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Abstract: Geometric errors of computer numerical control (CNC) machines 
have a direct effect on the finished product accuracy. This paper proposes a 
method of correlation between position deviations of the cutting tool path in a 
3-axis machine and the accuracy of part features, by example of concentricity 
and circularity of nominally cylindrical surfaces on a benchmark ISO test piece. 
The true position of the cutting tool is derived from a kinematic chain model 
incorporating all 21 geometric errors of the machine, fully mapped using laser 
doppler metrology. 16 machining tests were executed at different positions on 
the machine workspace. At every position circularity and concentricity of the 
considered features were calculated according to the kinematic model and also 
measured on a coordinate measuring machine (CMM). Calculated and 
measured accuracy values were used to train artificial neural networks as 
accuracy predictors. 

Keywords: CNC; computer numerical control; geometric errors; metrology; 
CMM; coordinate measuring machine; CNC kinematic chains; ANNs; artificial 
neural networks; machining; machined test piece; laser metrology; CNC error 
mapping. 
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Legend 

δi(i) Position error in direction i during movement in same direction, where i ∈ {x, y, z} 
δj(i) Straightness error in direction j during movement in direction i, where i, j ∈ {x, y, z} i ≠ j 
εi(i) Roll error during movement in direction i, where i ∈ {x, y, z} 
εj(i) Pitch error during movement in direction i, where (j, i) ∈ {(y, x), (z, y), (x, z)} 
εj(i) Yaw error during movement in direction i, where (j, i ∈ {(z, x), (z, y), (y, z)} 
αij Squareness error between i–j axes, where i, j ∈ {x, y, z} i ≠ j 

1 Introduction 

Part quality in computer numerical control (CNC) machining is heavily dependent on a 
number of factors, including kinematic and geometrical errors of axis movement, forced 
vibrations or chattering, thermal phenomena and tool wear (Slocum, 1992). Each of these 
factors affects accuracy of the machined part, i.e., the part’s smallest possible deviation 
from the theoretically designed shape (Orban et al., 2007). Especially in large batch 
production, accuracy of the CNC machine tool is critical to be tested beforehand, in order 
to verify that it lies within acceptable limits. 

One way to verify the accuracy of the machine is through machined test parts, as 
defined for instance in ISO 10791. By measuring specified dimensional and geometrical 
tolerances the machine is deemed accurate or not (Supakumnerd and Chungchoo, 2015) 
without determining its errors by direct measurement. The errors of a machining process 
can be classified into quasi-static and dynamic. The quasi-static errors are the major 
source of accuracy loss and include kinematic/geometrical errors of the moving axes and 
thermal errors among others (Ramesh et al., 2000a). The dynamic errors describe 
chattering, forced vibrations and controller errors (Ramesh et al., 2000b). 

In 3 axis CNC machines, there are 21 geometrical errors that affect the axis 
movements. Each axis has 6 errors, i.e., 3 translational δi(j) (linear position, horizontal 
straightness and vertical straightness) and 3 rotational εi(j) (roll, pitch and yaw). Each 
error is defined by 2 indices, i and j, the first refering to the axis in which the error is 
observed and the second to the axis of movement. In addition, there are the squareness 
errors between the axes (i and j) which refer to the deviation from the theoretical right 
angle between each pair of axes: αij. The above-mentioned errors are manifested during 
each phase of the machining process and change the actual tool position and orientation, 
which results in deviations of the machined surface. 

Synthesis of the 21 errors can be monitored through mathematical equations that 
describe the movement of the axis during machining, e.g., according to the Denavit-
Hartenberg method, which focuses on the interaction of the machine’s links and joints, 
resulting in a total homogenous transformation from the reference coordinate system to  
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the end point chosen (Ramos et al., 2018). This can be applied to 3 axis CNC mills up to 
multi-axis systems (Lin and Ehmann, 1993; Guo et al., 2020). The kinematic chain 
method is an alternative approach (Lee and Lin, 2012), exploiting the translational and 
rotational matrix between each coordinate system, from the global or reference to the 
workpiece coordinate system (Okafor and Ertekin, 2000). Each coordinate system is 
connected to the next one in the chain via homogenous transformations. For an X-Y-Z 
machine two kinematic chains are defined, namely the tool tip chain and the workpiece 
chain, both of them finally referring to the global or reference coordinate system (Soori  
et al., 2014). 

Machine tool errors are usually determined by laser interferometry, wavelength 
compensation being implemented according to temperature, air density and humidity 
(Wan et al., 2016). Error compensation is performed on the machine’s controller but this 
relies on systematic errors that can be measured with sufficient repeatability and have a 
constant source (Schwenke et al., 2008). There were significant early reports on such 
implementations (Wu and Ni, 1989). In a semi direct method all 21 geometrical errors 
were defined by measurements of positional errors along 15 path lines (Chen et al., 
2001). Thermal phenomena that take place during machining have been deemed 
necessary to incorporate in compensation procedures (Turek et al., 2010). 

Correlation between machine tool errors and workpiece accuracy is relatively 
straightforward when a single machine error at a time is considered, see for instance 
Figure 1(a) and (b) where positional errors of the spindle δz(z) produce surfaces that are 
z-offset and small constant inclination of the table around X-axis resulting in inclined 
instead of horizontal surfaces, respectively. However, when multiple machine errors are 
applied, the result on the shape deviation of the machine part is not straightforward, as it 
requires synthesis. One of the few early attempts to such synthesis is reported in 
(Wilhelm et al., 1997). Subsequenty, in another approach, compensated G-Code was 
generated for a virtual machining center incorporating 21 geometrical errors, resulting in 
the direct prediction of the tool movement (Soori et al., 2013). An indirect method of 
geometrical error compensation that is worth mentioning concerns the measurement of a 
test piece produced on the machine, which is then scanned into a 3D model that is 
imported into CAM software generating a corrected toolpath via displacement vectors 
compensating for deviations involved (Sortino et al., 2014). On a different line, artificial 
neural networks (ANNs) are used as a tool in machining metrology due to the complexity 
of interactions of a multitude of controllable and non-controllable parameters with the 
accuracy of the machine parts. A typical example of this approach used ANNs to predict 
the geometrical errors of a CNC machine in the whole working volume as well as cutting 
force errors, ultimately aiming at accuracy improvement (Raksiri and Parnichkun, 2004). 
Especially in the case of circular milling, as opposed to linear milling, multiple axes 
move at the same time. Contour milling along a continuous toolpath causes quadrant 
glitches and jerk movement errors due to friction in the ball screw guides (Ohashi et al., 
2019). Besides, the continuous change in cutting force direction and material chip 
thickness has been highlighted (Deshpande et al., 2022), and a model for cutting force 
prediction has been developed using the toolpath and chip thickness as parameters  
(Wu et al., 2013). Finally, the effects of feed rate discontinuity in circular milling and 
how it can be avoided were studied by a regression model combined with fuzzy logic 
(Gassara et al., 2018). Of special importance in this context is the use of ANNs in thermal  
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error prediction e.g., connecting temperature with positioning deviations in CNC axes 
(Shi et al., 2020). 

In this paper, first the machine tool’s errors are fully mapped via Laser Doppler 
equipment. A closed form kinematic model using equations computes the displacement 
of the tool centre point from its nominal position for different alternative positions of the 
workpiece in the machine workspace. This displacement is mapped to accuracy 
deviations of specific workpiece features as measured on a CMM. The mapping as such 
is achieved by ANNs. Mapping kinematics-based calculation of tool deviations from 
nominal position due to machine errors in unloaded state to accuracy deviations of the 
machined part under machining forces became possible only by using a neural network 
constituting the novelty of this work. To the authors’ best knowledge such an approach 
has not been reported so far in literature. 

Figure 1 Effect on ISO 10971 test piece of: (a) Z axis positional error and (b) X axis rotational 
error (see online version for colours) 

 

Section 2 introduces kinematic models of the machine tool first by neglecting and then by 
considering the geometric errors of the machine tool. Section 3 describes typical 
procedures for measuring these geometric errors. Section 3 applies the kinematic models 
and uses the measured errors to compute dimensional deviations of a benchmark part by 
example of circularity and concentricity of two characteristic features. Section 4 presents 
machining of a number of identical benchmark parts at different positions of the machine 
workspace and measurement of circularity and concentricity of the same two 
characteristic features considered in the computation. Section 5 outlines the development 
of ANNs that predict circularity and concentricity based on the machine tool errors and 
the position of the part in the machine workspace. A discussion is held in Section 6 
followed by a summary of conclusions and future work. 

2 Kinematic modelling 

This paper focuses, as a typical example, on the accuracy of a HAAS TM-1 3-axis 
vertical milling machine which comprises a bed moving in X-Y directions and a Z-
moving spindle, see Figure 2(a). The following coordinate systems are defined on the 
machine, see Figure 2(b). 
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1 Global Reference System of the machine (ΟR-global) 

2 X axis coordinate system (Ο1) 

3 Y axis coordinate system (Ο2) 

4 Z axis coordinate system (Ο3) 

5 Workpiece coordinate system (ΟW) 

6 Tool-tip coordinate system (ΟT). 

The global reference system is chosen to be the home position of the machine’s axes 
(machine coordinates equal to zero on the controller). This placement is critical in order 
to connect the error’ values (the error functions have machine coordinates as input 
variables, producing each error with the corresponding axis’ position as input) to the 
corresponding position of each axis. The X and Y links coordinate systems are positioned 
on the centre of the machining table, while the Z link coordinate system is in the centre of 
the spindle tip, where the toolholder is placed and the tool coordinate system is on the 
centre of the tool’s tip. Finally, the workpiece coordinate system is the coordinate system 
of the part during the programming of CAM and the origin is the one registered on the 
machine during the setup of the raw material. 

Figure 2 CNC mill: (a) axes and (b) coordinate systems (O1, O2, O3 for Z, Y, Z axis links, ow for 
workpiece and tt for tool tip (see online version for colours) 

 

(a) (b)  

The machine model is based on two main kinematic chains, see Figure 3. One chain 
describes the connection between Machine Home Position (Reference System) to the 
Workpiece Coordinate System, while the other connects the tool’s tip to the Machine 
Home Position. Each step of the chains is a homogenous transformation from the first 
coordinate system to the next, finally transforming the coordinates of the initial system to 
the reference system. The main flowchart of this method is presented in Figure 4. 
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Figure 3 (a) Kinematic chains of 3 axis mill and (b) tool and workpiece actual position 
calculation through kinematic chains (see online version for colours) 

 
(a) (b)  

Figure 4 Z coordinate calculation for Z system to reference system transformation 3
RT   

(see online version for colours) 

 

2.1 Kinematic chain configuration neglecting machine tool errors 

The kinematic chains that describe the target points, e.g., the tool tip, in machine 
coordinates are defined as follows. For the workpiece kinematic chain, three homogenous 
transformations are considered: Workpiece to X system 1

WT , X system to Y system 2
1T  

and Y system to Reference system 2
RT  transformations. The final transformation is 

obtained by multiplying the above-mentioned matrices as follows: 

2 1

2 12 1
2 1

2 1

1 2

1 2

1 2

1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1
0 0 0 1 0 0 0 1 0 0 0 1

1 0 0
0 1 0
0 0 1
0 0 0 1

x

yR R
W W

z

x

y

z

a a x W
y b b W

T T T T
c c W

W a a x
W b b y

W c c

+⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥+⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⋅ ⋅ =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

+ + +⎡ ⎤
⎢ ⎥+ + +⎢ ⎥=
⎢ ⎥+ +
⎢ ⎥
⎣ ⎦

 (1) 
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Due to no rotation being introduced in 1
WT , this is simply a translational matrix, with Wx-

y-z being the offsets in the respective axes. 2
1T  is a translation matrix between the X and Y 

coordinate systems, x being the value obtained through the G code and 1a , 1b , 1c  being 
the offsets of the X and Y systems along x-y-z axes respectively. Similarly, 2

RT  is a 
translation matrix between y and reference coordinate systems, y being the value 
obtained through the G code and 2a , 2b , 2c  being the offsets of the systems in x-y-z 
axes respectively, normally measured via touch probes and master gauge blocks. These 3 
parameters refer to the position of the table’s centre relative to the machine home 
position. Thus, coordinates of the target points in the global reference system (machine 
coordinates) are as follows: 

xglobal = ( )1,4    R
WT  yglobal = ( )2,4      R

WT  zglobal = (3,4)R
TT  (2) 

Similarly, for the tool kinematic chain, the tool tip to Z system (Spindle) 3
TT  and Z 

system to Reference System 3
RT  transformations are involved as follows: 

3

33
3

3

1 0 0 1 0 0
0 1 0 0 1 0
     
0 0 1 0 0 1
0 0 0 1 0 0 0 1

x

y R
T

z

T a
T b

T T
T z c

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥+
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 (3) 

where Tx,y,z are the tooltip’s translational offsets in the Z coordinate system, while z is the 
target point of cutting in tool-tip coordinates, so the actual value that need to be inserted 
in this equation is the distance between OT and OW in z direction, see Figure 4. 

2 3  Gcode z zz z c c W T= + − + −  (4) 

2.2 Kinematic chain configuration considering machine tool errors 

The same principle is followed in expressing the actual position of the bed and tool tip in 
reference coordinate system with the major difference that the geometric errors of the 
machine are considered. Starting similarly from the workpiece kinematic chain, 1

WT  
remains the same as no relative motion between the workpiece and the table is present. 
The other two transformations in the chain are defined as follows: 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1 

12
1

1

1

1

1

0 0 0 1

g g g

g g g xy g

g g g xz g

z x y x x x x a

z x x x y x a x b
T

y x x x z x a x c

ε ε δ

ε ε δ

ε ε δ

⎡ ⎤− + +
⎢ ⎥
⎢ ⎥− + ⋅ +

= ⎢ ⎥
⎢ ⎥− + ⋅ +
⎢ ⎥
⎢ ⎥⎣ ⎦

 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

2

2
2

2

1

1

1

0 0 0 1

g g g

g g g xy gR

g g g yz gl

z y y y x y a

z y x y y y y a y b
T

y y x y z y a y c

ε ε δ

ε ε δ

ε ε δ

⎡ ⎤− +
⎢ ⎥
⎢ ⎥− + + ⋅ +

= ⎢ ⎥
⎢ ⎥− + ⋅ +
⎢ ⎥
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 (5) 
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where xg, yg refer to the global coordinates that the machine is currently at during the 
machining process (live machine coordinates from the controller). The final 
transformation from workpiece to reference coordinate system is defined as: 

( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1

2

3

1 ( )

1  
 

1

0 0 0 1

g g g g

g g g gR
W

g g g g

z y z x y x y y

z x z y x x x y
T

y y y x x x x y

ε ε ε ε

ε ε ε ε

ε ε ε ε

⎡ ⎤− − + Δ
⎢ ⎥
⎢ ⎥+ − − Δ

= ⎢ ⎥
⎢ ⎥− − + Δ
⎢ ⎥
⎢ ⎥⎣ ⎦

 (6) 

where: 

( ) ( ) ( ) ( )
( ) ( ) ( )

1 1 2

1  

g g z g g

y g g g x

x x x x y W y x y y

W z x z y z y b W

α α δ δ ε ε

ε ε ε

⎡ ⎤Δ = + + + + + ⋅ +⎣ ⎦
⎡ ⎤− ⋅ + − ⋅ +⎣ ⎦

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 1 2

1  

g g x g g

z g g xy g g y

b b y y x y y W z x z y

W x x x y y z y a x W

δ δ ε ε

ε ε α ε

⎡ ⎤Δ = + + + + + ⋅ +⎣ ⎦
⎡ ⎤− ⋅ + + ⋅ + ⋅ + +⎣ ⎦

 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

3 2

1 1

g g y gl g x g g

g xz g yz g g z

c z x z y W x x x y W y x y y

x y b x y y y a x W

δ δ ε ε ε ε

ε α α ε

⎡ ⎤ ⎡ ⎤Δ = + + + ⋅ + − ⋅ +⎣ ⎦ ⎣ ⎦

+ ⋅ + ⋅ + ⋅ − ⋅ + +
 

With the assumption that multiplication of errors which are factors of 2nd or higher order 
can be neglected compared to the rest of the factors. In equation (7) the focus is mainly 
on Δ1 and Δ2, as these terms describe the actual bed position in machine coordinates, i.e., 
relative to reference coordinate system. The use of global coordinates in the error 
functions is due to the position dependence of the error value on the machine workspace 
and will be analysed later. 

Proceeding to the tool kinematic chain a similar method is applied. The 
transformation matrix between the tool tip and the spindle axis 3

TT  remains constant as 
the only parameter that has an impact is tool length. The transformation from Z system to 
the reference system is given as: 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

3

3
3

3

1

1

1

0 0 0 1

g g g xz

g g g yzR

g g g

z z y z x z a z a

z z x z y z a z b
T

y z x z z z z c

ε ε δ

ε ε δ

ε ε δ

⎡ ⎤− + ⋅ +
⎢ ⎥
⎢ ⎥− + ⋅ +

= ⎢ ⎥
⎢ ⎥− + +
⎢ ⎥
⎢ ⎥⎣ ⎦

 (7) 

The error function variable is the position of the spindle during the machining process 
(spindle machine coordinate), and the z term is the position of the tooltip as described in 
the previous chapter. The final homogenous transformation is derived as: 
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⎢ ⎥⎣ ⎦

 

  (8) 

From the above the conclusion is that the actual position of the tool’s tip is derived from 
the term ( )3, 4R

TT  and taking into account the terms ( ) ( )1,4   ,  2, 4R R
W WT T , a fully defined 

actual position can be derived in machine coordinates. These 3 terms will be used to 
analyse circularity and concentricity of the machined test part during the machining 
experiments that follow. 

3 Machine tool geometric error measurement 

Position, straightness, orientation (yaw, pitch, roll angles) as well as squareness errors 
were measured employing the OptodyneTM Laser Doppler Displacement Meter type 
MCV-500; straightness and squareness measurement involved additional optical kits 
consisting of a quad detector and optical square. It consists of the laser source which 
emits the beam, the retroflector which serves as a reflecting target for the beam, the 
processor module which provides power to the unit and includes the processor that 
translates the analogue laser signal to digital data forwarded to the connected PC. The 
squareness-straightness equipment also includes the quad detector, a device with 4 
photodetectors, with the ability to pinpoint the exact point of the laser beam on its 
surface, as well as the optical square, a penta-prism with the ability to bend the laser 
beam to 90° with a tolerance of 2–5 arcsec. The accuracy of the LDDM measuring 
system is stated as 1 ppm, with automatic temperature compensation via air and table 
temperature sensors. The maximum length measured was the 800 mm of the X axis 
travel, hence all linear displacement measurements are of sub-micron accuracy. 

Positioning errors δx(x), δy(y) and δz(z) were computed automatically by the 
OptodyneTM software according to ISO 230-2: 2012. For instance, in order to determine 
positioning error δz(z), see layout in Figure 5(a) Z-axis travel range from –390 to 120 mm 
was scanned by automatically constructing G-code for Z movement using a step of 
10.2 mm in both forwards and backwards direction resulting in an indicative error map of  
Figure 5(b). Straightness errors are measured by employing a quad detector recording 
deviation of the laser beam from its centre, in a direction parallel to the planar movement 
of the axis (horizontal straightness) or perpendicular to it (vertical straightness). For 
example, the layout for δ(x) is shown in Figure 5(c) and the error map in Figure 5(d). 

The pitch and yaw errors for each axis were measured indirectly by utilising the Abbé 
error theory suggesting that the angular error can be calculated if two linear 
measurements with known offset are made along the axis. For example, measurement of  
pitch error εy(x) and yaw error εz(y) is shown in Figure 6. The error is calculated in the 
whole travel range of x axis as: 
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( )
( ) ( )( )1 2

1 2

( )
ε

avg x x avg x x
y x atan

R R
δ δ⎛ ⎞−

⎜ ⎟=
⎜ ⎟−⎝ ⎠

 (9) 

where ( )( )avg x xδ  is the average error of forwards and backwards linear positioning 
error of the x axis at each x value, and indices 1–2 refer to the respective set of 
measurements, while R1 and R2 are the Abbé offsets. 

Figure 5 Measurement of positioning error δz(z) ((a) layout and (b) mapping) and straightness 
error δz(x) ((c) layout and (d) mapping) (see online version for colours) 

  
(a) (b) 

  
(c) (d)  

Similarly, to calculate yaw error εz(y), with Abbé offsets known through the distance of 
the reflective mirror positions R, see Figure 6(e), measurements of the positioning error 
δy(y) were taken through y axis travel, yielding: 

( )
( )( ) ( )( )1 2ε

avg y y avg y y
z y atan

R
δ δ⎛ ⎞−

⎜ ⎟=
⎜ ⎟
⎝ ⎠

 (10) 

Determining roll errors presented the challenge of using the Quad Detector to monitor 
changes in the inclination of the associated moving member of the machine structure, see 
Figure 6(g). Using εy(y) as an example, as the table rotates by small angles around Y axis 
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during movement of Y axis, deviations in the Z direction can be observed. For each 
position of the Y axis, the deviation in Z axis can be recorded through a Quad Detector, 
in two different positions in the X axis in order to calculate the respective angle of 
rotation see Figure 6(h). The distance between the two measurement positions is known, 
as well as dz deviations thus roll error can be calculated as: 

( ) ( ) ( )2 1ε atan
avg dz avg dz

y y
R
−⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (11) 

The corresponding variation of inclination for the full Y axis travel is shown in  
Figure 6(i). 

Figure 6 Layout, calculation parameters and results of measurement of errors pitch εy(x) (a, b, c, 
yaw εz(y) (d, e, f) and roll εy(y) (g, h, i) (see online version for colours) 

  
(a) (b) (c) 

   
(d) (e) (f) 

   

(g) (h) (i)  

Finally, determining squareness error of each pair of axes requires both a quad detector 
and an optical square. The measurement principle is that firstly, a reference beam is 
calibrated parallel to the first axis of measurement, through successive straightness 
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measurements in the direction of this axis. With the beam kept steady and perfectly 
parallel to the reference axis, the optical square is introduced at the end of the reference 
beam, bending it precisely at 90o, in order to create the second beam of the perpendicular 
axis, through a second series of successive straightness measurements in the 
perpendicular beam. In each series of measurements, the laser source is kept steady. The 
moving component is the quad detector. With the first and second leg of the angle 
correctly defined, the OptodyneTM software calculates the true angle between the two 
reference beams, resulting in the squareness error between the two axes. Figure 7 depicts 
the principle, layout and result of Y-Z squareness of the CNC milling machine at hand. 

Figure 7 Squareness measurement: (a) method; (b) layout for Y-Z squareness and (c) result 
presentation (see online version for colours) 

    

(a) (b) (c)  

4 Part feature dimension calculation based on measured machine tool 
errors 

The part to be machined is a benchmark workpiece specified in ISO 10791:2014 M1. The 
material was Al 2024. For demonstration purposes in the rest of this paper two particular 
features at the top section of the part are concentrated on, namely the external cylinder 
surface and the concentric hole, see Figure 8. 

4.1 Circularity of external cylindrical surface sections 

Circularity is normally achieved by the final finish machining pass. The tool centre path 
is a circle (circular interpolation) of diameter ⌀59mm. This circle is discretised into 21 
points with known coordinates as given to the machine controller by the G-code. The aim 
is to transform these coordinates into machine coordinates through the actual R

WT  
homogenous transformation which includes the geometric errors. The X and Y 
coordinates of the tool centre are derived as: 
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( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

1 1 2

1

1,4

  

R
W g g z g g

y g g g x

T x x x x y W y x y y

W z x z y z y b W

α α δ δ ε ε

ε ε ε

⎡ ⎤= = + + + + + ⋅ +⎣ ⎦
⎡ ⎤− ⋅ + − ⋅ +⎣ ⎦

Δ
 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

2 1 2

1

2,4

   

R
W g g x g g

z g g xy g g g y

T b b y y x y y W z x z y

W x x x y x y z y a x W

δ δ ε ε

ε ε α ε

⎡ ⎤= = + + + + + ⋅ +⎣ ⎦
⎡ ⎤− ⋅ + + ⋅ + + ⋅ + +⎣ ⎦

Δ
 (12) 

According to the machining approach followed, the tool does move in the Z direction 
only stepwise, thus circularity is affected only by the table movement in X-Y plane. The 
tool’s kinematic chain provides information for the final depth of the machined cylinder 
by the homogenous transformation element ( )3, 4 .RTΤ  Equation (13) suggest a position 
error of the whole circular path and a circularity error. 

Figure 8 Machined test part highlighted surface features of interest (see online version  
for colours) 

 

Circularity is defined as the difference in radii of two concentric circles with minimum 
radius difference, between which the actual surface of the part lies (Krulikowski, 2012), 
see Figure 9(a). Considering the total i = 1, …, 21 points in machine coordinates, the 
radii of the two concentric circles are calculated as follows: 

( ) ( )
( ) ( )

2 2 2 2 2 2

2 2 2 2

  

for all i

min i ci i ci max

i ci i ci

R minimum x x y y R

maximum x x y y

⎡ ⎤= − + −⎣ ⎦
⎡ ⎤= − + −⎣ ⎦

 (13) 

where xi and yi are the true coordinates of the tool centre point i following the circular 
interpolation, while xci and yci are the coordinates of the true centre of the circular 
interpolation (x = 0, y = 0), transformed into machine coordinates through R

WT  
homogenous transformation that includes the geometric errors. Thus, for each point of the 
circular interpolation, the distance from the actual centre of the interpolation is calculated 
to enable searching for the minimum and maximum distance and then calculation of 
circularity. 
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Figure 9 (a) Deviations between commanded and actual points of circular toolpath and  
(b) circularity definition (see online version for colours) 

 

 

(a)  (b)  

4.2 Concentricity 

Concentricity between the external cylindrical surface (∅55) and the hole (∅13) of the test 
piece, see Figure 8, is studied by first calculating the drill’s true centre. This is the result 
of two parameters. The first is the table position error before the start of the drilling cycle. 
The second parameter is the drill’s deviation in the X-Y plane during its movement in the 
Z axis. This results from combining the straightness and squareness errors during the 
spindle’s vertical motion. Thus, the drill centre is shifted as it proceeds to the maximum 
depth. Again, discretisation of the tool path is necessary; the drill’s position is calculated 
in 1 mm steps along the drilling depth, i.e., from Z = 0 to Z = –10 mm in workpiece 
coordinates. 

Firstly, the positioning error of the table is calculated when it is called to approach the 
position [0,0] in the X-Y plane. This has already been covered in the circularity section 
( (1, 4)R

Table Wx T=  και (2,4)R
Table Wy T=  see equation (13) with x = y = 0. A least-squares 

circle is fitted to the actual circle points calculated above yielding its centre [xc, yc] and 
diameter. The tool’s kinematic chain is necessary to calculate deviation. Specifically, the 
elements (1,4)R

devx TΤ= , (2, 4)R
devy TΤ=  are extracted, while the term (3, 4)RTΤ  describes 

the actual drilling depth. The actual position of the drill at each Z-step in machine 
coordinates is calculated as the algebraic sum: 

( ) ( )1,4         2, 4R R
drill Table drill Tablex x T y y TΤ Τ= + = +  (14) 

So, the concentricity can be calculated as: 

[ ]( ) [ ]( )2 2
drill c drill cConcentricity average x x average y y= − + −  (15) 

5 Part machining and feature dimension measurement 

For the machining process, a large number of roughing passes was chosen in order to 
mitigate the effect of cutting forces on the final geometry, cutting conditions being 
sufficiently conservative. A final radial pass of 50 μm depth was employed for the 
external cylindrical surface using a ∅8 mm 3-flute side mill (KORLOY APFE3080-060) 
at a feed of 400 mm/min and a spindle speed of 3800 rpm. The ∅13 hole was created 
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using a ∅13mm solid carbide TiAlN coated drill (INNOVA 303.130.00) at a feed of 
20 mm/min and a spindle speed of 3800 rpm. Another important factor of the machining 
process is the thermal warm-up of the machine, due to various thermal losses occurring 
during the machining in the spindle’s bearings, the ball-screws of the axes and the feed 
motors (Wenkler et al., 2022). Additionally, the above-mentioned measurements are 
affected by the ambient temperature, which has an effect on the error mapping, especially 
on linear errors and less so on rotational errors (Groos et al., 2020). The ambient 
temperature throughout the error mapping was monitored at 24–25°C. The warm-up 
sequence used in order to minimise the thermal drift due to axis motion and spindle 
rotations is the one proposed in the machine’s manual, involving successive increase 
steps in the spindle’s rotational speed for 20 min duration, as well as rapid and slow 
motion of the 3 axes during this time with G0 and G1 commands. 

16 identical parts were machined, corresponding to 16 different locations on the table, 
using a workholding vice to keep the raw material steady. The vice was placed  
in different locations, changing the origin point of the part in all 3 coordinates,  
see Figure 10. Due to the shape and size of the bed, machining location range on X axis 
ranged from –125 mm to –634 mm, while the Y axis locations ranged from –103 mm to  
–195 mm due to space restrictions of the workholding vice and Z-axis levels ranged from 
–242 mm to –322 mm with the help of parallel gauge blocks. For each machined part and 
respective unique location in the machine’s workspace, the setup origin point was 
recorded (X-Y-Z Machine Offsets), as well as the tool length of each process. This data 
was used as input for the kinematic chains in order to calculate the circularity and 
concentricity as analysed in Section 4. 

Circularity and concentricity of the cylinder and hole features respectively, that were 
calculated in Section 4, were also measured on a DEA SciroccoTM Coordinate 
Measurement Machine by BROWN & SHARPE possessing an accuracy of 2.8+4L/1000 
µm, see Figure 10. 

Figure 10 Part machining setup (left) and part measurement setup (right) (see online version  
for colours) 

 

The RenishawTM PH10M Plus head was used, along with a TP200 touch probe and a 
∅2 mm MitutoyoTM stylus tip. The CMM was programmed through PC-DMIS 2021. In 
order to scan the circular section of the external cylindrical surface, 21 hit points were 
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measured at a depth of Z = –3 mm from the top plane of the part due to the size of the 
stylus tip. As far as hole is concerned, 3 depth levels were chosen, with 5 hit points at 
each level and a pitch of 1 mm in order to scan most of the hole’s surface. A typical 
circularity polar plot can be observed in Figure 11. The red line connects the measured 
points, the green arrows showing the direction of deviation from the nominal blue circle. 
The two green circles represent the minimum and maximum diameters that can be fitted 
to the measured data, hence calculating the test piece circularity. 

Figure 11 Polar plot of circularity for test piece no 13 (see online version for colours) 

 

6 Predictive artificial neural networks 

It is hypothesised that differences between calculated values of circularity or 
concentricity and actual ones measured by CMM on the machined part are attributed to 
the fact that, by definition, the former neglect machining forces since the kinematic chain 
transformations refer to no load condition. Furthermore, these differences as depicted in 
Figure 12 vary for the different locations of the part on the machine table, since each test 
piece number corresponds to a different location in the machine’s workspace. Thus, it is 
reasonable to assume that knowledge of the part location on the table is necessary in 
order to determine the difference of the actual circularity or concentricity of the 
respective features from the theoretical ones calculated for no-load condition. The values 
of circularity and concentricity obtained via the kinematic chain model and the CMM 
measurements can be observed in Table 1. 

Therefore, the calculated and measured circularity datasets, see Figure 12(a), were 
used in order to train an ANN in order to generalise their correlation into a circularity 
prediction tool. Similarly, a concentricity prediction ANN was constructed from the 
respective calculated and measured concentricity datasets, whose differences are shown 
in Figure 12(b). Both ANNs were simple feedforward backpropagation multiple layer 
perceptrons and were implemented on MatlabTM using the inbuilt shallow neural network 
library. 
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The circularity ANN was designed with four inputs, i.e., the X, Y, Z machine 
coordinates of the part’s origin (stored as axis offsets in the machine controller during the 
setup process of the part), as well as the calculated circularity in this specific position in 
the machine work volume, see Section 4. Its output is the actual circularity of the part’s 
feature. 

Numerous ANN architectures were tried and tested, using a brute force enumeration 
approach. This involved trying one or two hidden layers and 3–10 neurons per layer,  
aiming at the optimum performance as quantified by the mean absolute error (MAE) 
between predicted and targeted circularity values for both the training and the testing 
dataset. The best architecture proved to include 2 hidden layers with 4 and 3 neurons 
respectively. 

Table 1 Calculated and measured circularity and concentricity data 

Circularity [mm] Concentricity [mm] 
Test 
piece 

Kinematic chain 
calculation Measured Deviation

Test 
piece 

Kinematic chain 
calculation Measured Deviation 

1 0.016 0.031 0.015 1 0.033 0.024 0.009 
2 0.022 0.013 0.009 2 0.021 0.029 0.008 
3 0.036 0.013 0.023 3 0.036 0.027 0.009 
4 0.015 0.016 0.001 4 0.022 0.017 0.005 
5 0.023 0.018 0.005 5 0.018 0.03 0.012 
6 0.038 0.013 0.025 6 0.032 0.029 0.003 
7 0.021 0.020 0.001 7 0.037 0.027 0.010 
8 0.025 0.027 0.002 8 0.023 0.02 0.003 
9 0.017 0.016 0.001 9 0.025 0.024 0.001 
10 0.019 0.022 0.003 10 0.026 0.028 0.002 
11 0.022 0.016 0.006 11 0.03 0.028 0.002 
12 0.026 0.009 0.017 12 0.013 0.044 0.031 
13 0.027 0.018 0.009 13 0.043 0.032 0.011 
14 0.036 0.016 0.02 14 0.03 0.028 0.002 
15 0.026 0.010 0.016 15 0.026 0.047 0.021 
16 0.017 0.020 0.003 16 0.032 0.043 0.011 

Figure 12 Difference between measured and calculated: (a) circularity and (b) concentricity  
(see online version for colours) 

 

(a)  (b)  
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Training was achieved through K fold method of data separation, creating 4 different data 
subsets of the 16 values of circularity. These is a small dataset indeed, highlighting the 
fact that very often, as in this case, too, it is too expensive to generate large datasets to  
train ANNs. The training algorithm chosen was Levenberg-Marquardt. For each fold, the 
weights were used as initialisation for the next fold, resulting in gradual improvement of 
the network’s performance. The stopping conditions of the training were a testing 
correlation factor (R2) higher than 0.98 and a MAE value lower than 2.5 μm. 

The ANN’s performance was acceptable, since MAE was under 0.2 μm and the error 
histogram revolved around 0μm, see Figure 12(a). R2 coefficient for both training and 
testing data was high, see Figure 13(a). 

Figure 13 ANN error histograms of: (a) circularity and (b) concentricity (see online version  
for colours) 

 
(a) (b)  

The concentricity ANN was created similarly, inputs being the part origin X-Y-Z offsets 
and the kinematically calculated concentricity. The ANN output is the actual 
concentricity, as measured via the CMM. The best architecture of the ones tried was 
identical to that of the circularity ANN, i.e., two hidden layers with 4 and 3 neurons 
respectively. Performance of this ANN was also acceptable, see Figure 13(b). Correlation 
coefficient for both training and testing data was high, see Figure 14(b). 

Figure 14 ANN bundled training and testing correlation coefficients for: (a) circularity  
and (b) concentricity (see online version for colours) 
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7 Conclusions 

In this study, an innovative connection between kinematic modelling of machine tool 
errors and workpiece metrology was achieved through ANNs. 

• The use of laser equipment kinematic error mapping in a 3 axis CNC machine allows 
direct measurement of positioning, straightness and squareness errors, whereas yaw, 
pitch and roll angular errors were measured indirectly avoiding the need for special 
equipment. 

• The ANNs provided the transformation from kinematically calculated tool path 
errors under no load conditions to actual errors of the part features in the presence of 
machine forces, with good prediction capability at least for circularity and 
concentricity of designated part features. 

• Such ANNs can be used to determine by trial-and-error acceptable position for part 
setup inside the machine workspace, which is especially useful for machines with 
reduced accuracy. They can also be used for pre-machining evaluation of the 
resulting part accuracy in order to verify that the finished product will lie within the 
stated tolerance zones before production starts. 

• Geometric and dimensional deviations of a surface feature, such as plane, cylinder 
etc., for a given machine tool come down to the positioning errors of the cutting tool 
edges that create these features, as well as the position and orientation of these 
features in the machine workspace. The kinematic chain method employed does 
provide the capability to calculate the deviated tool edges due to geometric errors 
captured in the chain. However, these surface features are generated as an envelope 
of successive positions of the cutting tool edges, which was not done in this study, 
since it requires solid modelling operations typically implemented in CAM software. 
Instead, the deviated path of the tool centre point was determined and was deemed 
representative enough to be correlated with the measured deviations of the machined 
features, in this case concentricity and circularity. 

The same approach and tools can be readily applied to determining accuracy of other 
features, e.g., flatness of planar surfaces, parallelism of planes etc. This is an immediate 
next step to further validate the methodology. A further step in this research is to 
generalise it so as to become independent of the position and orientation of features 
which is possible, since all features consist of points which undergo deviations that are in 
the first phase calculated using the kinematic chain error budgeting principle and, in a 
second phase, they are corrected by comparison to real measurements capturing process 
and machine dynamics, too. 

Limitations pertain notably to the omission of dynamic and thermal errors. An effort 
to mitigate these phenomena was made, with conservative cutting conditions and constant 
coolant flow on the cutting edge, which had no previous wear, but the model would need 
to include these parameters in order to produce more accurate results. The mapping 
process also has limitations, as measurements cannot be made at infinitely small intervals 
along CNC machine axes. 
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