contributed to this development with white papers, including use cases 
(UC) for AI in manufacturing, assembly, and logistics. These contributions highlight AI’s 
benefits for closed-loop manufacturing by improving efficiency, quality, and flexibility to 
preserve value. AI is implemented in many prototypes, where it contributes to value 
preservation by automating and improving various processes within an organisation. 

AI can optimise the supply chain and circular infrastructure. By analysing data and 
identifying inefficiencies, bottlenecks, or potential disruptions, organisations can make 
data-driven decisions that improve their supply chain performance. Additionally, AI can 
help build and improve the reverse logistics infrastructure required to ‘close the loop’ on 
products and materials by improving the processes to sort, disassemble, and recycle 
materials (Ellen MacArthur Foundation, 2019). 

Additionally, AI can be used to inspect product returns to help organisations preserve 
value. At the end of the product lifetime, AI systems can assist processes such as 
inspection, sorting, separation and disassemble in order to circulate materials and return 
products in the economy using the AI function of classification and pattern recognition to 
identify objects or materials (Gailhofer et al., 2021). This can also help to improve the 
overall customer experience by reducing the risk of customers receiving defective 
products. AI can identify defective or fraudulent products and reduce financial losses. AI 
can assist in identifying and classifying returned products, which can aid in determining 
the most appropriate course of action for each returned item, whether it will be repair, 
refurbishment, or recycling. 

However, AI in manufacturing is still a relatively new research field and there are still 
many challenges that need to be overcome for AI to be fully integrated into the 
manufacturing process, and more research is needed to fully understand its capabilities 
and limitations. Today, machines with advanced visual and analytical capabilities can 
inspect some specifications of product returns. Depending on the application, it is 
possible to automate the inspection to reduce costs and increase stability. This article 
focuses on AI-enhanced inspections for product returns. The principles and results of this 
article are valuable for inspection processes for more sustainable manufacturing (SM). 



   

 

   

   
 

   

   

 

   

    Data fusion for improved circularity through higher quality of prediction 167    
 

    
 
 

   

   
 

   

   

 

   

       
 

However, recent research has mainly addressed single applications and has 
limitations regarding the integration of AI into value creation (Sjödin et al., 2021). One of 
the limitations refers to the integration of data fusion into businesses, which can be 
categorised in cost and resources, data quality and governance, technical limitations, 
process, and cultural issues. 

Integrating multiple algorithms on the shop-floor can present significant challenges 
and limitations, including difficulty in ensuring compatibility and coordination among the 
different algorithms, each of which may have its own unique inputs, outputs, and 
parameters, and may be optimised for specific tasks. Additionally, integrating multiple 
algorithms can add a significant layer of complexity to the manufacturing process, 
making it more difficult to understand, troubleshoot, and optimise. The integration also 
may bring challenges in data management and real-time decision making, which are the 
challenges that persist on the integration of multiple algorithm-based manufacturing for 
circularity (Wan et al., 2021). 

Limitations of multiclass classification in the inspection of similar products include 
the increasing complexity of the problem as the number of classes or of the feature space 
increases, making it hard to generalise to new unseen similar products (Liu et al., 2021; 
Jain et al., 2014). The class imbalance problem, where one class has more samples than 
others, also causes bias in the model (Qin et al., 2022; Han et al., 2019). Additionally, 
many algorithms require large amount of labelled data (Abu et al., 2021; Krüger et al., 
2019), and the assumption that classes are mutually exclusive may not always be the case 
in real-world problems. Furthermore, complex decision boundaries can make it difficult 
to interpret and explain to domain experts (Kim and Kim, 2020). 

Limited validation studies are currently available for the integration of AI in 
inspection systems. These studies tend to be limited in scope and focus on specific UC, 
showing promising results but not providing a comprehensive view of the challenges and 
limitations encountered when integration and scaling up AI in inspection systems 
(Lickert et al., 2021). Many studies are conducted in controlled laboratory environments 
with curated data, making it hard to generalise to real-world scenarios. Furthermore, 
many studies use simulation or synthetic data for evaluation, which may not reflect real-
world scenarios (Schlüter et al., 2018; Krüger et al., 2019). Despite these limitations, the 
studies suggest that AI holds great potential for improving efficiency and accuracy in 
inspection systems for a circular economy, but more research is needed to fully 
understand the challenges and limitations of applying AI in inspection systems and to 
validate its performance in real-world scenarios (Sjödin et al., 2021). 

The article presents a detailed discussion on the methods used for applying fusion in 
inspection systems. The authors have developed a framework for fusing predictions from 
business data and AI-enhanced computer vision to achieve stable and high-quality 
inspection of product returns. The framework is specifically designed to overcome data 
quality and technical limitations that may be encountered in real-world scenarios. The 
article provides a comprehensive analysis of the different fusion methods available, with 
a focus on algebraic methods, and compares them based on qualitative literature research. 
The authors also present a use case in the context of the circular economy and SM, where 
they validate the effectiveness of the proposed framework and methods through a detailed 
case study. Overall, the article provides a comprehensive and scientific overview of the 
methods used in the integration of AI in inspection systems, with a focus on applications 
in the circular economy. 
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This article investigates this potential, divided into five sections: the introduction 
provides an overview of the current field of study. Section 2 summarises the  
state-of-the-art of prediction in production, existing fusion methods, and challenges in 
application, especially in circular economy. Section 3 addresses the shortcomings of data 
fusion when integrating business data into machine-based prediction. Section 4 illustrates 
the framework for applying data fusion in inspection, and applies it in a use case. Section 
5 presents the authors’ conclusions on how their findings enhance SM. 

2 State-of-the-art on data fusion for inspection 

Companies have widely used predictions for procurement since the second industrial 
revolution to increase economic benefits. Since the beginning of the third industrial 
revolution, companies have collected business data (e.g., product, process, and customer 
data), deriving product and process development strategies. Business data are usually any 
data recorded in the enterprise resource planning (ERP). Companies apply statistical 
methods to describe, predict, and improve business performance. With the fourth 
industrial revolution, AI and, as its integral part, machine learning (ML) make its way 
into manufacturing, value creation and reverse logistics, contributing to predict process 
and product characteristics. The use of AI and ML in manufacturing can further enhance 
SM by enabling more efficient, precise, and data-driven decision-making. Multiple 
studies explore the intersection of AI, decision-making and SM (Enyoghasi and 
Badurdeen, 2021; ElMaraghy et al., 2021; Jamwal et al., 2022a). Their findings highlight 
potentials of improvements based on correlation of these domains. For example, AI and 
ML can be used to optimise production processes, identify and reduce waste in 
manufacturing as well as in the aftermarket, improve energy efficiency, and monitor 
environmental performance. Additionally, by predictive analytics, manufacturers can 
better anticipate and respond to changing demand, supply, and regulatory environments, 
and make more informed decisions that support keeping resources in multiple life cycles 
instead of disposal, which improves circularity. In this way, AI and ML support 
manufacturers to reduce their environmental footprint, enhance their competitiveness, 
and contribute to SM and enable circular economy. Further discussion of specific 
contributions is discussed in Section 2.4. 

For example, ML-applications predict tool change intervals, reduce auxiliary 
materials, or predict optimal process flows to reduce energy or resource consumption, 
thus lowering carbon footprint. Production engineers furthermore apply AI in other 
fields, such as assembly, inspection, maintenance, disassembly, and logistics 
(Takeda-Berger et al., 2020; Wang et al., 2018; Weichert et al., 2019; Petzoldt et al., 
2020a; 2020b; Chen et al., 2020; Çınar et al., 2020; Huang et al., 2019). In short, 
prediction methods based on algorithms are increasingly part of successful applications in 
production. Hence, the larger the number of algorithm-based applications, the more 
important it becomes to define and optimise their integration, which this article 
contributes to. 

Inspection is a relevant enabler of circularity between product use and EOL stages. It 
already offers many promising solutions in AI-enhanced computer vision (Schlüter et al., 
2018; Krüger et al., 2019; Schlüter et al., 2021; Bogue, 2019). However, in classifying 
lots of different classes, i.e., multiclass classification with a high number of classes nC, of 
similar products, these applications are not yet reliable enough, which this article 
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addresses. In addition, the inspection is often an interface to other stakeholders, such as 
customers, suppliers, authorities, and processes. Although some authors highlight ideas 
and concepts for exchanging and sharing data between stakeholders for better inspections 
and follow-up processes (Blömeke et al., 2020; Kintscher et al., 2020), existing concepts 
lack detail and validation that this article provides. 

Likewise, inspection is a prerequisite for value-determining and sorting in the circular 
economy. Retailers incur high costs because of product returns and the associated loss of 
value (Asdecker et al., 2021; Asdecker and Karl, 2018). So far, the set of measures used 
in curative returns management is not suitable for the volume of returns. Inspection 
requires high quality in determining product states and prediction process reliability. This 
article contributes to value preservation with stable and high-quality inspection of 
product returns by fusing predictions from business data and AI-enhanced computer 
vision. 

Section 2.1 summarises the state-of-the-art of prediction in inspection based on 
business data and AI. Section 2.2 analyses existing fusion methods and their potential for 
inspection. Section 2.3 addresses the challenges of application challenges. Section 2.4 
analyses the previous work about the intersection of AI, decision-making and SM, and 
describes the challenges of circular economy. Finally, the research gap regarding the 
integration of business data into AI-enhanced predictions is summarised. 

2.1 Prediction in inspection 

Predictions based solely on business data during inspection have limitations because of 
the variety of product states. Therefore, business data provides mostly strategic values 
with limited information about the certain state of products (Lickert et al., 2021). Even 
though it is possible to predict the probability of product returns from transaction data 
(Asdecker and Karl, 2018), it is so far not possible to predict the state and the residual 
value of a product return. The better an inspector knows the product state, the more 
viable the inspection is. Therefore, it is important to use enough sensors to measure the 
state of the products and predict a target value, e.g., by computer vision. 

AI is a powerful tool to determine the state of a product. AI includes: the ability to 
learn, adapt, and make decisions based on data, the ability to process and analyse large 
amounts of data and information and the ability to perform tasks that would typically 
require human intelligence. AI systems often use algorithms and data to process and 
analyse information, and then use that information to make decisions or take actions. This 
enables them to perform a wide range of tasks that are hardly possible for humans to do 
on their own. AI is a rapidly growing field, with many applications in a wide range of 
fields, including healthcare, finance, transportation, and education. 

In inspection, computer vision digitally captures and evaluates products and contexts 
with neural networks trained in object detection (class) or recognition (class and location) 
in real-time to streamline the processes. With visual and non-visual sensory, AI detects 
and evaluates and thus helps to inspect a product’s characteristics (Schlüter et al., 2021). 
Today, AI widely uses optically detectable product characteristics for this purpose. These 
are surface properties and geometric dimensions or missing subcomponents. 

Several sorting systems already make automated decisions based on the type of 
material (Bogue, 2019). However, these systems limit their application to a relatively 
small number of different classes. As a result, different classes of the same material and 
similar dimensions experience poor sorting quality with these solutions. 
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Other AI solutions evaluate products according to visually measured dimensions 
(Abdelrahman and Keikhosrokiani, 2020). These solutions predict the accuracy of 
manufactured products. However, in product returns, the dimensions of some classes are 
the same. For example, product lines receive new class names even though little has 
changed externally and much internally. 

For example, AI performs well in detecting missing subcomponents of an assembly 
(Burresi et al., 2021; Weichert et al., 2019). This is helpful for damage detection. 
However, procedures for detecting missing subcomponents represent only a part of the 
inspection for many product classes, since there are many other potential damages. 

Acoustic sensors provide another source of data that allows AI to assess the sound of 
an object and thus its completeness. Even on a noisy production floor, these AI 
applications quickly predict a product’s integrity (Zhang et al., 2021). However, acoustic 
sensor-based AI applications are limited to specific products and classes. 

AI-enhanced applications in inspection refers generally to the use of AI in the process 
of inspection, which involves examining products to ensure that they meet certain 
standards or specifications. This can be done by AI-enhanced computer vision, which is a 
technology that allows machines to analyse and understand visual data, such as images or 
videos. In this context, AI-enhanced computer vision can be used to automatically inspect 
products and identify any defects or issues. AI-enhanced applications in inspection, on 
the other hand, refer more generally to the use of AI to enhance the accuracy, speed, and 
reliability of inspection processes with available data. 

AI-enhanced applications in inspection predict high-quality product states and stable 
processes. Nevertheless, they are limited in predicting a class out of many similar classes 
connected to a product group (multiclass classification). The classification as 
categorisation is an enormous challenge for products with a high number of similar 
classes. The various AI-enhanced applications are good at a particular task, usually with a 
few output classes. However, there is the problem that different classes are sometimes not 
differentiable by one sensor type. 

Data fusion provides an optional way in order to overcome the limitation of 
AI-enhanced applications in predicting a class out of many similar classes. Data fusion is 
the process of combining data from multiple sources to improve the accuracy and 
reliability of the information being analysed. This can be done through a variety of fusion 
methods, such as decision-level fusion, where data from different sources is combined to 
make a final decision, or feature-level fusion, where data from different sources is 
combined at the level of individual features, such as colour or texture. Data fusion is 
commonly used in a wide range of fields, including computer science, information 
technology, and engineering. 

This subsection concludes that it is helpful to combine different sensors to make 
classes differentiable, e.g., by including the core mass in predicting an AI-enhanced 
computer vision (Schlüter et al., 2018). However, the combination of different sensors to 
inspect a high number of different classes is still insufficient. The realisation of this 
potential through business data integration is vital. Data fusion contributes to this 
integration with some limitations. This article extends the approach to further available 
information about the product and supplier. 
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2.2 Fusion methods in inspection 

Fusion methods are already being used to improve inspections. These include methods 
that use sensor data fusion to enhance predictions. Multi-sensor imaging systems have 
increased flexibility in production and inspection (Gil et al., 2007; Petzoldt et al., 2020b). 
Fused sensor sources are, for example, near-infrared spectroscopy sensors, three-
dimensional laser sensor systems, high-resolution red-green-blue (RGB) cameras, 
imaging metal detectors, or visible light sensors. Areas of application include picking and 
sorting items from moving conveyor belts (Gil et al., 2007; Bogue, 2019). In brief, fusing 
data from multiple sensors to measure products in inspection is common in industrial 
applications. However, this fusion usually senses similar characteristics, e.g., dimensions 
of a product, for enhancing inspection. Following paragraphs describe an exploratory 
study for fusion methods, in which the authors investigate the suitability for a fusion of 
different characteristics. 

Various fusion methods are already successful in fusing predictions from two or more 
information sources, thus improving prediction quality by determining the most 
appropriate source to achieve maximum utility or combining multiple sources to reduce 
uncertainty. The topology of fusion methods differs according to application and 
objective: fusion methods are centralised, decentralised, or hierarchical (Xiong and 
Svensson, 2002). However, fusion methods rely on algebraic, statistical, and 
AI-enhanced methods. Here are the advantages of acknowledged fusion methods. 

2.2.1 Algebraic methods 
Algebraic methods like averaging, intersection, and multiplication rules fuse different 
sources based on the rank or score information (Kittler et al., 1998; Kittler and Alkoot, 
2003). For example, Friedman’s procedure identifies and evaluates the differences 
between respective sources to assess the quality of their evidence. Algebraic methods are 
easy to interpret and compute, but they are vulnerable with few predictors and large 
variations in ranks (Tubbs and Alltop, 1991). They are simple and cost few resources, 
have no learning overhead, consider each predictor equally, and are therefore examined 
in an application. 

2.2.2 Weighting methods 
Weighting methods combine long-term offline data with short-term online data to fuse 
historical and current data (Liu and Aberer, 2014). Both sources relate to user behaviour 
and link basic behaviour with dynamic adaptation. This is advantageous for processes 
that change. However, they involve high complexity and definition effort. In inspection, 
this is of particular interest when changing objects of investigation arise or predictions 
about the time that include changing parameters. It is possible to determine the weights 
using statistical methods. These include the Bayesian and Dempster-Shafer approaches, 
which are based on assigning weights to the postulated states of the system to be 
measured (Challa and Koks, 2004). Whereas the former is more suitable for dynamically 
predicting a changing state, the latter can be used for one-off observations, such as 
product inspection. The implementation in this article involves one-off observations, 
which is why Bayesian methods are not pursued further. 
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Multi-sensor fusion based on the Dempster-Shafer theory of evidence (DST) presents 
a helpful method to fuse data from multiple sensors to gather information (Shafer, 1990). 
Engineering initially used it for condition monitoring of rotating equipment. It is also 
used in maintenance to improve the information base within operating equipment. Multi-
sensor fusion combines, e.g., temperatures, vibrations, and measured currents to predict 
machine failure and product quality. This statistical method applies, for example, in 
additive and subtractive manufacturing processes (Rao et al., 2015). The widely applied 
Dempster-Shafer rule fuses the states of the different sensors (Rogova, 2008). Assigning 
reliability to a particular prediction is helpful because it includes the historical differences 
in sources for the prediction. The disadvantage is that counter-indexed or anti-symmetric 
predictions of sources lead to counter-intuitive predictions of DST (Myler, 2000). 
However, as we aim for a high probability of predictions from all sources, the advantages 
outweigh the disadvantages from our point of view, so the theory is applied and 
investigated in the following. 

2.2.3 Ensemble methods 
Ensemble methods combine multiple algorithms to achieve better predictive performance 
than would be possible with any of the individual algorithms alone. Ensemble learning 
methods aim to optimise the overall result by generating multiple predicting sources from 
one dataset rather than fusing different independent sources of information (Valcarce et 
al., 2017). They divide into three groups: The first group learns on one dataset with 
different algorithms. The second group focuses on testing different training parameters of 
an algorithm. The third group uses different learning algorithms for different datasets. 
The third group is of interest to the fusion of different sensor types. In the following, 
stacked generalisation is introduced as an example for groups one and three, and a bucket 
of models as an example for group one. 

For example, stacked generalisation is an ensemble method that uses a high-level 
model to combine lower-level models to achieve higher predictive power. First, different 
models train with one type of dataset. These are subsequently tested. Later, e.g., a 
regression model trains on the test results (Wolpert, 1992). Stacked generalisation is 
suitable for the application case because it does not require knowledge about the 
parameterisation of the individual predictors. 

The so-called bucket of models is another ensemble method. The models are trained, 
and the best method is assigned to each bucket of input data. Inputs can be divided into 
ranges or bins, and different models or combinations can be selected for each input range. 
The resulting predictions are similar to those of the best sources involved (Qu and Wu, 
2009). In the case of product returns, this is of interest because the input variables vary a 
lot. Furthermore, there is the possibility that inputs are missing, which other models with 
fewer input variables could then compensate. 

2.2.4 Learning to rank 
Learning to rank enables a fusion of probabilities for search queries, e.g., using logistic 
functions focusing on user-centric relevance. These methods, such as RankNet, 
LambdaRank, and LambdaMART, apply to information retrieval systems alongside 
various similar methods (Liu and Aberer, 2014; Burges, 2010; Burges 
et al., 2005). Applying these methods to inspection tasks that work with varied equipment 
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or face changing requirements at different operating sites is conceivable. However, 
unambiguous decisions about the state of the products or processes must be made 
independently of the agents during the inspection. Therefore, in the following 
elaborations, special attention is paid by the authors to the implementation of how 
decision-makers train learning to rank without letting their personal preferences enter it. 

2.2.5 Machine learning algorithms for neural networks 
ML algorithms that allow for the training of neural networks that fuse different sources or 
choose an optimal path include, e.g., unsupervised competitive learning or supervised 
backpropagation. Others serialise or parallelise proven architectures, e.g., a convolutional 
neural network and a multilayer perceptron for predicting tool wear on a milling machine 
(Huang et al., 2019), whereby the topology and parameterisation of the layers quickly 
become confusing. 

In competitive learning, competitive layers determine which subnet or node achieves 
the best possible result for an input (Rumelhart and Zipser, 1985). Therefore, each source 
should represent information whose errors are independent of the others to fuse 
information productively. Nevertheless, competitive learning can lead to the complete 
exclusion of neurons. Apart from this, it is of interest for industrial application because of 
its unsupervised nature. 

Backpropagation adjusts neurons to generate the desired fused output for an input 
(Rumelhart et al., 1986). A disadvantage of backpropagation is the parameterisation 
effort. Of course, it is possible to train a centralised or serialised fusion model that 
incorporates all raw data sources from sensors and business data and uses them to predict 
the state of products and processes. The challenge here is how to make changes later in 
production operations. The model must be completely retrained or redesigned if changes 
are made to the sensors or topology. Due to the high efforts needed, this method is not 
investigated further. 

2.2.6 Implementation of fusion methods in inspection 
A variety of fusion methods are intended by the authors to be used for improving the 
accuracy of AI-enhanced applications in inspection, including algebraic fusion, ensemble 
methods, and ML algorithms. Algebraic fusion is simple to implement, making it a good 
choice for applications where data fusion needs to be performed quickly and efficiently. 
Ensemble methods, on the other hand, can provide improved performance by combining 
the predictions of multiple models and are also simple to implement. Meanwhile, ML 
algorithms are hard to implement but promise to be trained on data from multiple sources 
to improve their accuracy and reliability. 

2.3 Challenges of applying fusion methods in inspection 

From an inspector’s perspective, there are some challenges regarding the applicability of 
existing fusion methods. One of the major challenges is missing standard formats. 
Available sources in an inspection system must be transferred in a uniform format to 
perform applicability and sufficient flexibility for later changes. 

Fusion methods with low learning and parameterisation effort cannot afford this 
transfer. Instead, they use prediction lists of a number nS of different sources to achieve a 
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fusion of the prediction (Tubbs and Alltop, 1991). These fusion methods are limited to 
the fusion of classification or ranking results. Here, the number of classes nC of predictors 
is the same. Each class Ci of i = 1…nC is assigned a score (often termed confidence) s and 
a rank r by the predictor. And yet, the number of classes nC that can be captured by each 
source may be different because, for example, classes do not have these characteristics. 
We address this challenge, for example, with intersectional and ML methods. 

A further relevant challenge of applicability is the objective of the algorithms. For 
instance, fusion methods for information retrieval systems do not look for the best result. 
However, they want to present a set of predictions optimally for the user. This user 
orientation is a disadvantage in tasks that aim at unambiguous identification or 
evaluation, such as inspection. The decision-maker, for example, the inspector on the 
shop floor, should receive a unique prediction that stands out from the others to indicate 
the right decision. The preferences of the inspector should not influence the decision. We 
develop short and differentiable predictions that improve through collective decisions by 
all inspectors. 

2.4 Challenges of circular economy 

This subsection introduces the essential terms and challenges in order to provide a clear 
understanding of the authors’ perspective on inspection impacting circularity. This 
perspective is based on the state-of-the-art analysis about the intersection of AI, 
decision-making and SM. 

SM aims to create products that meet the needs of the present without compromising 
the ability of future generations to meet their own needs (Seliger et al., 2011). 

Jamwal et al. (2022b) found that ML technologies play an important role in SM by 
improving the overall efficiency of the manufacturing industries. They have developed a 
ML-based SM application framework for the manufacturing industry that includes four 
phases of SM: pre-production or planning, processing, production, and product recovery. 
ML techniques are suitable for handling large, complex data generated in these phases 
and are found to improve the performance of the SM system. AI-based decision making 
is emphasised as an important aspect of the study, which finds that ML and AI-based 
technologies are important for developing Industry 4.0 practices with regards to 
sustainability. The study highlights that ML approaches have the potential to bring new 
improvements in resource utilisation, tool life prediction, and quality management in 
manufacturing industries. Furthermore, it was found that ML techniques in SM offer a 
wide range of opportunities for sustainable development, such as supply chain 
management, condition monitoring, and predictive maintenance. 

SM is the practice of designing, producing, and using products in a way that 
minimises negative impacts on society, the economy, and the environment (Seliger et al., 
2011). 

In the social dimension, SM aims to create products that are safe and healthy for 
people to use and that support the well-being of workers and communities. This can 
include ensuring that products are made with non-toxic materials and that workers are 
provided with safe and healthy working conditions. 

In the economic dimension, SM seeks to create products that are affordable and 
accessible and that support the long-term viability of businesses and industries. This can 
include using sustainable production processes that are cost-effective and efficient. Such 
processes create high-quality products that are in demand by consumers. 
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In the environmental dimension, SM aims to minimise waste and pollution and to use 
natural resources responsibly and efficiently. This can include designing products that are 
easy to recycle or repurpose and that use renewable materials and energy sources. 

Sousa Jabbour et al. (2018) discuss the importance of environmentally-SM decision-
making, which includes the green design of products and processes, and environmental 
management of supply chain operations. It also lists and classifies practices addressing 
environmentally-SM decision-making, such as design for environment, cleaner 
production, and green supply chain management. The use of technology is highlighted as 
a key component for environmentally-SM decisions, as it can lower resource use and 
minimise environmental damage. The article also suggests that Industry 4.0 technologies 
can enable efficient resource allocation and more SM decisions. It highlights the potential 
benefits of connecting machines, tools, and devices through the internet, sensors, and 
RFID to improve data collection, tracking, and decision-making. 

The circular economy is a broad economic system in which resources are kept in use 
for as long as possible, and waste and pollution are minimised. This can be achieved by 
designing products and processes that are efficient and sustainable and by reusing, 
repairing, and recycling materials and resources. The goal of the circular economy is to 
create economic growth and development without causing harm to the environment or 
depleting natural resources. In a circular economy, waste and unused products are 
designed to be recycled back into the production process, reducing the need for new raw 
materials and helping to conserve natural (Hauschild et al., 2020). 

Circularity is a systemic approach to economic growth that seeks to eliminate waste 
and promote the continuous use of resources. The term circularity focuses on closed-loop 
resource use and waste management systems (Jawahir et al., 2006). 

The circular economy and SM are both focused on reducing waste and increasing 
efficiency in the use of resources. One way to do this is using AI-enhanced inspection 
systems, which can help identify and sort materials for reuse. AI-enhanced inspection 
systems classify and identify products materials and can be used to detect defects and 
improve the accuracy of inspections. This can help to ensure that only high-quality 
materials are reused, improve sorting, reducing waste and improving the overall 
efficiency of the manufacturing process. 

Carbon footprint indicators, such as the saved CO2 per reused product, are also 
closely connected to the circular economy and SM. By measuring and tracking the carbon 
footprint of products throughout their life cycle, organisations can identify areas where 
they can reduce their environmental impact and improve their sustainability. By reusing 
materials, organisations can significantly reduce their carbon footprint, as it requires less 
energy to process and manufacture products from existing materials than from raw 
materials. 

An AI enhanced inspection system can contribute to the reduction of CO2 emissions 
by improving the efficiency and accuracy of product inspections. This can lead to a 
reduction in the number of defective products that are shipped to customers, which in 
turn reduces the need for re-inspections and remanufacturing. Additionally, the AI system 
can help identify products that are suitable for reuse, which can reduce the need for new 
products to be manufactured, thereby lowering the overall carbon footprint. 

Liu et al. (2020) suggest that smart technologies should facilitate the sharing of data 
and knowledge among various sources of product life cycle management, leading to more 
efficient decision-making. Future research should focus on using data and knowledge in 
areas such as product design, production, operation, and maintenance, as well as supply 
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chain management. Additionally, they recommend research into sustainable product life 
cycle management, AI-based decision-making, and innovative strategies for design, 
manufacturing, service, and maintenance, leading to digitalisation in cleaner production. 

The EOL of a product refers to the stage at which it is no longer used by consumers 
and is no longer useful for its intended purpose. At this stage, the manufacturer may 
discontinue technical support, software updates, and replacement parts for the product, 
making it difficult for users to continue using it. This may require users to upgrade to a 
newer model, which can be costly and impractical. 

EOL can also impact the environment, as discarded products may need to be disposed 
of safely and sustainably. In some cases, manufacturers offer EOL services, such as 
recycling programs or trade-in offers to help users return a product. Afterwards, the 
returned products can be remanufactured and sold as new products. Therefore, 
business-to-consumers (B2C) need to be aware of a product’s EOL status to make 
informed purchasing decisions. 

In the field of business-to-business (B2B), companies which are stakeholders in the 
aftermarket collect, transport, store, inspect, and repair these products. Each returned 
product is unique since its use and conditions during its lifetime are case-specific. 
Additionally, little data and information about its manufacturing and use stages and status 
are available. 

Little data and information are one of the biggest challenges of the aftermarket, 
including all B2B stakeholders and processes such as inspection. Consumers prefer 
paying less for remanufactured products than new ones (Wewer et al., 2020). Making any 
business case profitable and resource-efficient in the aftermarket contributes to keeping 
more resources in closed life cycles. This article investigates the contribution of AI and 
data fusion to inspection for this purpose. Combining these methods with business data is 
a potential field discussed in the next subsection. 

2.5 Research gap in integrating business data into AI-enhanced predictions 

Inspection is a prerequisite for value-determining by product returns and, hence, sorting 
processes to increase the value preservation in multiple lifecycles. AI is a powerful tool 
to enhance predictions for inspecting various product returns after the use stage. 
Nevertheless, data fusion for AI-enhanced applications results in three major 
shortcomings. They are related to integrating business data into prediction: 

AI-related efforts have focused on equipping specialised classifiers in inspection. For 
instance, AI streamlines only optical inspections by rapidly classifying products. 
However, integrating AI into further process-relevant information is insufficient. For 
example, inspection systems rarely fuse predictions from business data with AI. In 
addition, there are only a few ML algorithms that automatically supplement business data 
with AI-enhanced knowledge from domains other than inspection. As a result, 
remanufacturers lose valuable domain or expert knowledge. This loss of knowledge must 
be reduced to improve inspection’ performance. 

So far, sensor failures and errors in pre-processing of data lead to misinterpretations 
of the AI, creating a need for process stabilisation. Even the most minor disturbances or 
failures can severely affect the following value creation process. Foremost, 
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non-machine-learned products or correlations lead to incorrect predictions. In addition, 
specific patterns challenge the identification and evaluation of products, even with 
AI-enhanced computer vision. Therefore, the computer vision of such products must be 
improved. 

Business data evaluation (BDE) and AI-enhanced computer vision suffer from 
concept drift, like any prediction method. Learned models degrade and produce worse 
predictions because of product (returns) with different characteristics that were not 
learned by the learning algorithms. The fused predictions vary according to concept drift 
of participating sources. The impact of this variation needs to be addressed. 

From the above-described shortcomings in AI-enhanced inspection, research 
questions arise. The remainder of the article addresses the following research questions. 

Q1 What are the requirements for fusing predictions from business data and neural 
networks, e.g., AI-enhanced image recognition, to enable higher quality and more 
stable predictions? The objective of this research question is to identify the 
requirements for fusing predictions from business data and neural networks to enable 
higher quality and more stable predictions. The outcome of this research could be a 
set of recommendations for data fusion techniques that are suitable for AI-enhanced 
image recognition. 

Q2 Which fusion methods can improve the quality of predictions for the decision-
maker? The objective of this research question is to evaluate different fusion 
methods in terms of their ability to improve the quality of predictions for the 
decision-maker. The outcome of this research could be a comparison of different 
fusion methods, highlighting the strengths and weaknesses of each approach. 

Q3 Which fusion process design is appropriate for providing higher process stability in 
case of failures by any contributing predictor? The objective of this research question 
is to determine the best fusion process design for providing higher process stability 
in case of failures by any contributing predictor. The outcome of this research could 
be a recommended fusion process design that is appropriate for ensuring stability in 
the presence of failures. 

3 Framework for data fusion in inspection 

This article addresses the research questions by investigating fusion methods that 
combine AI with business data. This section describes the proposed framework for 
applying fusion methods in inspection. It highlights key aspects to make the application 
successful. 

The proposed framework comprises five steps, which follow each other sequentially. 
The first step examines the fundamental qualification for data fusion (see Section 3.1). 
The second step examines obtainable business data and characteristics of the predictions 
of AI (see Section 3.2). The third step comprises an explorative data analysis along the 
value creation chain (see Section 3.3). The fourth step helps to select a suitable fusion 
method (see Section 3.4). In the last step, the fusion methods are tested and evaluated 
(see Section 4). 
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3.1 Preconditions for data fusion 

The first step of the framework addresses the fundamental qualification for applying data 
fusion in inspection. In this step, the tester justifies the technical and economic feasibility. 
Technical feasibility means assessing the practicability of implementing data fusion in an 
inspection system. Economic feasibility means assessing the value and cost of data 
fusion. Figure 1 presents the examination of the fundamental qualification for data fusion 
with four framework questions (F1–F4). 

Testing of UC for data fusion by combining AI and business data evaluation begins 
when the answer to four fundamental questions is ‘yes’, including the existence of the use 
of AI (see F1 in Figure 1) and business data (F2). F3 addresses the need for the greatest 
possible connection between process steps and data via a cloud/data availability between 
processes and the participating stations of the inspection system. Quick access to business 
data is important. Otherwise, predictors wait or miss data that is essential for prediction. 
F4 addresses the scalability of the inspection application. There is no fundamental 
qualification if the answer to any question is ‘no’. 

Figure 1 Preconditions for testing for UC of data fusion 

 

3.2 Characteristics and data in inspection 

In the second step of the framework, the analyses of the collectable data and the data 
basis already used and still available must be examined to identify a use case for data 
fusion. 

First, the user must answer which characteristics the AI-enhanced application predicts 
and which data it uses for the prediction. The goal of AI in inspection is to predict one or 
more characteristics. In doing so, AI-enhanced applications rely mostly on a combination 
of historical and present measurable data (Schlüter et al., 2021). This data must be 
explicitly analysed. 

Characteristics of products, equipment, and processes can be divided into 
observables, assignments, and performance indicators: 

• Observables are physical properties that can be measured indirectly or directly. For 
example, sensors that measure physical properties collect cardinal or interval scaled 
observable data. 

• Assignments denote given titles and names representing a particular set of 
observables, often nominally scaled. In terms of processes, assignments are, e.g., 
name of a model or a method. 
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• Performance indicators are qualitative data characterising performance, 
price/value/cost, or quality. For example, a product may have damage from several 
nominal damage categories, an ordinal quality class, and cardinal raw material 
values. 

In many processes, it is impossible to measure values of the state variables that describe 
the system state in-line, which are essential for process control. Instead, one measures 
quantities that depend on the state variables (Weichert et al., 2019). Therefore, mainly 
indirect rather than direct data can be collected, even though the latter allows more 
precise differentiation. 

Next, the user needs to search the value creation chain for available data for the 
inspection process. The user must answer whether data already exists for these 
characteristics. If no data is available, the user must obtain the data about the 
characteristics through suitable measurements or observations or acquisition (Kintscher 
et al., 2020). When analysing the obtained data, it makes sense to prioritise the data first 
for the most promising business data for the inspection purpose. 

Data from sensors, documented product movements, or observations of employees 
are measured data (Weichert et al., 2019). In contrast, simulated data represent only 
model processes or products that play a major role in inspection, but as a prediction itself 
rather than as the data basis for modelling the prediction. 

Production environments generate data on the shop floor (Dittmann et al., 2021) or 
receive data from suppliers and pass on data to customers (Blömeke et al., 2020). 
Occurring characteristics during measurement can therefore be set in relation to the 
stakeholders. Stakeholders have incorporated their features into objects. These features 
are differences that can be used for inspection. 

There is time-variable data and data tied to the entities, product, process, or operating 
equipment from production and the value creation chain. Time-variable data 
differentiates between continuous data and data that contains data points sequentially or 
periodically (Weichert et al., 2019). These are particularly valuable as they allow 
conclusions to be drawn about the development of a residual value of assets. Today, they 
are more likely to be found in processes and operating equipment than in products. It is 
desirable to obtain the data tied with the characteristics from a digital twin connected to 
the entities (Blömeke et al., 2020; Dittmann et al., 2021). If no digital twins of a product 
are available during inspection, a prediction can be made based on products of the same 
class, production period, or other features (Lickert et al., 2021). Similar products can also 
be used as a reference for inspection. 

If the user has prioritised the data along the value creation chain, the user must 
aggregate and investigate chunks of data. The data are examined whether they are 
suitable for the determination of characteristics. 

3.3 Explorative data analysis along the value creation chain 

In the third step of the framework, the available data candidates shall undergo an 
exploratory data analysis to determine their significance for prediction in the inspection 
process. Inspections often serve as an interface to other stakeholders and processes. 
Therefore, some processes are likely to generate certain data types concerning the 
product characteristics. The following example steps represent typical data fusion UC. 
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UC1 Supplier data, product quantities, and packaging patterns occur upon incoming 
product returns. Determining the time of arrival assigns an age to the product 
returns in the workshop (Lickert et al., 2021). Patterns of characteristics appearing 
in the later inspection refer to a supplier or delivery of products. If two different 
suppliers return the same product class at different times, later measurements of 
product characteristics reference the time and the supplier. For later retrieval, 
creating a unique inspection ID becomes necessary, e.g., via a label on the 
product. 

UC2 The inspection identifies, measures, checks, and documents characteristics. The 
inspection covers observable product characteristics, e.g., visual condition, sound, 
mass, and completeness. In addition, the collection of process-related data, such as 
the reject rate or product quality, allows a parameterisation of the process 
variables of the same and subsequent process steps. If the data forms 
characteristics, the AI-enhanced manufacturing steps can improve product quality 
prediction, for example, to better adapt the process variables to the material. 

UC3 Warehouses store and buffer incoming and outgoing materials and (intermediate) 
products. Stocks are recorded and can be traced back to class and the product ID, 
if an ID is available. The derivable data describe the material state, the material 
flows over time and allow conclusions about the productivity of processes. For 
example, if warehouses record the environmental conditions, subsequent 
AI-enhanced inspection can use these with the material properties and the 
dimension of the materials to optimise predictions regarding, e.g., product quality. 

UC4 Manufacturing and assembly change material and products in their dimensions 
and visual appearance and thus influence the product properties. If deviating 
process properties or, for example, supplier-specific properties of the input 
products are known to the AI during the inspection of the incoming material, the 
prediction of product quality can be optimised by merging the data. 

3.4 Selecting a data fusion method for a specific use case 

Given the use case, some data fusion methods are more appropriate than others. Table 1 
lists available methods for data fusion of business data and AI-enhanced inspection. 

Algebraic fusion methods (Type A) come into consideration when prediction from 
the retrievable business data infer the same format, characteristics, and quality as the AI 
prediction. Then they are suitable for reducing the uncertainty of already good 
predictions by the sources. 

UC, which involve sources that produce eligible predictions for inspection can apply 
weighing fusion methods (Type W) such as DST approaches. Each participant receives a 
weight on his past predictions. UC involving time-series data or multiple product 
inspections are more suitable for Bayesian approaches. 

UC, which involve many locations and different equipment for inspection of the same 
goods, can utilise their characteristics for prediction in the local production environment 
(Type ML). They integrate their local requirements into the prediction by fusion with, 
e.g., learning to rank methods. 
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Table 1 Methods for data fusion of business data and AI-enhanced inspection 
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UC, which involve prediction sources relying on different input data, which also result in 
differing predictions, may apply ensemble methods (Type E) like stacked generalisation 
or backpropagation ML techniques. UC that either has sources on the same input data or 
produce differing predictions can apply a bucket of models for fusion to identify the best 
quality predictions for a given input. 

UC with high freedom or the concatenation of characteristics lend themselves to this 
ML fusion methods like backpropagation. The more diverse the task and the higher the 
interconnection between the actual task and the measurable characteristics, the more 
likely ML algorithms might find use in fusing the data. 

UC with a proprietary AI-enhanced inspection source or a topology from an 
AI-service provider that does not disclose its predictive algorithms for sorting or 
evaluation. Here, algebraic, weighing, and ensemble methods offer a possibility of 
leaving existing solutions in the value creation chain and extending them with further 
process-relevant information. 

When going through the framework for the application of fusion methods, it is 
important to keep in mind the technical feasibility and the economic feasibility. Certainly, 
integrating expensive sensors and the continuous expansion of cloud networking in 
companies can improve the inspection processes, but this must always be weighed 
against the effort and the resulting success. 

In the final step of the framework, the chosen method must be implemented and 
tested on the use case. The implementation and test strategy depend on the respective UC 
and the given data. Regardless of the fusion method and the test strategy, a sufficiently 
large database must be available that corresponds to productive operation. Experts from 
the respective domain are crucial for assessing the representativeness of the dataset. 

Circularity, on the other hand, refers to the degree to which a product, system, or 
process is designed to be part of the circular economy. A circular product, for example, 
might be designed to be easily repaired, upgraded, or recycled to keep it in use for as long 
as possible. A circular system, such as a recycling program, might be designed to capture 
and reuse materials that would otherwise be wasted. Finally, a circular process, such as 
closed-loop manufacturing, might involve using waste products as inputs for new 
products to minimise waste and pollution. In all of these cases, the goal is to move toward 
a more circular economy where resources are used efficiently and sustainably. 

In this section, a framework is proposed that enables the integration of business data 
with AI-enhanced inspection. The proposal of the framework highlights the necessity for 
integration of both, an informational linkage of the business data and the observed 
characteristics of the products or processes. Furthermore, it becomes clear that a deeper 
analysis of the business data and the AI-enhanced application is necessary to identify the 
possible positive effects of a fusion. Additionally, the proposal explicitly illustrates that 
the fusion for the respective identified UC must be implemented and tested to measure its 
impact on inspection. Section 4 demonstrates hereafter the implementation and testing of 
the methods for a specific application. 

4 Implementation of data fusion for inspection of product returns 

This section explains how returns can be inspected using prediction from AI-enhanced 
computer vision on the one hand and business data on the other. The explanation includes 
shortcomings of the current prediction methods. It, therefore, develops suitable fusion 
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methods to reduce the effects of the limitations on the inspection. A prototypical 
implementation provides a basis for investigating the quality and stability gains, which 
result from data fusion. An inspection process between reverse logistics and 
remanufacturing in the automotive aftermarket serves as an example for UC1 and UC2. 

In the automotive industry and aftermarket, returned EOL motor vehicle parts are 
called cores. The core inspection process seeks to identify the product class (original 
spare parts number or original equipment number (OEN)) and assess damage types of 
product returns (cores) from motor vehicles. Each core belongs to a product group, e.g., a 
starter motor or an alternator. Each product group shows several typical damage types, 
e.g., corrosion or carbonisation. The inspection of the cores takes place in customer-
related batches. Therefore, each core is already uniquely locatable to a supplier (Su) with 
the inspection ID. The inspector (and decision-maker) independently determines the 
product class and group in the conventional process. In addition, each inspector ensures 
that the product characteristics (inspection ID, Su, EAN, m, OEN, damage class) enter a 
database accessible to all inspection stations of the company. 

AI-enhanced computer vision and analysis of collectable business data improve the 
inspection process. Both sources fuse their predictions to achieve the best possible 
predictions of product characteristics. Each source has requirements for selecting the best 
method for data fusion in terms of quality and stability. 

The following subsections detail the enhancement. First, a brief introduction to 
AI-assisted inspection, its shortcomings and potential for improvement are given. 
Secondly, the implementation of statistical sensory predictions is explained. Third, the 
statistical sensory predictions are tested. Fourth, results are discussed regarding the 
research questions. Fifth, the impact of the results on circularity is discussed. Sixth, a 
topological design for implementing the fusion method is presented, and seventh, the 
fusion methods are chosen for testing. Finally, the impact of data fusion on circularity is 
explored. 

4.1 AI-enhanced inspection 

Optical sensors collect visual data to enhance identification and damage evaluation. 
Afterwards, the visual data from the cores enter a learning process. Therefore, a well-
known architecture for convolutional neural networks (CNN) comes into action. The 
architecture has already shown the positive effects and enormous possibilities of 
computer vision for inspections in the circular economy. The architecture of the network 
currently in use, a ResNet50, is 50 layers deep and uses residual blocks to detect cores 
with a balance between effort and accuracy (Schlüter et al., 2021). In a study with 1,440 
sample cores, the architecture had a recognition accuracy of 96%. This study presents the 
increased stability in prediction and thus decision-making for a few selected product 
returns of cores. However, with an estimated number of 135,000 different product 
classes, further measures need to be implemented to improve identification. 

Visual sensors record the cores, and software forwards this data to the trained neural 
network. Then, the neural network generates predictions about the product class from the 
visual data. The predictions comprise a list containing the product class and reliability 
(score). In application, AI provides predictions that carry an inherent probability (score), 
which an instance (decision-maker) uses as a basis or an indication for a decision 
regarding a core. This list is as long as the number of product classes learned by the 
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neural network. Based on the verification of the user and the recognised product class, 
another neural network will predict possible damage types from the visual data. 

To further improve computer vision for inspection, methods are currently being tested 
at the Fraunhofer Institute for production systems and design technology that enable the 
fusion of colour and depth information from different sensor types (Schlüter et al., 2021). 
In this data acquisition, different sensors capture the cores from multiple perspectives. 
They enable the simultaneous acquisition of unique positions and orientations and 
optimise training. Thus, they reduce the minimum number of inspections required for 
predictions. In addition, uniform illumination improves depth information already during 
acquisition. 

4.2 Sensor and business data evaluation 

The business data evaluation (BDE) statistically crawls historical data. It gains core 
characteristics from sensors to predict the cores class, its product group, and its condition. 
The statistical component relies on characteristics relevant for distinguishing vehicle 
cores as product returns. Altogether, the dependencies of the core class on the supplier 
Su, packaging EAN and mass m result from explorative data analysis. For example, 
suppliers ship different parts. The European Article Number (EAN) on the packages can 
break down a core’s belonging to an Original Equipment Manufacturer or aftermarket 
programme. The mass of each core varies depending on the dimension and thus on the 
product group and class. 

In the first step, the evaluation of historic data calculates the relative frequency fn(Su) 
with equation (1) for each core class C to determine how often each supplier Su sent this 
core class. 

( )( ) i
n

n Suf Su
n

=  (1) 

( )( ) i
n

n EANf EAN
n

=  (2) 

In addition, the evaluation determines according to equation (2), the relative frequency 
fn(EAN), of how often each type of package EAN occurred for each core class C. Further, 
the conditional probabilities are determined for all classes on condition of the customer 
number and EAN fn(Su ∧ EAN). Each core class receives a mass distribution M(x) by the 
statistical evaluation of the historical data. 

However, the statistical evaluation alone cannot ensure a qualified prediction about 
the core class. Two measurements allow considering the dynamics of the process and 
distinguishing the number of different cores. The sensory components comprise a 
barcode scanner measuring the EAN and a scale measuring the mass m. After measuring 
the characteristics, the evaluation can predict the product classes occurring in the 
historical data. 

( ) ( )
max

min

m
min max

m
P m m m M x dx< < =   (3) 

The evaluation uses measured characteristics to include pre-computed predictions and 
excludes inconsistent predictions from historical data. It determines the mass 
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probabilities P(m) from measured mass m for all core classes that occurred in the past, 
according to equation (3), with the confidence of the scale (mmin, mmax). 

From the determined probabilities of occurrence, the authors apply different algebraic 
methods to fuse the statistical evaluations, as shown in Table 2. In an algebraic approach, 
we multiply the calculated relative frequencies to receive the probability of encountering 
a core class based on measurement (PSE). A second approach (SSE) weights by a linear 
combination with parameter a. The mass probability P(m) multiplies PSE, SSE, and the 
conditional probability fn(Su ∧ EAN), and gives the respective fused predictions: product 
of mass probability and the relative frequency of packaging (EAN) and the supplier (Su) 
– CPM, product of mass probability and sum of the relative frequency of the packaging 
(EAN) and the supplier (Su) – CSM, and product of mass probability and conditional 
probability under the condition of the supplier (Su) and package (EAN) – CSEM. Finally, 
each prediction list contains probable core classes with an associated score. The score 
assigns a rank to each entry in the list. 
Table 2 Statistical sensory methods 

Title Description Formula 
CPM Product of mass probability and the relative frequency of 

packaging (EAN) and the supplier (Su) 
P(m)⋅fn(Su)⋅fn (EAN) = 

P(m)⋅PSE 
CSM Product of mass probability and sum of the relative 

frequency of the packaging (EAN) and the supplier (Su) 
P(m)⋅(afn(Su) + (1–a) fn 

(EAN)) = P(m)⋅SSE 
with a ∈ [0, 1] 

CSEM Product of mass probability and conditional probability 
under the condition of the supplier (Su) and package (EAN) 

P(m)⋅fn (Su ∧ EAN) 

4.3 Backtesting of sensor data and business data evaluation 

A comparative analysis of predictive accuracy, through cross-validation, evaluates the 
quality of BDE methods. An algorithm randomly splits a dataset of 213,879 core 
inspections with 7,122 different core classes 20 times into 80% training and 20% test 
data. The training data prepare the predictions and represent a historical dataset. The test 
data serve as samples for the generation of prediction lists. After generating the 
predictions, an algorithm checks each test sample’s rank and prediction score appearing 
in the prediction list. 20 test runs are started, in which the performances are calculated as 
the average of the performances of the 20 individual runs. 

In the context of multiclass classification, the rank of a predicted class reflects the 
model’s confidence in its prediction. The rank is determined by the position of the 
predicted class in a list of predicted classes, ordered by the model’s confidence in the 
prediction. This information can help evaluate the model’s performance, allowing the 
user to see how confident it is in its predictions for each class. It can also help to identify 
cases where the model is unsure about its predictions, which may indicate areas where 
the model could be improved. The average rank of a model’s predictions can also impact 
the overall quality and speed of inspection. A low average rank generally indicates that 
the model is confident in its predictions, leading to a higher likelihood of correct 
classification and faster inspection. On the other hand, a high average rank suggests less 
confidence in the predictions and a higher likelihood of incorrect classification, requiring 
more thorough inspection. 
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In this article, score (usually termed confidence) refers to the level of certainty that a 
model has in its prediction or classification. It is usually represented as a probability, with 
higher probabilities indicating higher confidence and lower probabilities indicating lower 
confidence. The score is important because it can show the reliability of a model’s 
predictions. High-score predictions are more likely to be accurate, while low-score 
predictions are more likely to be incorrect. The score can also impact the quality and 
speed of inspection. If a model makes high-score predictions, the inspection process will 
likely be more efficient and accurate. If a model makes low-score predictions, the 
inspection process will likely be less efficient and inaccurate. 

By calculating the average rank and score for all test samples and folds, it is possible 
to compare the success of the different statistical sensory prediction methods. As Table 3 
shows, identification solely by suppliers performs the worst with an average rank of 
172.9. The test samples are, on average, at position 34.4 of the prediction list by mass. 
The best prediction in terms of average rank delivers a prediction from the CSM of 24.1. 
The worst combination delivers an average ranking of 76.8. 
Table 3 Core class prediction performance 

Method 
Average prediction performance 

Rank Rel. 
rank Score Rel. 

score Top 1 Top 2 Top 3 Top 5 

fn (Su) 172.9 0.44 0.01 0.0001 0.06 0.08 0.10 0.14 
fn(EAN) 28.4 0.06 0.46 0.0023 0.59 0.75 0.82 0.89 
fn (Su ∧ EAN) 77.2 0.21 0.40 0.0017 0.46 0.56 0.60 0.63 
P(m) 34.4 0.08 0.07 0.0007 0.07 0.16 0.24 0.37 
SSE 24.5 0.06 0.26 0,0014 0.60 0.75 0.81 0.87 
PSE 70.8 0.20 0.43 0.0018 0.47 0.58 0.62 0.65 
CSM 24.1 0.05 0.51 0.0026 0.66 0.80 0.85 0.90 
CSEM 76.8 0.21 0.46 0.0019 0.51 0.59 0.62 0.64 
CPM 70.4 0.19 0.50 0.0021 0.53 0.62 0.64 0.66 

Table 3 shows the average scores for the methods for all test samples. The simple, 
algebraically fused methods SSE, PSE, CSM, CSEM, and CPM, achieve an average 
score of 0.26 to 0.51. While the sole prediction from the EAN still achieves a score of 
0.46, the fused methods can improve their confidence by combining data. Including the 
mass probability improves the prediction for the algebraically fused methods: CSM, 
CSEM, and CPM. 

The accuracy of the predictions presents a similar pattern. In ML, ‘TOP X accuracy’ 
refers to the percentage of times that a model or system correctly predicts the correct 
outcome or label out of all possible outcomes or labels, where X is the number of ranks 
included, starting with 1. Higher TOP X accuracy is generally desirable because it 
indicates that the model can make more accurate predictions. Furthermore, in the context 
of an inspection, higher TOP X accuracy can lead to more efficient and accurate 
inspection processes because fewer resources will be needed to verify the accuracy of the 
predictions. On the other hand, lower TOP X accuracy may require more resources to 
verify the accuracy of the predictions. It may result in less efficient and accurate 
inspection processes. 
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During the inspection at review of the predictions, it is important to display 
predictions clearly and briefly. Thus, the user can seize the current core from the display 
list. An algorithm counts the occurrence of the predictions in TOP 1, 2, 3, 5 of the 
prediction lists to measure the success rate. The CSM method performs best. CSM can 
display the sample cores in the TOP 1 in 66%, TOP 2 in 80%, TOP 3 in 85%, and TOP 5 
in 90% of all test samples. 

4.4 Discussion of results 

The sensor and BDE predicts the ID of cores. Each of the implemented methods can 
create and present predictions to a decision-maker for identification and verification 
during inspection. 

These results show that the use of multiple features leads to an improvement in fused 
prediction. The improvements vary in magnitude depending on the method used. 

Furthermore, it turns out that the information about its mass for product returns can 
contribute significantly to detection. This is of particular interest because mass 
measurements of products cost little and can be carried out reliably. 

It also reveals that simple statistical analysis can make qualitative predictions, 
especially for frequently occurring products. However, the prediction for rare products is 
too weak. Outliers occur that worsen the predictions to a magnitude that is unacceptable. 
The right proposals must end up at the top of the first page of the inspector’s proposal list 
during an inspection. Although the simple algorithms partly manage this, it is not enough 
for an industrial application. 

We expect 99% of the inspected cores among the TOP 3 predictions for an 
application in the production environment. This is because the inspection process 
involves verifying the model’s predictions, which can be time-consuming. If 99% of 
predictions fall within the TOP 3 making the inspection process more efficient and easier 
to understand. In addition, it would be desirable if the minimum score of each prediction 
is 51% on the respective prediction list, which corresponds to a 100% occurrence of each 
inspected core on TOP 1. This is because it shows that the ML model is confident in its 
predictions and can accurately classify items with a high level of certainty. This can also 
improve the human-machine interface, as the inspector will only need to review one 
prediction for each core, rather than a list of multiple predictions, making the inspection 
process easier to understand and more straightforward. Fusion methods are used to 
achieve the targeted metrics of predictions. 

It is important to note that different applications may require different levels of TOP 
X accuracy depending on the specific needs of the task at hand. For example, a model 
with a high TOP 1 accuracy may be sufficient for a task where it is important to have a 
single, highly accurate prediction. On the other hand, a model with a high TOP 5 
accuracy may be more suitable for a task where it is important to have a list of several 
highly accurate predictions to choose from. In general, it is important to consider the 
trade-off between the level of accuracy desired and the resources available for inspection 
when determining the appropriate level of TOP X accuracy for a given task. 

The test of the business data analysis also contributes to answer the specified research 
questions (see Section 2.4). 
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Q1 Regarding the requirements for a stable and high-quality fusion of AI and business 
data, the implementation demonstrates the necessity of measurements during 
inspection in order to make qualified predictions from business data. Historical data 
alone are not sufficient. 

Q2 In terms of quality improvements from the fusion of business data, algebraic and 
weighted fusions show slight improvements over non-fused predictions. 

Q3 The stability of the simple algebraic and weighted method is so far insufficient for 
operational use. Albeit the quality increase and the numerical stability, 10% of the 
cores receive inadequate predictions with poor average ranks and scores, which leads 
to instability in the inspection and subsequent processes. 

4.5 Impact of results circularity 

In summary, the quality of the fused predictions of the BDE is already good enough to 
reduce the possibility space for the inspector from 135,000 to about 95 classes in 90% of 
the inspections, assuming linear scaling of the tests performed. In view of this, in 
Germany, between 5-7% of about one million cores per year are mistakenly sorted out 
because their class cannot be identified (Schlüter et al., 2021). This leads to the 
destruction of value through material recycling, which is not sustainable. Further 
shortening the range of possible classes helps the inspector to dispose fewer cores 
wrongly. 

The results indicate that the better the quality of prediction, the more contribution to 
resource efficiency keeping products in multiple life cycles. This contributes to value 
preservation by implementing data analytics as SM. This finding improves circularity of 
products in the automotive sector and can be applied to any sector seeking SM. 

Further, AI and data fusion are closely related because data fusion involves the 
combination of multiple data sources to generate a more comprehensive and accurate 
understanding of a situation or phenomenon. This can be useful in many applications, 
including manufacturing, where data fusion can help improve decision-making and 
optimisation of processes. This potential is explained within the next subsections. 

The next subsections examine the implementation of fusion methods for the use case. 
First the design of stable processes is highlighted in order to use fast fusion methods for 
the use case. 

4.6 Importance of the topological design of data fusion 

The topological design of data fusion refers to the way in which data from multiple 
sources is integrated and processed. There are several approaches to topological design in 
data fusion, including centralised, decentralised, and hierarchical approaches. 

In centralised data fusion, all the data is collected and processed at a central location, 
where it is integrated and analysed. This approach is often used in systems with limited 
data sources or when the data sources are highly correlated. 

In decentralised data fusion, the data is collected and processed at multiple locations, 
and the results are then combined and analysed. This approach is often used in systems 
with large, disparate data sources or when the data sources are not highly correlated 
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In hierarchical data fusion, the data is collected and processed at multiple levels, with 
each level performing a specific task. This approach is often used in complex systems 
where the data needs to be analysed and processed at multiple levels of abstraction. 

One of the main advantages of data fusion is that it allows businesses and 
organisations to extract more information and insights from their data, which can 
improve decision-making and operational efficiency. The topology of data fusion plays a 
crucial role in this process, as it determines how the data is collected, processed, and 
analysed. The choice of topology has a significant impact on the performance and 
effectiveness of the data fusion system, as well as its efficiency and scalability. 

For example, a centralised data fusion system may be more efficient in its use of 
resources, but it may be less adaptable and less able to scale than a decentralised or 
hierarchical system. On the other hand, a decentralised or hierarchical data fusion 
topology may be more adaptable and scalable, but it may be more complex to design and 
implement and may be less efficient in its use of resources. 

The topology of data fusion is also important in terms of reliability and accuracy. A 
well-designed data fusion system should be able to handle a wide range of data sources 
and data fusion tasks. It additionally should be able to provide reliable and accurate 
results even if there is some uncertainty or noise in the data. 

In summary, the topology of data fusion is an important consideration when 
designing and implementing a data fusion system, as it can have a significant impact on 
the performance, efficiency, scalability, and reliability of the system. The choice of 
topological design for a data fusion system will depend on the specific needs and 
constraints of the application, including the volume and complexity of the data, the 
resources available for processing and analysis, and the desired level of accuracy and 
reliability. 

4.7 Topological design of data fusion for the use case 

Various topological design measures increase the stability of the predictions (see 
Figure 2). The first measure is to calculate the training of the models for prediction to the 
cloud. That relieves the industrial PC in the production environment from computational 
tasks and allows it to focus on executing the predictions. Thus, the training and predictors 
are independent of each other. As a result, the predictions can continue to operate based 
on the latest functioning version in the event of a failure, e.g., during training. In addition, 
the topological design ensures that the training units within the cloud act independently 
of each other to increase stability. 

In the cloud, the training modules for BDE, fusion, and computer vision are separated 
from each other and the database. Each training module retrieves the training data from 
the company-wide database. This ensures that the training does not affect the company’s 
existing database. 

The training modules use historical inputs, predictions, and verifications to train the 
predictors and improve the models’ predictions. Only those models that need an update 
because of inadequate predictions are trained selectively. It is important to learn models 
selectively because it can improve the energy efficiency of the models by reducing the 
number of calculations required to make accurate predictions. It can also contribute to 
resource efficiency by reducing the data and computational resources needed to train and 
run the model. Selective learning can also reduce the human labour required to maintain 
and update the whole ensemble of models and improve the overall performance by 
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making more accurate predictions. These factors contribute to sustainability by reducing 
waste and improving resource utilisation in various applications. For this purpose, the 
training modules examine the decision-makers’ verifications and compare them with the 
predictions for each inspection. If the concept drift is too large, the modules train only 
these samples and add them to the models in batches or incrementally. This will 
contribute to low energy consumption of the learning modules. This first option is the 
design case and is favoured. 

Figure 2 Topological design for stable predictions 

 

In addition, it is possible to apply a fixed long-term cycle for updating the models. Here, 
the training modules update the models after several inspections or a period. This cycle 
should cover a sufficiently large interval to reduce energy consumption. Of course, it 
depends on the application, the frequency, the variance of the products, and the resulting 
concept drift of each participating source. However, it is also possible for the user to 
instruct the individual training modules to train new models with specific parameters. 
The latter option allows the user to trigger the training if the predictions are insufficient. 
After one of the options, when a new model is learned, the communication between the 
cloud and the production environment occurs. 

The predictors are separated on the industrial PC to assess the process or event 
independently. Then, during an inspection, on request, the sources generate predictions 
about the class and state of the core from the respective input variables (see Sections 4.1 
and 4.2). 

The fusion method affects the learning effort and preparation of the predictions. 
Algebraic fusion methods do not require a learning unit in the cloud. However, more 
complex statistical methods and AI approaches to data fusion require a learning unit in 
the cloud. This fusion unit fuses the predictions based on the selected method. After 
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fusion, the unit can pass its prediction to a communication module to display it on the 
industrial PC on demand from the production environment. If a source does not provide a 
prediction, the fusion unit still considers the prediction of the functioning source. Should 
none of the source units predict the inspection, the decision-maker can still inspect the 
product autonomously. 

As for the BDE and the fusion methods, each verification of the decision-maker will 
trigger an incremental rescaling and learning of the model. This compensates for the local 
concept drift of the inspection station. 

4.8 Fast fusion methods for the use case 

A high operational speed characterises the inspection of the cores in the use case. On 
average, an inspection of a core takes just one minute. This includes scanning, unpacking, 
measuring, and commissioning the cores. The time between recording the core 
characteristics and identification is even shorter. Therefore, a fusion method should be as 
lean as possible to identify and evaluate the cores quickly. 

The mathematical fusion methods, like averaging, products, and intersection, without 
further training effort and the explicit mathematical notation for these cases are shown in 
Table 3. Fusion methods that only consider rank do not allow subsequent calculation of 
the fused score. In contrast, a derivation via a fused rank can be made from the fusion of 
scores. The SS and SR methods can, of course, be weighted with any parameters, but this 
requires a very high parameterisation effort. 
Table 3 Algebraic and weighted methods for data fusion 

Method Description Formula 
SS Average score from j sources 1

js
sj

n   

SR Average rank from j sources 1
j

jr
r

n   

PS Product of score from j sources 
j
sj∏  

Intersection In the fused prediction list are only those 
classes (C) that occur in all sources j ( )( )max j

j
s Cj∩  

Dempster-Shafer 
rule score 

Weighted fusion of scores based on the 
historical accuracy of the sources hA  , ,

1
h C j j

js
A s

n   

Dempster-Shafer 
rule rank 

Weighted fusion of ranks based on the 
historical accuracy of the sources hA  , ,

1
h C j j

js
A r

n   

The effort required for parameterisation is estimated to be comparatively high, as the 
quantities of classes and their properties vary with the model years and the use of the 
parts. Therefore, a weighting based on the Dempster-Shafer combination rule is applied. 
Two approaches are applicable. It can be based on individual proposals or based on entire 
lists. 

For example, if a source performs poorly on a specific task, Fusion’s training module 
in the cloud can compare the predicted and actual events. The average accuracy of the 
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, ,h SA  with which the individual sources predict events, can then fuse the lists. Another 

method is to determine the average accuracy with respect to the classes , ,h SA  These 
class-specific weights can then be integrated into the fused predictions. 

A third method combines the results of the individual predictors using a stacked 
generalisation ML method. The prediction source algorithms are trained for this in the 
cloud. The predictors are then tested. Finally, the predictions are input for higher-order 
learning procedures, e.g., logistic regression. 

The bucket of models method combines the advantages of the different BDE models. 
For this purpose, the input parameters are segmented into clusters. The best predictors of 
each then act on a subset of the inputs. 

4.9 Impact of data fusion on circularity 

Data fusion help companies to make better use of available data, which supports efforts 
to implement circular and sustainable practices in manufacturing. 

This article focuses on the aspect that data fusion enables the determination of 
inefficiencies and waste in manufacturing and EOL processes. The proposed framework 
enables the integration of business data with AI-enhanced inspection to identify the 
possible positive effects of a fusion. The case study demonstrates the effects based on 
statistical sensory predictions and tests with a selected fusion method. The results lead to 
a higher quality and more reliable results in prediction, i.e., more cores are identified 
correctly during inspection, less core are wrongly selected for disposal. These 
determinations reduce waste as well as environmental impact and improve resource 
efficiency. 

There are further ways how data fusion support companies to track and monitor the 
sustainability of their manufacturing processes over time, allowing them to make ongoing 
improvements and adjustments to support their sustainability goals. For example, data 
fusion can combine data from different sources, such as production logs, energy usage 
records, and supply chain data to gain a more comprehensive understanding of their 
environmental impact and the resources they use. By doing this, companies can identify 
inefficiencies and areas where resources are being wasted. This information can then 
change the manufacturing process to reduce waste and improve resource efficiency, 
supporting circularity. 

Furthermore, data fusion can also support SM by providing organisations with the 
data they need to make informed decisions about their production processes. For 
example, data fusion can combine data on market demand, resource availability, and 
environmental impact to help organisations identify the most sustainable production 
options and make decisions that support their sustainability goals. Data fusion is crucial 
in supporting SM by providing organisations with the data they need to make informed, 
sustainable decisions. 

In conclusion, data fusion is a powerful technique that enables the integration of AI 
into business operations, resulting in the optimisation of processes and the minimisation 
of waste. By combining multiple data sources and information from various sources, data 
fusion creates a more comprehensive and accurate representation of a particular topic or 
issue, allowing businesses to make more informed decisions and improve their 
performance. Utilising AI techniques such as ML and natural language processing in 
conjunction with data fusion allows for the real-time analysis and interpretation of large 
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volumes of data, providing insights and recommendations to decision-makers. Through 
the integration of data fusion and AI, businesses can leverage the power of these 
technologies to optimise their processes and minimise waste in the pursuit of SM. This 
includes the identification of patterns and trends in production and supply chain data, the 
analysis of customer and market research data to identify opportunities for product reuse 
and remanufacturing, the use of predictive maintenance to extend equipment lifespan and 
reduce downtime and waste, the optimisation of the supply chain and logistics to reduce 
emissions, and the optimisation of energy use to minimise the environmental impacts of 
operations. Data fusion is therefore a crucial enabler for the integration of AI into 
business operations, ultimately supporting the transition to a circular economy and a 
more sustainable future. 

5 Conclusions 

One of the key aspects of the circular economy is investigating product returns as 
resources to increase the value created by those resources through multiple life cycles. 
Improvement of the decision-making about product returns can increase the number of 
products in second and further lives with high value and reduce cost in curative return 
management. This article provides a framework for precise decision-making. The 
framework focuses on data fusion of business data and AI in order to enhance the 
integration of AI into inspection processes. 

Recent AI-enhanced applications for inspection in reverse logistics and return 
management were reviewed and presented. AI-enhanced applications with multiclass 
classification are still limited in their performance. ML methods, such as machine vision, 
can be improved to cope with the large number of classes that will be identified. Some of 
them are dedicated to the classification of products and their condition. Excursive 
research shows that there are already many different methods suitable for UC in the 
inspection of product returns. 

Statistical analyses were carried out to bring customer and shipping data into a fusible 
format. Sensor measurements supplement the statistical analyses with the mass of the 
products in order to improve the predictions about the product classes. It has been shown 
that even the statistical sensory predictions can help the decision-makers to generate 
proposals that appear in the TOP 5 by 90%. This already offers a precise reinforcement 
that allows the decision-makers a more reliable classification of products, given the 
possibility of more than 7,000 classes. This reliable identification of the products 
promotes more consistent information for further life cycles of these products or their 
components. In this way, the statistical sensorial prediction already contributes to 
processing resources in multiple life cycles, i.e., preservation of product value in closed 
loops and advancement of SM. Nevertheless, these predictions are not yet sufficient for 
stable operation. They must be improved in quality. 

Different fusion methods are evaluated as suitable for the use case of product returns. 
The topology of the fusion methods must also be considered during the evaluation of 
these methods. On the one hand, it must allow all workstations to benefit from the know-
how of inspections at other stations. On the other hand, it must maintain stable operation 
if the network or a single workstation stop working or communicating. The proposed 
decentralised topology of the framework provides a stable basis for each participating 



   

 

   

   
 

   

   

 

   

   194 R. Schimanek et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

source so that reliable predictions are possible even if any other or all other participating 
prediction sources fail. 

It is also important to include all the inspectors at all operating sites for verifying and 
training the prediction models and fusion. Using a four-eye principle, human inspectors 
and machine-based predictors work continuously together. The topology facilitates this 
cooperation, which offers different possibilities of testing and training, if requested, based 
on time, batch, or concept drift way. 

The proposed concept for the integration of AI into core inspection includes a 
topology that enables the identification and evaluation of products based on sensors 
across products and business processes. This concept is already implemented and 
validated in the automotive aftermarket. The case study results demonstrate positive 
effects based on statistical sensory prediction and testing with a selected fusion method. 
These results confirm the indicated increase of quality and reliability in prediction. As a 
consequence, waste of core is reduced, more core is correctly inspected for the next life 
cycle and so resource efficiency for cores is increased. This consequence also improves 
the circularity of cores for automotive aftermarket. 

The concept can be transferred to further components and sectors, since it applies to 
many value creation processes with a suitable adaptation of the participating predictors 
and data. Future research and applications will realise the high potential of this concept in 
other areas of curative return management and circular economy. 

The contributions of this article to academia include the development of a framework 
for integrating data fusion and AI into inspection processes in order to improve 
decision-making about product returns in the circular economy. This framework 
represents a novel contribution to the field of data fusion and could be used as a basis for 
further research in this area. The article also reviews AI-enhanced applications for 
inspection in reverse logistics and return management, including their limitations and 
potential improvements. This review represents a summary of current developments in 
this field and serves as a reference for future research. In addition, the article evaluates 
different fusion methods as suitable for the use case of product returns, including 
considering the topology of these methods. This evaluation represents a systematic 
approach to selecting fusion methods and could be helpful for researchers and 
practitioners. Finally, the article presents a case study demonstrating the successful 
implementation and validation of the proposed concept in the automotive aftermarket. 
This case study represents a real-world application of the proposed framework and could 
be used as a model for future implementations in other industries. 

In terms of contributions to practice, the proposed framework can improve the 
integration of data fusion and AI in the circular economy, potentially leading to increased 
resource efficiency and circularity. The review of AI-enhanced applications for 
inspection in reverse logistics and return management identifies potential improvements 
and limitations, which can inform the development of these applications in practice. The 
evaluation of different fusion methods as suitable for the use case of product returns, 
including the consideration of topology, guides the selection of suitable fusion methods 
for practitioners. Finally, the case study demonstrating the successful implementation and 
validation of the proposed concept in the automotive aftermarket serves as an example of 
how the proposed framework can be successfully implemented in real-world settings, 
potentially leading to improved resource efficiency and circularity in the automotive 
aftermarket and other industries. The proposed concept can be transferred to other 
components and sectors since it applies to many value creation processes with a product 
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return focus. The proposed concept can improve resource efficiency and circularity in 
other industries by improving the identification and evaluation of products based on 
sensors across products and business processes. 

One of the critical limitations of the work presented in this article is the focus on the 
use of data fusion and AI in inspection processes for product returns in the circular 
economy rather than on the entire system or other aspects of reverse logistics and return 
management. Future work could address this limitation by expanding the scope of the 
analysis to include other aspects of the circular economy and considering the entire 
product life cycle. Another limitation is that the framework is applied only in a case study 
in the automotive aftermarket, which may not represent other sectors or industries. Future 
work could address this limitation by conducting additional case studies in different 
sectors to confirm the findings’ generalisability and identify any sector-specific 
challenges or opportunities for adopting and implementing data fusion and AI in the 
circular economy. A further limitation is the lack of analysis of the potential impacts of 
data fusion and AI on employment and skills development in the circular economy. 
Future research could address this limitation by examining the potential impacts of data 
fusion and AI on employment and skills development in the circular economy and 
identifying ways to enhance the benefits and mitigate any negative impacts. The authors 
also note that AI-enhanced applications for inspection in reverse logistics and return 
management are limited in their performance and can be improved, particularly in 
multiclass classification. Future work could address this limitation by exploring different 
ML methods and techniques that can improve the performance of AI in inspection 
processes. Another limitation is the lack of consideration of potential barriers and 
challenges to adopting and implementing data fusion and AI in inspection processes. 
Future research could address this limitation by exploring these potential barriers and 
challenges in more detail and identifying strategies to overcome them. Finally, the 
authors discuss the use of statistical analyses and sensor measurements to improve the 
prediction of product classes but note that these predictions are not yet sufficient for 
stable operation and need to be improved in quality. Future work could address this 
limitation by exploring different approaches to improving the accuracy and reliability of 
predictions. 

In future, fusion methods and topology must undergo testing with the predictions of 
AI-enhanced computer vision. This testing would evaluate the contribution of the data 
fusion to enhanced decision-making and value preservation of product returns for more 
SM. 
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