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Abstract: The integration of artificial intelligence and algorithms for the 
elaboration of data with the new advanced technologies represents an 
interesting topic for the definition of reliability and repeatability of the process. 
The present work combines these elements for improving the process chain of 
metal-material extrusion (metal-MEX), developing an algorithm able to predict 
which parts will be non-compliant after the debinding and sintering processes 
necessary for obtaining the final parts. Specifically, considering a database 
containing historical data collected by the authors in their previous research, an 
artificial neural network (ANN) was trained to be applied immediately after the 
printing stage for detecting non-compliant parts. In this way, it is possible to 
avoid the post-printing treatment (debinding and sintering) for parts that do not 
respect the design requirements. Considering the validation of the model, the 
ANN can discriminate which parts will be able to satisfy the requirements, 
supporting the operator in the selection of compliant and non-compliant parts. 
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1 Introduction 

Additive manufacturing (AM) was born in the 1980s and has mostly been used for Rapid 
Prototyping since then (Kruth et al., 1998; Levy et al., 2003). Further developments 
turned the processes into a technology capable of production (Levy et al., 2003), up to 
being used for additive manufacturing of end-use parts, known as Rapid Manufacturing 
(Lieneke et al., 2016) for applications in various fields such as mechanical engineering, 
medicine, fashion and art (Wohlers et al., 2021). Compared with traditional processes, 
AM processes create products of different materials through the successive deposition of 
layers. 

In recent years, the industrial world has been focusing on AM as a key factor in a new 
revolution in industrial manufacturing systems (Ferreira et al., 2004; Sun et al., 2005). 
Due to this development, the application and the interest in these technologies increase 
allowing the technology development and the increment in the printable materials. 
Precisely the introduction of AM technologies in the world of metals has meant that 
many of the theoretic hypotheses and problems are found to be real. The development 
and application of these processes in real cases and/or in laboratories have led not only to 
many opportunities but also to several criticalities (Fera et al., 2016). 

Additive manufacturing can offer many benefits over the use of formative tools, 
specifically, it provides new opportunities thanks to the great design freedoms, such as 
complex lattice structures or helical cooling channels; at the same time, new technical 
and economic advantages can be highlighted. For example, it is possible to reduce the 
time-to-market of new products since the design phase and the activity for preparing the 
machine are faster compared with traditional processes. From the economic point of 
view, it is possible to decouple production costs and part complexity (Quarto and 
Giardini, 2022), allowing the demand for these processes to increase (López Rojas et al., 
2022). Indeed, AM processes result to be convenient just for low production volume, 
since this kind of process is completely free from the economy of scale (Quarto and 
Giardini, 2022). 

Despite these benefits, the usage of additive manufacturing for end-use part 
production is still limited (Ryan et al., 2021). Different process-specific challenges such 
as rough surfaces or the stair-stepping effect caused by layer-by-layer manufacturing 
harm the industrial establishment. Furthermore, end-use part production requires accurate 
knowledge and understanding of all restrictions and possibilities (Wiberg et al., 2019). 
Therefore, manufacturing design restrictions have been the subject of numerous studies 
(Wiberg et al., 2019; Giudice et al., 2021; Giganto et al., 2022). Geometrical accuracy is 
another very important aspect requiring further determinations and improvements  
(Al-Ahmari et al., 2019; Liravi et al., 2015). However, these issues inhibit the use of 
additive manufacturing in Rapid Manufacturing and Rapid Tooling. Such deviations are 
insufficiently studied (Wohlers et al., 2021), although, the literature demonstrates that 
various research was performed to classify the geometrical accuracy of additive 
manufacturing (Gregorian et al., 2001; Byun and Lee, 2003; Boschetto and Bottini, 2014; 
Brøtan, 2014). Specifically, most of the references evaluate the geometrical accuracy 
with standard benchmark parts and this is not enough since several geometrical factors 
affect the geometrical accuracy. Additionally, the derivation of tolerances is often lacking 
and reasons for the occurrence of dimensional deviations are often unknown. As a result, 
there is a knowledge gap regarding achievable tolerance values for the actual limitation 
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of geometrical deviations (Wohlers et al., 2021). Additionally, the effect of printing 
parameters on geometrical accuracy has been poorly studied (Lieneke et al., 2020). 

Nowadays, the change in production techniques due to Industry 4.0 has increased the 
impact of digitisation on products. Replacing the operator with statistical algorithms for 
error detection in production processes is becoming increasingly common, introducing 
new solutions based on the huge amount of data collected by systems. This process can 
be defined as Quality 4.0: the digitalisation of total quality management (TQM) that 
impacts the quality of technologies, processes, and resources (physical and human). 
Predictive quality is one of the widely applied quality solutions specifically applied to 
avoid unnecessary waste of time and effort to prevent and predict quality problems in 
products and processes. Quality problems are defined as all those situations that reduce 
performance levels or cause many wastes as a result of product recalls because of defects. 
The introduction of a predictive quality system evaluation is focused on the reduction of 
product recalls and it aims to achieve zero-defect production. This results in higher 
quality and thus a higher degree of customer satisfaction (Yorulmuş et al., 2022). 

Different researchers focused their attention on the development of new algorithms 
and approaches based on machine learning and artificial intelligence for optimising 
process parameters, predicting part properties, and detecting and classifying the 
products/processes defects (Czimmermann et al., 2020; Chen et al., 2021; Meng et al., 
2020). While these techniques have been developing for several decades, their 
applications in the AM field are only several years old. Researchers developed different 
methods and approaches, firstly for learning the relevance of the relationship between the 
processing parameters and property using existing data to guide for optimising these 
processing parameters. Secondly, these models can predict the geometric deviation based 
on the designed geometry and guide the compensation. Thirdly, these approaches are 
good at dealing with in situ images and acoustic emissions during printing and detecting 
defect formation in real time (Meng et al., 2020). 

ANN surely are one of the most common techniques applied to different processes 
and with different aims. For example, a combination of thermographic off-axis imaging 
as data source and deep learning-based neural network architectures to detect printing 
defects were developed in Baumgartl et al. (2020), obtaining accuracy in the prediction of 
96.80%. Similarly, in Papazetis and Vosniakos (2019) a highly reliable ANN was 
constructed and trained to predict shape fidelity and material flow rate in the material 
extrusion process. In Westphal and Seitz (2021), the convolutional neural network was 
applied for detecting the surface defects. Yadav et al. (2020) combined the artificial 
neural network (ANN) with the genetic algorithm creating a supporting tool for the 
definition of the printing parameters able to improve the mechanical characteristics. 
Different approaches were compared to determine the most appropriate method for the 
investigation of the process accuracy showing a percentage of reliability in a range 
between 82.5% and 92% (Kordatos and Benardos, 2022). 

ANN is applied also in different machining processes such as friction stir welding 
(Quarto et al., 2022a) and micro-electrical discharge machining (Quarto et al., 2022b) 
combined with Finite Element Method and particle swarm optimisation respectively, 
demonstrating the ANN flexibility and ability to be integrated with different methods. All 
these aspects help to improve specific elements of the processes, but considering 
industrial digitisation in its entirety, in the future they can be integrated helping the 
definitions of the logic behind the digital twin (Jarosz and Özel, 2022; Ibrahim et al., 
2020). 
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The present publication focuses on Material Extrusion (MEX), an extrusion process 
using a thermoplastic filament which is melted, extruded, and filed on the substrate (x-y 
plane) by a heated nozzle. After the completion of each layer, the build platform (or the 
nozzle, which is related to the machine movement) is lowered in the z-direction (or 
raised) to create space for the next layer (Wohlers et al., 2021; International Organization 
for Standarization, 2021; Fischer et al., 2014). The thermoplastic filament is made up of 
metal powder dispersed into a polymeric matrix (Quarto et al., 2021; Carminati et al., 
2022). This process differs from the MEX of polymers since the product coming from the 
printing activity (called green part) is composed of both metal and polymer. 
Subsequently, the green parts (GP) undergo debinding and sintering treatments for 
removing the polymeric components, thus obtaining the white part (WP): a metallic 
component. Given this process chain, without the introduction of intermediate quality 
assessment systems, the certainty that the white part respects the required geometric and 
dimensional characteristics is obtained only at the end of the entire process. This means 
that if a part does not meet the requirements it is discarded after the entire production 
process, wasting time, materials, and resources. This work aims to introduce a quality 
assessment immediately after the printing phase (Figure 1). This assessment would be 
based on the development of an algorithm defined by a trained ANN able to predict the 
white part geometric and dimensional characteristics, by exploiting the information 
derived from measuring the green part. 

Figure 1 General new process chain (see online version for colours) 

 

To the best of the authors’ knowledge, the real novelty of this work is related to the 
position of the quality assessment. Today, it is placed at the end of the process chain 
evaluating the final dimension and geometrical characteristics directly of the white part. 
Through the developed approach it is possible to anticipate this evaluation and avoid the 
treatment of non-compliant parts. Furthermore, this approach is able to show compliance 
with various requirements at the same time and it is adaptable as a function of the 
company/operator’s needs. 

2 Problem formulation 

A metal-Material Extrusion (metal-MEX) is an Additive Manufacturing process 
performed by extruding a filament made up of metal powder, equally distributed in a 
polymeric matrix. Once the printed part, called Green Part (GP), is undergoing the 
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debinding and sintering processes, the final part (white part – WP) undergoes a 
dimensional shrinkage, which makes it necessary to oversize the parts in the design 
phase. Therefore, the general process does not allow knowing the final characteristics of 
the part before the post-printing processes. This means that time and money are wasted 
and the only solution for respecting the necessary production volume is to forecast an 
increment in the printing process as a function of process capability and defects history. 

To overcome or reduce the impact of printing defects, the concept of Quality 4.0 
integrated with artificial intelligence can be implemented in the system. Thus, an 
algorithm able to predict the characteristics of the product in the middle of the process 
chain can improve the system efficiency reducing the waste of time and material. The 
waste of time would be reduced because the identification of the non-compliant parts 
would be anticipated. The waste of material would be reduced because the discarded 
parts (green parts) may be reintroduced into the process cycle, for example creating a 
new filament, so reducing the waste of material. The idea of the process generated by 
introducing this algorithm for detecting non-compliant parts before the end of the process 
chain is illustrated in Figure 2. 

Figure 2 Process flow (see online version for colours) 

 



   

 

   

   
 

   

   

 

   

   266 G. D’Urso and M. Quarto    
 

    
 

   

   
 

   

   

 

   

       
 
 

3 Materials and methods 

3.1 Equipment and material 
The metal-MEX process can be divided into two main stages. The first stage includes all 
the activities necessary for setting up the equipment and the actual production of the 
designed parts. The testing samples were fabricated using a MEX polymeric machine, 
Ultimaker 5S, equipped with a direct drive extruder with a hardened steel nozzle CC0.6 
of diameter 0.6 mm, which was the smallest nozzle diameter, limiting the clogging 
problem. A filament with a diameter of 2.85 mm, provided by BASF (Ultrafuse 316L), 
was used. This is an innovative filament that is made up of 316L austenitic stainless-steel 
powders (90 wt%), evenly distributed in a polymeric matrix composed of 
polyoxymethylene (POM) and polyolefin. The immobilisation of the metal particles and 
the uniform distribution of the metal within the binder matrix allow for safe and simple 
handling. The parts are built up layer upon layer from a mouldable material, with the 
polymer content of the filament acting as a binder. 

The second stage is related to the debinding and sintering processes. The main 
polymer content (primary binder) was removed from the so-called green part through a 
catalytic and thermal debinding process at 120°C with HNO3 (concentration 98%). The 
result of this process is the brown part, which consists of pure metal particles and a 
residual binder (secondary binder). The brown part is characterised by the same volume 
and a loss of mass compared to the green part. The subsequent sintering process removes 
the secondary binder from the as-built part and causes metal particle coalescence. The 
sintering cycle was performed in an argon atmosphere and consisted of three thermal 
ramps: 

• room temperature – 5 °C/min – 600°C, holding time 1 h 

• 600°C – 5°C/min – 1380°C, holding time 3 h 

• 1380°C – furnace cooling – room temperature. 

Considering the previous studies (Quarto et al., 2021; Carminati et al., 2022), this process 
generates a shrinkage along different directions in a range between 16% (x and y 
directions) and 20% (z direction). This causes the necessity of oversizing the designed 
parts and the dimensional control not only at the end of the printing stage but especially 
after the debinding and sintering processes. 

3.2 ANN architecture definition 

ANN is a mathematical model able to simulate the capabilities of the human brain. The 
base learning approach is focused on past activities; in fact, ANN learns from previous 
experiences how to solve non-linear problems. The general architecture is represented by 
several layers containing a certain number of nodes called neurons; specifically, these 
layers are divided into an input layer, an output layer and one or more hidden layers. 

The input layer size (input neurons – IN) is described by the input matrix. This 
information is sent from the IN to the hidden layers by means of the activation function, 
then the elaborated information reaches the output nodes (ON). Backpropagation is the 
most common training, and then a new group of data is used for the tests and validation, 
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which are conducted for defining the validity and reliability of the net comparing 
predicting output and targets. 

In this case, the main printing parameters (printing temperature, printing speed, layer 
thickness, infill type) were used as input and as anticipated in the previous section, the 
main dimensions, and geometrical characteristics of the green part (GP) were measured 
(Table 1). This second group of inputs are very variable since can be changed as a 
function of what the authors want to evaluate on the white part (WP). The ON is 
represented by the geometrical characteristics and dimensions defined as representative 
of product quality based on the project specifications. Table 1 reports the details about 
the input and output layers composition used for validating the approach. 

Table 1 Summary of input and output nodes 

Inputs (IN) Outputs (ON) 
Printing temperature T Density WP δWP 

Printing speed s Planarity xy WP XYWP 

Layer thickness h Planarity yz WP YZWP 

Infill In Shrinkage x/y WP SWP 

Volume GP VGP Shrinkage z WP SzWP 

Weight GP WGP   
Planarity xy GP XYGP   
Planarity yz GP YZGP   
Dimension A GP AGP   
Dimension B GP BGP   

The sizing of the hidden layer is the most challenging activity in the definition of ANN 
architecture. Kolmogorov’s Theorem was used for demonstrating that a network 
characterised by a single hidden layer is reliable enough to compute arbitrary decisions; 
indeed, studies, based on empirical tests using a backpropagation algorithm, 
demonstrated that no significant advantages are provided by using two hidden layers in 
comparison to a single one (Hecht-Nielsen and Kolmogorov, 1987; Lippmann, 1987; 
Cybenko, 1988, 1989; Bounds et al., 1988). Because of these studies, a single hidden 
layer structure is chosen and then the number of hidden nodes (HN) was defined. Such as 
for the hidden layers, also the sizing of the number of nodes is very important for 
assuring a proper level of accuracy in the predictions: too many/few neurons can generate 
overfitting/underfitting situations. Thus, the best architecture is defined by selecting a 
range in which HN can vary during the iterative process able to estimate the prediction 
error. This means that HN is varied through the minimum and maximum values identified 
by some heuristic methods. Specifically, the lower threshold is heuristically defined 
according to the literature (Garcia-Romeu et al., 2010; Maren et al., 1990; Majumder  
et al., 2014) as reported in equation (1). 

2
IN ONMTI +=  (1) 
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The maximum number of HN tested is selected defining the maximum value assumed by 
the Heuristic methods reported below. 

• Kolmogorov in Hecht-Nielsen and Kolmogorov (1987), equation (2): 

KOL = 2IN + 1 (2) 

• Lippmann in Lippmann (1987), equation (3): 

LIP = ON(IN + 1) (3) 

• Kudrycky in Maren et al. (1990), equation (4): 

3KUN ON= ⋅  (4) 

The architecture is defined by iterative training considering MTI ≤ HN ≤ max(KOL; LIP; 
KUN). A Matlab code is written for testing ANN performance. 

The training is carried out using the same dataset for all iterations (e.g., input and 
output values) and calculating the error between the targets and output values. Where the 
targets represent the output values included in the dataset, while the outputs indicate the 
predictions. Since the outputs are characterised by different magnitude orders and units of 
measure, the coefficient of variation (CVi), a statistical indicator independent from the 
distribution, is introduced. 

Unlike the root mean square error (RMSE), CV is represented by a pure number.  
It measures the data dispersion in relation to the average value of the distribution. In this 
case, it is used for comparing the error of distribution that otherwise could not be 
compared. CVi, where i indicates the output, is defined as the ratio between the standard 
deviation of RMSEi (σRMSEi ) and the average value of the RMSEi distribution (μRMSEi) 
multiplied by 100 (equation (5)). 

100i

i

RMSE
i

RMSE

CV
σ
μ

= ⋅  (5) 

where the root mean square error (RMSEi) is calculated as follows: 

2
, ,1

( )n
i k i kk

i

Target Output
RMSE

n
=

−
= ∑  (6) 

where k indicates the sample considered. 
For each iteration, the sum of CVi of each output is defining the CVtot. The minimum 

value achieved by CVtot identifies the architecture that generates the lowest prediction 
error. Table 2 reports the value of CV estimated during the training phase highlighting the 
best configuration of the ANN. It is possible to observe that, in this case, the lower CVtot 
corresponds to the sum of lower CVi. Such as reported in Figure 3, the final ANN 
architecture is defined by 10 input nodes identified by the first column of Table 1, 15 
hidden nodes distributed in a single layer and 5 output. 
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Table 2 Summary of estimated CVtot (see online version for colours) 

HN CV δWP CV XYWP CV YZWP CV SWP CV SzWP CVtot 
8 1.628 1.586 3.107 4.969 9.128 20.419 
9 1.637 3.235 5.304 6.198 8.597 24.971 
10 1.681 2.226 6.039 3.603 6.992 20.541 
11 1.651 3.555 3.901 4.378 8.464 21.563 
12 1.803 3.274 3.866 5.527 9.127 23.596 
13 2.849 3.516 6.532 7.350 12.572 32.819 
14 4.059 6.531 6.747 15.516 15.318 48.170 

15 1.318 1.317 2.940 3.406 3.858 12.840 
16 1.909 1.950 2.946 4.556 6.584 17.944 
17 2.419 3.031 4.301 4.653 5.910 20.313 
18 1.827 3.138 4.422 5.040 7.133 21.560 
19 2.649 1.532 5.242 7.008 5.645 22.076 
20 1.987 3.633 3.290 4.375 5.136 18.421 
21 2.317 2.501 4.946 4.387 4.829 18.979 
22 1.597 1.632 3.093 6.780 8.627 21.729 
23 1.558 2.233 5.173 4.544 4.512 18.020 
24 1.649 2.784 4.227 3.588 6.811 19.059 
25 1.392 1.944 2.954 6.009 7.149 19.448 
26 1.857 2.394 4.281 3.449 3.934 15.916 
27 1.725 2.430 5.730 4.622 7.261 21.768 
28 2.180 2.262 5.984 5.306 5.653 21.384 
29 1.957 5.214 5.812 6.704 8.453 28.139 
30 3.106 3.458 4.058 5.460 10.647 26.729 
31 2.732 2.945 5.342 3.613 4.734 19.366 
32 1.518 3.910 6.507 6.400 8.701 27.038 
33 2.664 5.825 5.119 4.863 7.318 25.789 
34 2.131 3.358 4.195 3.475 6.406 19.566 
35 2.296 7.509 3.685 8.211 13.110 34.811 
36 3.633 4.156 6.251 4.568 6.083 24.691 
37 1.914 3.596 4.590 10.650 9.943 30.693 
38 3.471 1.977 4.906 3.476 9.721 23.552 
39 4.654 4.388 6.331 4.413 8.419 28.204 
40 2.325 6.883 6.042 17.698 32.048 64.996 
41 4.119 3.084 6.233 3.442 3.864 20.741 
42 1.515 4.988 5.122 3.474 3.907 19.007 
43 2.795 4.815 4.311 3.988 7.454 23.363 
44 2.940 5.612 4.474 8.609 13.535 35.169 
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Table 2 Summary of estimated CVtot (see online version for colours) (continued) 

HN CV δWP CV XYWP CV YZWP CV SWP CV SzWP CVtot 
45 1.641 4.236 4.195 3.585 3.886 17.543 
46 2.989 2.704 5.191 3.608 3.927 18.419 
47 3.552 3.877 4.845 11.412 11.188 34.874 
48 2.843 9.296 7.237 9.164 11.435 39.976 
49 1.947 5.954 4.890 10.906 9.197 32.893 
50 2.464 3.217 4.938 3.565 3.896 18.080 
51 2.648 3.924 4.085 4.918 6.294 21.869 
52 2.030 2.323 7.313 4.143 5.744 21.552 
53 3.116 2.479 5.605 3.519 6.277 20.996 
54 3.022 7.095 5.635 4.595 11.687 32.034 
55 2.412 3.902 4.306 9.270 10.014 29.903 

Figure 3 ANN architecture (see online version for colours) 
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3.3 Training, validation, and test of the ANN 

MATLAB tools and code are used. The data contained in the dataset are collected during 
the use of the material extrusion machine Ultimaker 5S considering different printing 
parameters. Specifically, the training dataset is composed of historical data collected 
from printing parts with a different set of printing parameters (Quarto et al., 2021; 
Carminati et al., 2022) and these data covers a wide range of input combinations for 
printing different geometries and evaluating different dimensions and geometrical 
characteristics. A coordinate measurements machine (CMM, Zeiss O-Inspect) using a 
touching probe having a diameter of 3 mm was used for collecting the necessary 
measurements, both on GP and WP. The CMM is able to calculate the distance  
between the reconstructed plans and the sample volume, furthermore, as a function  
of the reconstructed profile and geometrical elements, it can extrapolate geometrical 
characteristics like circularity, flatness, and orthogonality. This approach is used for 
collecting information about VGP, XYGP, YZGP, AGP, BGP, XYWP, YZWP. The shrinkages  
are calculated as the difference between the measures collected on the green part  
and the white part related to the green part measure. Their predictions allow estimating 
different dimensions obtained in the WP. The weight is estimated through an analytical 
scale. 

70% of the entire dataset (1188 cases) was used for the training activity through a 
Levenberg-Marquadrat optimisation algorithm, while the validation and test stages each 
exploited 15% of the available data. The division is randomly conducted. The dataset 
allows considering valid the ANN for an interval of printing parameters that include the 
greater part of printing parameters combination that generate satisfying results 
(concerning the considered material). Indeed, the trained ANN cover the range of a 
nozzle temperature between 170°C and 240°C, printing speed between 20 mm/s and 
50 mm/s, the main infill path (line, walls..), and layer height between 0.1 mm and 
0.4 mm. 

The validation of the approach is performed considering a completely new group of 
samples able to cover part of the trained interval. The benchmark geometry used  
for the final validation is a cube that, as a white part, should be characterised by 
15 × 15 × 15 mm. Due to the shrinkage typical of this process chain defined by a 
previous study, the nominal dimensions are oversized (17.4 × 17.4 × 18 mm) considering 
the shrinkage percentage defined in the previous study (Quarto et al., 2021). The parts are 
printed applying the combination of printing parameters reported in Table 3, considering 
4 repetitions for each combination to evaluate the stability and repeatability of the 
approach. The material used is a metal-polymer matrix filament Ultrafuse 316L stainless 
steel. After the printing process, the GPs are measured as reported in the previous 
paragraph for obtaining the necessary input information. Then, all samples were 
subjected to the sintering and debinding process performed by a third party. In the 
meantime, the ANN elaborate the data supplying its prediction. Once the white parts are 
ready, the measurements are conducted for estimating the real shrinkages and density, 
necessary for the comparison with the predicted results. 
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Table 3 Printing parameters applied for validation tests 

Validation test T (°C) S (mm/s) H (mm) In 
1–4 240 20 0.1 Lines 
5–8 240 50 0.1 Lines 
9–12 170 20 0.1 Lines 
13–16 170 50 0.1 Lines 
17–20 240 20 0.1 Wall 
21–24 240 50 0.1 Wall 
24–28 170 20 0.1 Wall 

4 Results and discussion 

Based on the description of the developed methodology, the ANN architecture of the case 
used for validating the approach is characterised by the structure reported in Figure 3.  
All the dimensions and the geometrical characteristics indicated in the input layer are 
referred to GP. On the other side, the output layer identifies the elements that the 
operators want to forecast to be sure that the white part respects the dimensions reported 
in the CAD. Since the parts considered for the analysis have a simple geometry and no 
external boundaries are imposed, it was assumed a tolerance equal to ±0.1 mm, which 
corresponds to the layer thickness used in the printing process. The data obtained by the 
CMM measuring the GPs are elaborated by the ANN and the predictions of the 
geometrical characteristics of the WP are obtained. In the meantime, the GP undergo to 
debinding and sintering process for obtaining the white part necessary for conducting the 
comparison of the experimental and predicted results. Then, the WP is measured for 
obtaining the actual data relative to the dimensions and geometrical characteristics. 

The ANN predicts the shrinkages, and for comparing the data the final dimension is 
calculated reducing the GP measurements. The correspondence between the experimental 
and predicted data is shown in Figure 4. Nominal values (CAD) and the relatives upper 
and lower bounds (±0.1 for Figure 4 are reported. Two examples are reported taking into 
account one dimension that extends horizontally and one dimension that extends 
vertically. This differentiation is considered, since, as is reported in Quarto et al. (2021), 
the shrinkages that the metal-MEX parts show along X and Y directions are lower than 
the one along the Z direction. This aspect can be correlated to the effect of gravity that 
squashes the layers down during the printing phase increasing the shrinkage effect; 
indeed, it is demonstrated that along X and Y directions, the shrinkage is on average 
around 16%, whilst along Z-axis it is around 20%. The predictions fit well with the 
experimental data and, comparing the results it is estimated an average error in the 
prevision equals about 0.70%, varying in an interval between 0.01% and 3.32%. The 
error is very low indicating high reliability of the prediction demonstrating that the ANN 
is well-trained 
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Figure 4 Comparison between predicted and experimental results in terms of dimension along x-
direction (left), along z-direction (right) (see online version for colours) 

 

Regarding the density interval, the nominal value (it corresponds to the density of the 
rough material – stainless steel 316L) is considered also as upper bound. The lower 
bound is defined considering the historical data of the previous studies conducted by the 
authors (Quarto et al., 2021; Carminati et al., 2022). These studies show that the printed 
parts do not reach the same value as rough material and, usually, it is lower than the 
density declared in the material datasheet (7.8 kg/m3). Such as evident from previous 
works and also from Figure 5, the density results in the most critical issues, since is 
characterised by higher variability in relation to the printing parameters. 

Figure 5 Comparison between predicted and experimental results in terms of material density 
(see online version for colours) 
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The definition of non-compliant parts is not immediate, since in some cases, not all the 
indicators are placed in the accepted interval. Thus, can be useful to cross-reference  
the collected data (both predicted and experimental) for answering to two main  
questions: 

1 Is there a correspondence between the predicted and the experimental non-compliant 
parts? 

2 Which parts are compliant considering all the parameters and constraints? 

It is possible to answer these questions by means of Figures 6–8 where an example of the 
deviation (Δ) of the predicted and experimental compared to the nominals and the 
confidence interval is highlighted (green area) is reported. The radar representation 
allows identifying, for ANN and experiments, which parts can be considered as 
compliant reporting all the characteristics together. Comparing the two figures, the parts 
that would be discarded considering the predictive approach coincide with those that 
would also be considered non-compliant experimentally. 

Figure 6 Identification of compliant and non-compliant parts by ANN approach as a function  
of dimension (see online version for colours) 

 

Supposing that all the outputs have the same importance from the design specification 
and for the functionality of the product, cross-referencing the results reported in  
Figures 6–8, for example, samples from 1 to 3 satisfy all the requirements, and without 
any doubt, they can be considered as compliant parts. For the other samples, there is a 
correspondence between the response for experimental and predicted data, but not all the 
requirements are satisfied. 
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Figure 7 Identification of compliant and non-compliant parts by experiments approach as a 
function of dimension (see online version for colours) 

 

Figure 8 Identification of compliant and non-compliant parts as a function of density (see online 
version for colours) 

 

5 Conclusions 

In this work, an approach for the detection of non-compliant parts in the middle of the 
manufacturing chain of the metal-MEX process was defined. First, the quality evaluation 
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was introduced immediately after the printing phase for having the chance of selecting, 
for the debinding and sintering process, only the green parts that result be promising in 
terms of compliance with the requirements. The approach is based on the introduction of 
a trained ANN able to predict the dimensions and/or geometrical characteristics of the 
white parts. The introduction of the skimming system before the execution of the post-
printing processes allows reducing waste detected at the end of the production chain. In 
this way, it is possible both to reduce costs, since only the green parts that will almost 
certainly assume the required characteristics are subjected to treatments, and to anticipate 
any reproduction of the parts necessary to complete an order without having to oversize 
the production batches a priori. 

The results show that the ANN is successfully trained, and the predicted results fit 
well with the experimental data demonstrating the ability of this algorithm to detect 
future non-compliant parts. The prediction error lies in a range between 0.01% and 3.32% 
demonstrating the effectiveness of the ANN training and the reliability of the approach. 
Furthermore, it is possible to cross-reference the results obtaining the evaluation of each 
green part as a function of several different indicators assigning different importance to 
them as a function of the design and customer requirements. 

This work develops the algorithm defining the first steps for future integration in the 
industrial system for obtaining automatic response after the collection of the green parts 
measures. Considering the aspects of Quality 4.0, this approach can satisfy the 
requirements of control automation and prevention of defects; furthermore, the 
identification of the non-compliant parts before the binding and sintering processes 
allows the recycling of waste (material containing polymer and metal powder) to produce 
new filaments. 
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