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Abstract: In additive manufacturing (AM), parts suffer from quality variations, 
defects, intricate surface topography, and anisotropy in properties that are 
known to be influenced by factors including process parameters, layerwise 
processing, and powder melting and fusion. Their influence on process 
signatures also makes AM processes not fully manageable creating 
unacceptable levels of inconsistency. To detect the fusion quality with a 
purpose of quality predictions, in-situ process sensing and monitoring with 
sensors is often utilised with the goal that AM process can be controlled for 
consistency in quality. This paper provides a review of the literature on in-situ 
process sensing and monitoring methods and discusses research challenges and 
future directions for further efforts. Currently, sensory data is used for data 
analysis and making mostly off-line quality quantifications and predictions. 
The future goal is to develop intelligent AM systems that use in-situ process 
data for making automated intervention and quality control decisions. 
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1 Introduction 

Metal additive manufacturing (AM) is rapidly spreading and finding applications in 
various industries including medical implants, automotive, and aerospace parts with 
complex geometries and structures. In the last decade, numerous investigations have been 
conducted for making continuous improvements on the process consistency, system 
robustness, and repeatability for further applications of metal AM technologies in 
industry. 

Most metal AM systems employ powder bed fusion (PBF) processes where PBF 
processes own half of the total metal AM market share (Vafadar et al., 2021). PBF 
processes use high laser or electron-energy beams to scan selective areas of a powder bed 
to generate 3D parts. Advances in powder-bed fusion techniques such as laser powder 
bed fusion (L-PBF) and electron beam powder bed fusion (EB-PBF) empower limitless 
design and hence entail far more engineering decisions to be made on the selection of 
predefined operational process parameters. Furthermore, the geometrical complexity and 
desired flexibility of an additively built structure bring substantial uncertainty about the 
mechanical properties as a consequence of the large number of process-design decision 
variables (Yadroitsev et al., 2021). 

In fact, industrial sectors such as aerospace and medical that are tightly controlled and 
regulated have been driving the innovation in metal AM technologies. As a result, issues 
such as defect detection and prevention as well as rapid qualification gained more 
importance. This necessitated an imperative demand for discovering innovative tools and 
methods for process qualification and control that should achieve a robust printing 
process and defect-free production as pointed out by Colosimo et al. (2018). Online 
quality prediction and control can be achieved using physics-based models or data-driven 
models mapping the relationships between the process features and final quality 
indicators (Vastola et al., 2018; Zhu et al., 2022). 

On one side, the layerwise nature of metal AM allows the ability of acquiring a large 
amount of process data to monitor characteristics related to part quality as well as 
understanding relevant process signatures that are representations of the stability and 
robustness of the AM system. On the other side, data analytics, statistical methods and 
deep learning techniques are needed to analyse the large streams of data (sometimes as 
large as terabytes) collected during the process, to construct effective tools for robust and 
automated defect detection as suggested by Kwon et al. (2020). 

This review paper provides an overview of the challenges, limitations and 
opportunities related to in-situ process sensing and monitoring solutions for first time-
right and zero-defect production in metal AM, in particular PBF, processes. This review 
paper also gives an overview of current monitoring systems and examples of how they 
are used in the fusion-based AM processes. The importance of monitoring systems can be 
seen in the most recent systems placed on the market over the past several years – nearly 
every machine manufacturer in the field of additive manufacturing provides a monitoring 
solution for their machines. In Section 2, a brief review of anomalies and defects in PBF 
processes is given. In Section 3, a review of in-situ process sensing and monitoring 
methods is summarised. In Section 4, research studies toward in-situ process monitoring 
are reviewed. In Section 5, stages of in-situ process sensing and monitoring techniques 
are categorised for their effectiveness in providing solutions to monitor layer, fusion, or 
part quality during L-PBF processes. In Section 6, some research directions toward in-
situ process monitoring, and process control are reviewed and summarised. In Section 7, 
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some remaining challenges and future research directions are portrayed. In Sections 8 and 
9, some discussion and final conclusions are provided. 

2 Anomalies and defects in PBF processes 

PBF is an AM process where thermal energy is supplied to a powder bed for heating, 
melting and fusing the powder material. The laser (or e-beam) scans the 2D layers of the 
3D CAD model on the powder bed, subsequently the powder bed is lowered, and another 
layer of the powder material is spread on the bed and the laser scans a new 2D layer. The 
process is repeated until all the layers of the 3D model are completed. The process can 
use a wide range of materials; some of them are polymers (elastomers, nylon), metals 
(titanium, steel), ceramics (alumina), and composites as well. Due to the wide variability 
in materials its applications are vast in following areas such as electronics, rapid tooling, 
injection mould inserts, military, casting, healthcare, and engineering design verification. 
Conversely, the surfaces generated by the PBF processes are also expected to satisfy the 
design requirements. To that end, the requirements for new and effective measurement 
techniques are outlined (Mani et al., 2017) and the generation AM’ed surfaces and their 
relations to the overall quality of the fabricated parts are studied by several research 
groups. Thompson et al. (2016) examined the surfaces of the printed (as-built) parts using 
confocal laser scanning microscopy (CLSM) and interferometry metrology. Other 
researchers used fringe projection methods to distinguish surface topography during  
L-PBF processes, e.g., Land et al. (2015) and Zhang et al. (2016). Later, Townsend et al. 
(2018) utilised X-ray computed tomography (XCT) to obtain surface texture data and 
discover internal defects underneath the as-built surfaces. Post-process investigations 
conducted by Özel et al. (2018, 2020) focused on analysing areal surface topography and 
the relations between surface texture parameters and the L-PBF process parameters by 
using focused variation microscopy, image processing and machine learning 
methodologies. 

The surface topography of the PBF fabricated structures depicts various process 
defects and anomalies (Leach et al., 2019). As a main texture, fusion lines along tracks 
appear as ridge-like formations indicating the scanning path followed by the laser beam 
while traversing on the powder bed surface as illustrated in Figure 1. 

There could be defects coming from smaller-scale ripples on the fusion lines that are 
formed because of meltpool thermal cycles during melting and solidification as the laser 
beam moves across the powder bed surface (Townsend et al., 2018). Lack of fusion 
defects also form on the surface during PBF such as under-melted powder particles or 
powder spatter fell back on the surface typically appear as small, randomly distributed 
sphere-like protrusions on the as fabricated part’s surface (Cunningham et al., 2017; 
Promoppatum and Yao, 2019). Surface recesses are indicative of multiple phenomena: 
localised discontinuities of the fused tracks due to balling effects, incomplete powder 
fusion between adjacent fusion lines and porosity defects due to gas entrapment 
(Tammas-Williams et al., 2015). In PBF metal AM, powder spattering is a major cause of 
defect formation thereby affecting the quality of the component being produced (Criales 
et al., 2017; Ly et al., 2017; Wang et al., 2020; Yakout et al., 2021). These detrimental 
effects may result in part failure and that is why the study of the spatter and its effect on 
the part is a crucial aspect of PBF. The detailed classification of these defects and 
anomalies and their effects on quality is given in Table 1. 
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Table 1 Manufacturability issues, causes, and effects on quality in PBF 

 Causes Effects on quality References 

Porosity Mainly due to incomplete 
fusion and spattered 
material related roughness 
on the surface as well as 
bubble entrapment during 
turbulent flow and 
gasification within the 
meltpool 

Random occurrence of 
porosity creates undesirable 
quality issues on mechanical 
properties as well as deducing 
from full density of the 
fabricated parts 

King et al. (2014), Ly 
et al. (2017), 
Cunningham et al. 
(2017), Criales et al. 
(2017), Wang et al. 
(2020) and Yakout et 
al. (2021) 

Lack of fusion Insufficient energy 
density creates a meltpool 
that does not sufficiently 
encapsulate the current 
powder layer thickness, 
track width (or hatch 
spacing), resulting in 
incomplete powder 
volume melting hence 
lack of fusion 

Section of the powder bed 
processed with lack of fusion 
creates accumulation of 
unmolten powder particles 
eventually lead to large voids 
and porosity and locally weak 
mechanical properties 

Cunningham et al. 
(2017), Promoppatum 
and Yao (2019) and 
Coeck et al. (2019) 

Cracks Thermal gradients during 
laser scanning on heating 
and cooling creates a 
mismatch of material 
thermal expansion and 
shrinkage behaviour 
causing thermal cracks to 
form on or below the 
surface of the powder bed. 
Solidification cracking 
occurs during last stages 
due to a combination of 
solute-rich liquid 
entrapment between solid 
interfaces and tensile 
residual stresses that pull 
the interfaces apart 

Surface cracks can be 
remedied to a certain extend 
with polishing and post 
processing, but internal cracks 
are highly undesirable and 
hard to detect causing 
significant sacrifice in 
structural and surface integrity 
of the builds 

Carter et al. (2012), 
Carter et al. (2014), 
Yadroitsev and 
Yadroitsava (2015) and 
Ghasemi-Tabasi et al. 
(2022) 

Residual stress Steep spatial and thermal 
gradients can leave some 
thermal stress build-up 
during laser scanning 
leading to formation of 
residual stresses in the 
parts fabricated 

Residual stresses cause 
significant issues to the 
geometrical quality of the 
parts as well as the life cycle 
quality and reliability. Post-
processing using heat 
treatment and machining can 
provide stress relief but cannot 
reverse stress-induced 
distortions or cracking 

Mercelis and Kruth 
(2006), Zaeh and 
Branner (2010), Van 
Belle et al. (2013), 
Krauss et al. (2014), 
Mukherjee et al. (2017) 
and Serrano-Munoz  
et al. (2021) 
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Table 1 Manufacturability issues, causes, and effects on quality in PBF (continued) 

 Causes Effects on quality References 

Balling Balling is attributed to 
formation of large 
spheroidal beads around 
the laser beam due to poor 
wetting between liquid 
meltpool and powder bed 
surface and causing not 
being able to form a 
consistent fused track 
during laser scanning 

Creates voids, discontinuities, 
and high roughness on the 
powder bed surface and 
leaving a further quality issue 
to the newly spread powder 
layer and distorting fusion 
quality in laser scanning of 
next layers 

Li et al. (2012), Zhou et 
al. (2015), 
Promoppatum and Yao 
(2019), Wang et al. 
(2021) and Li et al. 
(2021) 

Keyholing Excessive energy density 
applied on powder layer 
surface evaporates metal 
particles causing a cavity 
voided by metal vapour. 
In return, due to the 
reaction force from the 
liquid metal evaporation 
in melted region drives 
down liquid metal 
towards subsequent layers 
resulting in a narrow, 
deeper, and elongated 
meltpool dimension 

Keyholing effects create 
porosities in a spheroidal 
shape in contrast to those from 
the lack of fusion the ones 
create greater void shape 
irregularity. Internal porosity 
causes quality issues related to 
lack of full density, 
inconsistent mechanical 
properties and shorter life 
cycle of the parts 

King et al. (2014), 
Cunningham et al. 
(2017), Promoppatum 
and Yao (2019) and 
Wang et al. (2021) 

Geometric 
distortions 

The cyclic thermal 
expansions and 
contractions from laser 
scanning result in residual 
stresses that produce 
geometric distortion in the 
component 

Geometric distortions 
negatively impact part 
dimensional and shape quality

Mukherjee et al. 
(2017), Yang et al. 
(2018) and Serrano-
Munoz et al. (2021) 

Layer 
delamination 

Large and sudden changes 
in the laser energy density 
and slow densification can 
lead to layer delamination. 
Excessive thermal stresses 
cause part delamination 

Layer or part delamination 
results in unsuccessful and 
non-repairable build 
geometries and creates scrap 
parts 

Alimardani et al. 
(2009), Griffiths et al. 
(2020) and Yakout  
et al. (2021) 

Surface 
defects 

Surface roughness is 
predominantly caused by 
partially melted particles, 
and surface defects are 
mainly due to collision of 
recoater blade with these 
curled and rough areas on 
powder bed surface 

Surface defects, irregulars on 
surface finish or geometrical 
deviation can significantly 
reduce the performance of the 
part 

Leach et al. (2019), 
Wang et al. (2020), 
Jones et al. (2021) and 
Yakout et al. (2021) 

There has been significant research effort dedicated for determining underlying causes 
for defect occurrences in PBF processes, correlations between these defects and the 
overall print quality, and how these defects can be eliminated by controlling PBF process 
parameters. For metal AM processes, issues associated with process stability, 
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repeatability of print quality, and dealing with underlying causes of defects are identified 
as major hurdles limiting applications of these processes in industry and requiring further 
advances in technology for streamlined production. In that aspect, further advances in 
automated process sensing, monitoring, and control of metal AM systems should be a 
precedence for achieving a breakthrough towards effective means of production. 

Figure 1 Possible defects on the as-fabricated surfaces topography in L-PBF (see online version 
for colours) 

keyhole

crack

Spattered 
powder

Surface recess

Ridge-like fused 
track lines

porosity

 

3 In-situ process sensing and monitoring methods 

A review for in-situ sensing, process monitoring, and machine control in L-PBF is given 
by McCann et al. (2021). This review identified that thermographic sensors and high-
resolution imaging sensors are mainly used for conducting research on in-situ, in-process 
measurements during AM processes. Also, there are a group of post-process 
measurements for the dimensional accuracy, surface roughness, porosity, mechanical 
strength, and residual stress that is generally focused on assessing print quality and 
mechanical properties. Among those, imaging-based measurements can include 3D 
optical scanning profilometers, white light interferometers, and confocal microscopes, 
which are capable of producing high-resolution 2D surface or 3D areal measurements, as 
well multi-scale micrographic analysis focused on microstructure characterisation. 

The definition of a process signature can be made as an observable or measurable 
feature obtained from sensory data collected from the L-PBF process. Depending on the 
nature of the process interest there could be various signals to be extracted from the 
process using means of thermal, optical, acoustic, vibratory, electrical or magnetic field 
sensing at the powder bed, on the molten pool, or among the layers. The leading sensory 
signal has been the optical or thermal images where imaging-based in-situ process 
monitoring was performed using charge-coupled device (CCD) or complimentary 
metaloxide semiconductor (CMOS) cameras or photodiode probes either infrared (IR) or 
near infrared (NIR). The acoustic signal has been well studied and found useful to make  
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characterisation about the L-PBF process when acoustic transducers or microphones are 
employed in the L-PBF machine (Pandiyan et al., 2020, Gutknecht et al., 2021; 
Kouprianoff et al., 2021; Drissi-Daoudi et al., 2022). 

The monitoring of PBF processes related research efforts can be classified most 
generally into three major categories:  

i meltpool monitoring  

ii powder deposition monitoring 

iii monitoring of defects on layers or parts.  

The monitoring stage can be grouped into three major categories:  

i in-situ process 

ii ex-situ process 

iii post-process stages as outlined in Table 2. 

Table 2 Monitoring methods and stages for L-PBF 

Parameter 
Monitoring 
method 

Monitoring 
Stage References 

Camera 
(CCD/CMOS) 

Yadroitsev et al. (2014), Mazzoleni et al. 
(2020), Repossini et al. (2018) and 
Fischer et al. (2021, 2022) 

Camera (IR/NIR) Criales et al. (2017), Yang et al. (2020) 
and Mohr et al. (2020) 

Meltpool 

Pyrometry 

In-situ process 

Montazeri et al. (2020), Mitchell et al. 
(2020) and Dunbar and Nassar (2018) 

Camera 
(CCD/CMOS) 

Craeghs et al. (2011) 

Camera (IR/NIR) Liu et al. (2022) 

Powder 
spreading 
and 
deposition 

Fringe projection 

Ex-situ 
process 

Zhang et al. (2016) and Kalms et al. 
(2019) 

Camera 
(CCD/CMOS) 

Mohr et al. (2020) and Imani et al. (2018) 

Fringe projection Zhang et al. (2016) 
Line scanner Fischer et al. (2021) 

Defects on 
layers 

Optical 
tomography 

Post process 

DePond et al. (2018) 

To date, much of the early work involving in-situ monitoring of fusion-based AM has 
involved collecting in-process measurements (Heigel and Lane, 2015; Grasso et al., 
2016; Criales et al., 2017; Yang et al., 2020) but the data is analysed after the build is 
complete (Townsend et al., 2018; Thompson et al., 2017; Colosimo, 2017; Grasso et al., 
2017; Özel et al., 2017). 

The most important constraint in in-situ process sensing and monitoring is the 
difficulty to observe and detect the shape and size of dynamically changing meltpool on 
the powder surface in the powder bed during L-PBF process. The interaction between 
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powder material and laser beam that is moving at a high velocity generates a tumultuous 
phenomenon consisting of liquid bubbles, molten particles, and a plume mixture of metal 
vapour and gases. Those molten and flying plumes often fall back on the powder bed 
surfaces and weld themselves to the solidified sections producing a variety of 
irregularities. As a result, various sizes of gas pores, re-welded powder particles, and 
micro-voids form on the solidified tracks. Even though, it is highly challenging for 
optical and thermographic cameras to monitor and capture such anomaly occurrences and 
process a large volume of video and streaming image frames online and real-time by 
filtering and feature extraction as of yet, this technique is still a viable solution for 
automated defect detection and avoidance in L-PBF metal AM. 

In-situ process sensing and monitoring of meltpool in L-PBF can be performed by 
using on-axis detection or off-axis detection techniques (see Figure 2). 

Figure 2 In-situ process sensing and monitoring during L-PBF (dotted line indicates the origin of 
the laser beam and back arrows indicate spattered particles) (see online version  
for colours) 

 

3.1 In-line and on-axis cameras 

The cameras (non-visible wavelengths) deployed in-line with the laser beam (in other 
words on-axis) are utilised to measure directly the meltpool size and monitor its 
movement as well as mean radiation emitted in its vicinity so that the occurrence of high-
density concentration or overmelting can be avoided together with the byproduct of 
forming spherical pores. 

Yeung et al. (2022) utilised a co-axial meltpool monitoring camera operating at 
10 kHz frame rate which was equivalent to an inter-frame interval of 80 μm at 800 mm/s 
laser scan speed, comparable to the 85 μm laser spot size in a custom build L-PBF testbed 
for processing Inconel625 alloy. According to these researchers, the emitted light from 
the meltpool, which is filtered at 850 nm (±20 nm bandwidth), was directed by a dichroic 
mirror to the camera sensor with nominal 1:1 magnification and 8 μm pixel size similar to 
the on-axis monitoring system depicted in Figure 3. 
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Figure 3 On-axis monitoring of meltpool and optical tomography during L-PBF (see online 
version for colours) 

 

Other layerwise monitoring techniques include the use of high-resolution cameras 
(visible wavelengths) for image acquisition and a Bayesian classifier to identify layer 
quality and detect surface porosity from the layer cross-sections a part (Aminzadeh and 
Kurfess, 2019). Continuous monitoring technologies include using less expensive but 
high-speed optical cameras with stereo vision to observe formation of spatter and 
velocities of spatter particles during L-PBF process, and then to correlate with under or 
over melting conditions (Barrett et al., 2018). The high-speed camera technique has also 
been used for observation of crack formation to identify L-PBF parameters being less 
prone to hot cracking (Vrancken et al., 2018). 

3.2 Pyrometry 

Pyrometry which is known as the measurement of surface temperature by the 
characteristics of the radiation that is emitted, is often employed for measurement of the 
temperature and meltpool characteristics in-situ with an objective to observe and possibly 
controlling meltpool dimensions by establishing a correlation between layer thickness 
and meltpool size. The one-colour pyrometry can only provide single-point light emission 
signal or spectral irradiance at one specific wavelength which cannot be used to infer real 
temperature value or profile. However, a temperature known as brightness temperature 
can be computed from measured spectral irradiance as calibrated by using a black body 
source and a target spectral emissivity. The challenge in this method to be employed for 
meltpool temperature monitoring is that the emissivity of the meltpool region can only be 
guessed. The use of two different wavelength pyrometry provides a possibility to 
measure spectral irradiance at two wavelengths as ratio (known as two colour pyrometry 
ratio temperature) by calibrating the pyrometer on a black body and assuming that the 
target would behave as a grey body between these two wavelengths the pyrometer is 
calibrated for Müller and Renz (2001). The two-colour pyrometer technique is used 
successfully for process monitoring and measurement of meltpool temperature (Furumoto 
et al., 2013; Gutknecht et al., 2020; Gutknecht et al., 2021; Artzt et al., 2020; Vallabh and 
Zhao, 2022). 
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Typically, the field of camera view in CCD-cameras is restricted, while laser back-
radiation distorts images and sluggish data acquisition rates cause skipping frames. 
Moreover, powder metal vapourisation and material spatter generate high levels of glare 
and noise in the imaging zone. On the other hand, both off-axis CCD-cameras and 
pyrometers are employed for meltpool observation to make a correlation between the data 
from CCD-cameras and pyrometers and the shape of the meltpool (Chivel and Smurov, 
2010; Yadroitsev et al., 2013). 

In a semantic study, Lane et al. (2020) described the use of a reflectometer-based 
instrument to measure the dynamic laser energy absorption during scanning of single 
tracks. They offered an explanation for the relationships between dynamic laser 
absorption, co-axial meltpool monitoring (MPM,) and surface features on these tracks. 
The dynamic absorption and MPM measurements showed that specific instances of 
meltpool instability may be observed on a bare plate, but not on powder surfaces, thereby 
not yielding realistic localised or point-defect monitoring. They reported that the depth of 
the meltpool depth is a strong indicator of keyhole mode transition. Their study included 
that the features they observed where dynamic laser absorption appeared highly coupled 
to the MPM photodetector signal when scanning on bare metal surface. They observed 
that the MPM photodetector signal is more related to surface morphology or keyhole 
depression formation than meltpool temperature or size (see Figure 3). It was also 
observed that MPM photodetector signal was highly correlated to the average coupling 
efficiency, which in turn, was observed to be correlated to the meltpool morphology. 
They concluded that the pyrometer signals depend on the L-PBF process parameters 
(power, layer thickness, hatch distance, and scanning velocity) and correlations between 
photodiode signals and overall porosity ought to be pursued. In addition, in their semantic 
study (Demir et al., 2018) used thermal emission signals in the visible range and 
demonstrated that it is possible to link the thermal data obtained from thermal emission 
tracking-based temperature monitoring to the porosity formation in L-PBF metal AM. 

3.3 Thermographic imaging 

The use of thermographic imaging using infrared or near infrared wavelength cameras is 
one more in-situ process measurement method that offers moderate fidelity with higher 
(>100 frames per second) frame rates (which means faster image updating or more still 
images are packed into each second of video). High speed IR imaging also requires fast 
integration times typically down to microseconds for a capability of capturing data at 
greater than 1000 Hz. The thermographic imaging measures heating and cooling rates as 
thermal gradients on the powder bed surface during L-PBF processing. In-situ process 
monitoring research efforts counted on thermographic IR imaging as a non-contact off-
axis monitoring method. In one of the earlier studies, Krauss et al. (2014) utilised this 
method and attempted to evaluate residual stress initiation and heating related anomalies 
such as pores or surface irregularities using measured thermal gradients obtained from 
thermographic imaging. The limitation is mostly on the location of the camera for a better 
field of view and resolution with a trade-off between optical cleanliness due to intense 
plume accumulation and being able to obtain a high-fidelity thermal image. 

The off-axis NIR camera technique is often used for monitoring the plume and spatter 
for obtaining a correlation between L-PBF parameters and meltpool conditions (see 
Figure 4). Studies are conducted (Dinwiddie et al., 2013; Grasso et al., 2018) using this 
technique for sensing meltpool plume during L-PBF process and correlating thermal 
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images to identify stable or unstable processing conditions. Other studies on correlation 
analysis are reported for using deep neural network (DNN) methods such as deep belief 
networks (Ye et al., 2018). Several other studies used on-axis NIR camera that is 
combined with photodiode (Berumen et al., 2010) for detecting meltpool conditions (i.e., 
meltpool intensity, area, length and width) (Clijsters et al., 2014), identifying defects, and 
controlling of process parameters for meltpool control, and managing dimensional quality 
in overhanging section of the 3D build (Craeghs et al., 2011). It is reported that the major 
problem with thermographic camera imaging is the plume accumulation on camera’s lens 
surface inside the L-PBF machine’s build chamber. When the IR camera is mounted on 
the outside of the build chamber (typically far away from the laser scan on the powder 
bed surface) then there is the issue of field of view being not sufficiently close to the 
target, installing long range optics and possibility of obtaining poor resolution as a result. 

Figure 4 Off-axis monitoring of meltpool and optical tomography during L-PBF (see online 
version for colours) 

 

3.4 Off-axis cameras 

Mounting the either optical (visible wavelength) or thermographic (IR ot NIR) camera 
off-axis to laser beam axis results in a monitoring approach that is considered an angled 
view to the laser beam spot and meltpool (see Figure 4). Typically, off-axis cameras offer 
a very limited field of view on the build plate. However, this arrangement can also be 
employed to monitor the powder bed surface from the top view. As an example, to the 
use of off-axis camera monitoring, Heigel and Lane (2018) performed high speed 
thermographic measurements of the meltpool length during single track laser scans on 
nickel alloy 625 substrates using an IR camera as off-axis for the measurements of the 
radiation from the powder surface at a frame rate of 1800 frames/sec. In a breaktrough 
study, Criales et al. (2017) analysed the powder material spattering behaviour of high 
velocity laser scanning from the thermal images obtained during in-situ thermal 
monitoring using an off-axis thermographic camera (1800 frames/sec at a resolution of 
360 × 128 pixels) and a relevant thermography (filter with wavelength of 1350 nm to 
1600 nm). They performed a quantitative analysis for the meltpool size and amount of 
spattering behaviour using digital image processing and machine learning methods. 
Furumoto et al. (2013, 2018) used high-speed cameras deployed off-axis to monitor the 
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melting process. Yang et al. (2020) utilised a high frame rate off-axis optical camera 
setup mounted at the door of the L-PBF machine for monitoring and characterisation of 
meltpool and overall observing abnormalities in the powder bed. The meltpool shape and 
the surrounding region were detected in grey scale via in-situ observation to signify the 
causes for detecting defects and irregularities. The videos acquired were analysed by 
using digital image correlation techniques and statistical process control (SPC) 
approaches. They were able to automatically detect from the analysed video images 
occurrences of undermelting, overmelting, and material spatter and concluded that this 
technique can be used for correlating the streaming images to localised defects, layerwise 
anomalies and layer delamination. 

3.5 Thermoelectric magnetic field 

The thermoelectric magnetohydrodynamic method used by Kao et al. (2020) investigated 
the hydrodynamic mechanisms introduced by magnetic field and then they used the result 
of steady state solutions to predict microstructure evolution using cellular automaton-
based grain growth. The research results clearly state that microstructure characteristics 
are strongly dependent on magnetic field orientation. A large thermal gradient is 
produced by rapid heating and rapid cooling in metal AM process resulting in large 
thermoelectric currents and when a magnetic field is applied to process it creates 
thermoelectric magnetohydrodynamic effect that causes forces that alter the meltpool 
flow. In their earlier experiments Kao et al. (2018) used a pyrometer to measure the 
surface temperature of the sample during each cycle of melting and subsequent 
solidification and a high-speed camera to monitor and record the thermal front 
progression in nickel dendrites in a vacuum chamber with heating coils. Later studies by 
Fan et al. (2023) demonstrated some advanced uses of the thermoelectric 
magnetohydrodynamic effect in characterising meltpool flow during directed energy 
deposition (DED) based metal AM. They revealed that when no magnetic field is used, 
Maragoni convection in meltpool is in effect during meltpool flow, but when a magnetic 
field is imposed it can disrupt meltpool flow and be utilised as a characterisation tool by 
tracking the flow of certain particles in combination with in-situ high-speed synchrotron 
X-ray radiography-based process monitoring. 

A laser source typically generates reflected radiation, plasma radiation, airborne 
sound, and acoustic waves on the surface of the powder bed (see Figure 5). The infrared 
from the radiation can be used to detect the meltpool, metal vapour, material spatter by 
using measurement methods such as Eddy current, X-ray backscattering, radio frequency 
emission, and optical coherence tomography. 

All of these monitoring techniques have demonstrated effectiveness in meltpool 
control (shape, size and consistency in response to change in L-PBF process parameters), 
detecting anomalies and irregularities in build quality by acquiring in-process data but 
oftentimes analysing the data off-line. However, they are based for monitoring only the 
surface of the powder bed and are not utilised within a quality control framework to 
obtain process signatures that can be used to rapidly qualify and certify the build layer 
quality or for controlling the part defects. 
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Figure 5 Laser source, reflected radiation, plasma radiation, metal vapour, and spatter during  
L-PBF (see online version for colours) 

 

4 Research using in-situ process sensing and monitoring 

There have been reviews conducted that summarise the research studies toward process 
monitoring specifically statistical methods in AM processes (Tapia and Elwany, 2014). 
Various in-process monitoring capabilities for laser-based AM processes, and mostly for 
L-PBF systems) have been developed and employed to measure meltpool conditions. In 
separate works, both Everton et al. (2016) and Grasso and Colosimo (2017) provided 
extensive reviews on in-situ process monitoring for laser-based AM techniques.  
Grasso et al. (2016) utilised an off-axial imaging system and obtained a principal 
component analysis (PCA)-based statistical descriptor that is employed to the acquired 
images and revealed that their technique was appropriate for the detection of faulty spots. 
Soon after, Repossini et al. (2018) separated both spatter- and plume-related elements 
using a thermal imaging method and explained their potential for identifying in-situ 
process situations. Around the same time, Grasso and Colosimo (2017) suggested a real-
time process monitoring system with spatter evaluation to accomplish the desired 
characteristics by using feedback control in metal L-PBF technique. 

Previous research studies on L-PBF process monitoring have concerned with 
gathering digitised data from the process and analysing the process data after the part 
build is done as a post-processing scheme. Berumen et al. (2010) offered a co-axial 
monitoring system using a photodiode for measurement of the optical intensity. Later on, 
Craeghs et al. (2011) and Clijsters et al. (2014) measured meltpool conditions such as 
meltpool area, length, and width, as obtained from imaging measurements by using this 
co-axial monitoring system and determined that these were successful for detecting 
localised voids and pores. 

Other research studies utilised in-line cameras for monitoring and measuring the 
meltpool dimensions using the radiation back-emitted with an aim to reduce the 
occurrence of over-melting and the likelihood of forming pores. Kanko et al. (2016) 
relied on an in-line coherent imaging for in-situ detection of defects in L-PBF. Spears and  
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Gold (2016) utilised another imaging technique for similar reasons. Some other research 
efforts by Doubenskaia et al. (2010, 2012) counted on the pyrometry technique for in-situ 
monitoring meltpool size and measurements of temperature and with an objective of 
regulating meltpool and correlating its size with the layer thickness. However, this 
procedure was found to have several shortcomings such as the problem of the field of 
view, the challenge in obtaining good data capture rates, imaging distorted by radiation, 
required handling of filters in order to deal with laser back-emittance and radiation. 

Other research studies utilised high-speed cameras mounted on the L-PBF machine 
for the purpose of monitoring the meltpool and examining anomalies on the powder 
surface. Lott et al. (2011) devised a system by using three optics principles (i.e., a relay, a 
telephoto, and a single objective lenses) with a goal of high quality and obtaining high 
meltpool magnification during in-situ monitoring of L-PBF process. This technique was 
noticed to be very helpful where the accumulated data volumes are often evaluated after 
the build is finished. The spattering and the haze caused by powder particles splattering 
(scattering large particles of molten particles) are detected through high-frame rate 
imaging. To spatter means to scatter small particles of the powder material in L-PBF. A 
spatter is the pattern of molten drops that result from spattering. A splatter is the pattern 
of drops that result from splattering. Due to splattering particles developing during  
L-PBF activity, powder haze may harshly impact the quality of the manufactured parts 
and produce defects within the microstructure to reduce the mechanical properties. It was 
noted that significant powder spatter discharged from the meltpool as the laser light 
irradiated and illuminated on the surfaces of the powder layer (Ly et al., 2017). 

Arnold et al. (2018) used a backscatter electron detector in the interior of the build 
chamber of the EB-PBF machine that is utilised for image collection through commercial 
Arcam LayerQam process monitoring system that functioned in the range of visible light 
with some extension into the IR region. They provided in-situ images obtained by in-
process layerwise electron optics image acquisition and compared images obtained with 
the ones from optical microscopy and XCT. They concluded that spatial resolution was 
found sufficient for detecting major flaws like surface defects while disadvantages 
restricting other monitoring techniques and pointed out that presenting extra off-axial 
detectors to collect more data about surface topography would advance monitoring 
competences. 

Egan and Dowling (2019) investigated L-PBF of lattice structures in Ti-6Al-4V alloy 
with intended porosity (major pore diameter ranging from 1106 μm to 932 μm) using a 
co-axial in-situ monitoring system. Their monitoring system provided feedback on the 
laser energy input and the level of intensity of emissions from the meltpool during 
processing where collected data was used in reconstructing 2D/3D in-situ views in near 
real time. Specifically, they altered the laser beam spot size to observe its effects on the 
cellular structures fabricated with L-PBF and noted that a broadly linear correlation was 
obtained between the laser input energy, the associated process monitoring data generated 
and the mechanical strength of the lattice structures. Egan et al. (2021) investigated the 
defective layers in lattice structures fabricated in Ti-6Al-4V alloy via L-PBF using in-situ 
process data obtained with a co-axial photodiode-based monitoring system and statistical 
anomaly detection techniques. They used the generalised extreme studentised deviate 
(GESD) test technique to detect one or more anomalies in a univariate dataset and then to 
classify each layer as ‘defective’ or ‘no defective’ that occurred during the L-PBF build 
process. 
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Yang et al. (2020) used a high frame rate camera-based imaging system for in-process 
monitoring of L-PBF process and determined that the spattering is separated from the 
meltpool and its surrounding area and indicates remarkable variations in size and 
spluttering direction. They stated that the spatter due to high laser density produces 
different irregularities and decreases the quality of the build. High laser energy densities 
can produce overmelting and also initiates wide heat affected regions consequently 
resulting in substantial spattered particles causing internal voids, pores, hot cracking, and 
layer separation. These irregularities triggered by overmelting and undermelting can be 
alleviated by employing an adaptive control scheme that can selectively modify localised 
laser energy density by sensing the spatter intensity at a certain spatial and temporal 
occurrence. 

Becker et al. (2022) discusses about an optical tomography technique using a  
bi-chromatic optical tomography to simultaneously monitor the emitted process radiation 
of two separate wavelengths using two temperature calibrated cameras for in-situ quality 
control. This approach helps in estimating the local maximum temperatures which in turn 
increases the comparability of monitoring data. An NIR spectrum operated off-axis 
positioned camera is used to capture spatially determined extended-time exposure images 
of the L-PBF process. It is observed that interpreting temperature association of process 
data that is filmed using a camera that works on a particular wavelength is difficult due to 
the process intrinsic factors such as vapour plume on the meltpool, spattering, emissivity 
values. Their bandpass filter range was close to each other between 500 nm and 550 nm 
and the range for monitored temperature differences of signal intensity ratio measured 
was very little and within the range of signal noise. They concluded that to get better 
resolution, fine tuning of individual cameras needs to be optimised to avoid additional 
median blurring of one image. Furthermore, to reduce the quantifying uncertainty due to 
intrinsic precise image fitting, industrial dual-wavelength cameras can be used. Finally, 
they proposed that bi-chromatic tomography can be used to measure the temperature on 
the surface using a low-cost apparatus in the visible range. 

Chicote et al. (2022) studied different defect identification techniques related to  
L-PBF of Inconel 718 alloy using an integrated co-axial in-situ process monitoring 
technique. The commercial LaserVIEW and MeltVIEW systems in Renishaw 
RenAM500Q L-PBF machine were operated. They reported that the LaserVIEW system 
is an IR photodiode integrated on the optical component to measure lasers emissions, 
operating at 1070 nm wavelength while MeltVIEW system is an optomechanical set that 
obtains the L-PBF process emissions with two photodiodes to detect plasma emissions 
(700–1050 nm) and thermal radiation (1080–1700 nm). Both monitoring systems are able 
to measure emission levels at 100 kHz sampling rate without interfering laser system’s 
function. The layerwise data from laser position coordinates is constructed as acquired 
from the position data in galvanometer. After the build process, this data is analysed 
using the InfiniAM Spectral software that provides a virtual environment to monitor the 
emission levels by constructing layerwise or 3D views from the fabricated build 
geometry. This system was used in their research to evaluate the various build samples 
according to emission levels to identify the produced defects and quantify their geometry. 
Chicote et al. (2022) concluded that the resolution of this commercial on-axis monitoring  
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system is not enough to determine the gap related dark zone even though the system is 
useful for visual inspection of build samples for defects detection. 

Pandiyan et al. (2022) utilised a monitoring strategy that measure different aspects of 
L-PBF process with sensing system that uses signals from optical coherence collimator, 
namely photodiode detector with back reflection capability, visible, infrared, as well as 
acoustic sensor that releases structure-borne acoustic emission signal coming from the 
base plate. The system was connected to deep learning system for training and prediction 
purposes. The resultant system was able to detect operation regimes including the 
conduction mode, keyholing, and lack of fusion during L-PBF process. The learning 
process for the convolutional neural networks was reported to be quite time consuming 
although yielded good prediction accuracy on the operation regimes that the system is 
trained for. 

All these methods have been demonstrated useful in meltpool monitoring, spatter 
detection, and other material gaps and surface anomalies in L-PBF and other metal AM 
processes. 

5 Stages of in-situ process sensing and monitoring techniques 

A classification of in-situ process sensing and monitoring methods into four different 
groups of measurable process signatures as adopted from Grasso et al. (2021) is shown in 
Figure 6. This classification originally proposed by Grasso et al. (2021) involves 5 levels 
(Stage 0 through Stage 4). Stage 0 involves the use of signals from sensors that are 
already embedded into the AM system. This contains compartment pressure, base plate 
temperature, and oxygen ratio, as well as signals from galvanometers and axis motor 
drives etc. These types of signals potentially allow a framework for designing a process 
monitoring system that precludes the necessity for peripheral or extra sensors. This is 
especially appealing in electron beam PBF (EB-PBF), where easily attainable log signals 
from embedded sensors are available and possibly usable during the processing (Steed et 
al., 2017). In Figure 6, Stage 1 comprises of signals collected per layer with a level of 
view that encompasses the entire build surface. This stage contains characteristic 
measures about the homogeneity of the powder bed, geometrical and dimensional 
elements of the printed layer or its surface curvature and topography. Stage 2 consists of 
process signatures that can be determined while the laser or the electron beam is moved 
within the build section to generate the current layer in PBF. This implies the ability to 
examine the interaction between the beam and the powder (spatters and plumes in the 
case of L-PBF) and the cooling profile of the solidified region after the beam has shifted 
to another locality. Stage 3 includes monitoring of fused or weld tracks, their sizes as 
well as track-to-track overlaps. Stage 4 finally contains process signatures that are 
characteristic of the finest level of detail i.e., the meltpool and its vicinity during PBF 
processes. Further categories of in-situ process sensing and monitoring methods can be 
studied, in terms of monitoring approach (e.g., on-axis vs off-axis), sensing tools 
(spatially integrated vs spatially resolved sensors), wavelength of the evaluated quantities 
(visible range, near infrared, or infrared), etc. 
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The input parameters such as material properties, recoating system parameters are 
mostly pre-defined and the most crucial process parameters are predefined in the laser 
scanning and path planning software and often kept constant during processing. The 
mappings of the L-PBF or L-DED input (controllable or uncontrollable) process 
parameters into the process generated track-to-track, stripe-to-stripe, and layerwise 
signatures to the quality state of interest are highly essential for the m-AM process 
monitoring. Also, robust mapping from in-situ sensing collected signals to the process 
signatures and defects incurred should be performed to fully utilise the capabilities of the 
AM monitoring system. The relation between process sensing, process signatures and 
defects will be discussed next. 

Figure 6 Classification of in-situ process sensing and monitoring methods in PBF processes  
(see online version for colours) 
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5.1 Relation between sensing, process signatures, and defects 

The process signatures and the sensing methods discussed previously can be linked to the 
targeted process defects. Although some of these process signatures can be sensed in-situ 
using certain sensors and techniques, some process signatures cannot be measured such 
as residual stresses during the L-PBF processing. The ones that can be sensed or 
measured are listed as they relate to certain in-situ sensing techniques and are mapped 
into process defects. 

Therefore, Table 3 presents such a relation mapping (as adopted from Colosimo and 
Grasso, 2020 and modified) between the process signatures that can be evaluated in-situ, 
the resultant defects that can be identified and the most appropriate sensing techniques. 
The relationships are specified with several types of symbols as the symbol “ ” 
means already appeared in the literature as experimental findings. Some relationships, 
showed with the symbol “ ”, denote connections between defects and process 
signatures that have not been yet determined in the literature. In spite of having a 
potential these factors are yet to be checked with further research. 
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Table 3 Relations between in-situ measurable process signatures, sensing methods and process 
defects. The symbol “ ” is indicative of the degree of known correlation 
exhibited in the literature, while the symbol “ ” is used to correspond to the 
degree of connections still not supported in the literature or other indirect connections 
of potential interest 
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Table 3 Relations between in-situ measurable process signatures, sensing methods and process 
defects. The symbol “ ” is indicative of the degree of known correlation 
exhibited in the literature, while the symbol “ ” is used to correspond to the 
degree of connections still not supported in the literature or other indirect connections 
of potential interest (continued) 
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The signals of embedded sensors (Stage 0) have been indicated as possible sources of 
information in EB-PBF to collect information about the powder spreadability 
(Chandrasekar et al., 2020) and the existence of geometrical distortions triggered by 
powder recoating errors (Grasso et al., 2018), but various other potential applications 
have been noted in the literature and they can be studied in future investigations (Steed  
et al., 2017). Similar results in L-PBF have not been discovered so far. The absence of 
powder bed homogeneity (Stage 1) may alter the local layer thickness leading to potential 
volumetric and geometrical defects because of inadequate energy density differences. 
Inaccuracies in the powder recoating of the layer can also initiate incomplete fusion 
between current layer with the previous layer, with resultant possibility of delamination, 
together with potential geometrical deformation in the existence of serious recoating 
inaccuracies and impurity. Diverse authors have explored in-situ process sensing and 
monitoring methods fit to differentiate the surface shape and surface topography of the 
fabricated layer and the complete powder bed as a likely source of information about 
process stability alongside volumetric and surface defects (Foster et al., 2015; Zhang et 
al., 2016). The in-situ monitoring of the layerwise part has drawn an increasing interest to 
rapidly identify quality of fusion and defect formations in every layer (Aminzadeh and 
Kurfess, 2019; Caltanissetta et al., 2018). Concerning Stage 2 process signatures, the 
exposure of high and low energy density locations may be appropriate to detect either 
geometrical deformations (disproportionate heating) or lack-of-fusion situations (Grasso 
et al., 2016; Colosimo and Grasso, 2018). Static and dynamic thermal fields, thermal 
gradients and relations obtained though in-situ thermography can offer knowledge about 
geometrical distortions, changes in the part microstructure and thermal stress generation 
due to disproportionate heating (Raplee et al., 2017). 

A growing interest in the literature has been dedicated to focus on spattering and 
plume formations in L-PBF, as prospective representations of volumetric defects 
(Respossini et al., 2018; Grasso, Demir et al., 2018; Grasso and Colosimo, 2019; Eschner 
et al., 2019; Nassar et al., 2019; Zhang et al., 2019; Wang et al., 2020). Spatters are 
triggered by departing particles from the meltpool surface and the adjacent region on the 
powder bed, resulting in creation of denudation areas around the meltpool and a likely 
deficiency of material in the solidified path, which may affect the development of voids 
and pores (Yakout et al., 2021). In the case of excessive plume generation, the debris 
rising from this region may be absorbed by the laser beam and can compromise beam 
quality decreasing the energy concentration on the power surface or layer leading to lack-
of-fusion porosity formation. 

5.2 Relation of research studies on defect sources and categories of defects 

Table 4 shows the relations between equipment related defect sources and types of 
defects as adopted from Grasso and Colosimo (2017). The information has been extended 
by including more recent studies in this paper. Several pieces of information about the 
process stability and the build quality can be collected by monitoring the meltpool 
signatures (Stage 3) and their evolution over time. Undeniably, the meltpool conditions  
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are relevant to identify the likely development of volumetric defects (both keyhole and 
lack-of-fusion porosity), thermal stress generation due to deficient heat dissipation and 
surface defects connected to the solidification characteristics of fused tracks (Kwon et al., 
2020; Kolb et al., 2019). Additionally, Table 5 provides a relationship overview between 
process associated defect sources and types of defects and Table 6 offers another 
relationship overview for design options and feedstock related defect sources and types of 
defects. The mapping information is adopted from Grasso and Colosimo (2017) and has 
been extended by including more recent studies in this paper. 

5.3 Industrial implementation of in-situ process monitoring 

According to Colosimo and Grasso (2020), the industrial implementation of these 
methods has been performed by PBF system developers and their systems are now 
equipped with in-situ process sensing and monitoring modules and toolkits. These 
implemented in-situ L-PBF process monitoring technologies include both on-axis and 
off-axis sensors to monitor the build process, optical tomography, and thermal emission 
systems to view meltpool and spatter. Most of these tools are mainly used to collect data 
during the process and provide the user with some post-process data reporting and/or 
datasets to support the investigation of specific problems and defects. Data analytics and 
machine learning related development efforts in the form of intelligent software tool are 
being developed for implementation of analytical quality monitoring tools that are able to 
quickly analyse the sensed data during the process and automatically signal the onset of 
defects and process instabilities. Real-time laser power control tools are also found 
available in some commercially available L-PBF systems (Table 7) where a summary of 
in-situ process monitoring systems is also given for each L-PBF technology. 
Manufacturers of PBF systems continuously deploy on-axis optical (spectral) emission 
using pyrometers or photodiodes for monitoring of both the laser output and thermal 
emissions with high bandwidth and integrate the data with intelligent software solutions 
for in-situ monitoring of layer, build, and part quality. As a common thread to all 
monitoring systems emissivity issues (e.g., the emissivity of the meltpool region) with the 
accurate measurement of temperature still remain as a challenge. A more exhaustive 
review of the rapidly evolving literature devoted to in-situ sensing, metrology, and 
monitoring systems in commercially available L-BPF systems would require a much 
more extended review paper. Nonetheless, this review study aims to contribute to the AM 
community in several ways. First, it presents a framework to classify different methods 
and solutions presented in the literature into distinct categories in terms of monitoring 
stages and process signatures of interest. Secondly, it aims to provide a more 
consolidated terminology since increasing number of studies on in-situ monitoring of 
PBF processes also caused an increasing variety of terminology and an increasing 
fragmentation of application fields. 
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Table 4 Relations between equipment related defect sources and defect types 
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Table 5 Relations between process related defect sources and defect types 
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Table 6 Relations between design choices and feedstock related defect sources and defect 
types 
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Table 7 Commercially available major powder bed fusion systems and in-situ process 
monitoring capabilities 

PBF 
system Manufacturer Powder bed 

Laser 
powder Meltpool Spatter Defects 

Direct 
metal 
printing 

3D Systems  
(Factory 500)  
(500×500×500 mm) 

Optical – Optical Optical Lump 
formation 

Metal 
powder 
bed 
fusion 

Renishaw  
(RenAM 500) 

Optical 
(CameraView)

On-axis 
(LaserView)

Thermal 
emission 
(MeltView) 

NIR Optical 
emission 
(MeltView) 

– 

Selective 
laser 
melting 

SLM Solutions 
(SLM 500) 

Optical  
(Layer control 
system) 

On-axis 
emitted laser 

output 

Thermal 
emission 
(Meltpool 
monitoring) 

Optical 
emission 
(Meltpool 
monitoring) 

– 

Direct 
metal 
laser 
melting 

GE Concept Laser  
(M2 Series 5)) 
(245×245×350 mm) 

Optical and 
sensors  
(Build 
explorer) 

– Optical 
emission  
(QM 
Meltpool 3D) 

Optical 
emission  
(QM 
Meltpool 
3D) 

– 

Direct 
metal 
laser 
Sintering 

EOS Electro 
Optical Systems  
(M 300)  
(300×300×300 mm) 

Optical 
tomography 
(Exposure OT)

Online laser 
power 
control  

(System) 

Optical 
camera  
(MeltPool) 

 Optical  
(PowderBed) 

Selective 
laser 
melting 

DMG Mori  
Lasertec 12 
(125×125×200 mm) 

– – On-axis 
photodiode 
(PrintRite3D) 

– – 

6 Research directions toward in-situ process monitoring and process 
control 

A recent survey presented in this paper indicates that the research is still on-going and 
new studies are proposing, testing, and demonstrating in-situ measurement and 
monitoring methodologies for PBF systems. In fact, since the last report on the advances 
in this field there has been significant increases in publications on in-situ monitoring and 
process control in metal AM. When it was reported by Colosimo and Grasso (2020), most 
of these studies were mainly directed to showing the viability of in-situ sensing 
techniques and differentiating specific process signatures most popularly about meltpool 
conditions by utilising the collected data from the in-situ sensing and observations. Since 
then, better process monitoring tools have been developed and employed in PBF systems 
with many commercially available options offered to the users. Recent findings also 
recommended new in-situ sensing solutions or the combination of multiple sensors to 
accomplish better in-situ measurement and monitoring implementation (Tan Phuc and 
Seita, 2019; Barrett et al., 2018). 

In parallel, fast-growing interests has been dedicated to the deployment of machine 
learning, deep learning and surrogate modelling techniques to make use of the in-situ data 
fusion for more reliable, robust and rapid identification of process anomalies, faults, and 
defects (Colosimo and Grasso, 2020; Kwon et al., 2020; Gobert et al., 2018; Okaro et al., 
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2019; Scime and Beuth, 2018; Shevchik et al., 2018). Thermal images are connected to 
high/ low density meltpool classification using deep learning (Guo et al., 2022). Some 
researchers connected in-situ sensing using airborne acoustic signals to identify different 
L-PBF operational regimes using machine learning and deep learning approaches for 
quick response in process behaviour (Jayashinge et al., 2021; Drissi-Daoudi et al., 2022). 

A review of the research work in applications of machine learning in process 
monitoring and control and perspectives of using machine learning in L-PBF metal AM 
has been provided (Mahmoud et al., 2021; Sing et al., 2021). Machine learning has been 
identified as a potential tool by utilising process insight and in-situ data obtained at 
various stages of the process chain to overcome obstacles in part inconsistency obtained 
from L-PBF. Machine learning algorithms are found to be applicable for process 
parameter optimisation, processing data fusion coming from in-situ sensing, and to be 
integrated into the post-processing. However, it is also recognised that such techniques 
require time consuming data analysis, feature extraction, image augmentation, image 
segmentation, training, and validation efforts in deep learning architectures before even 
put to use in L-PBF monitoring and control systems. At this moment, these techniques 
are promising but far from practical implementation. 

Investigatory studies are performed for L-PBF process control by employing in-situ 
sensory data streams for feedback process control where sensors are utilised to generate 
an error signal from the process deviations and adjustments are made to the controllable 
process variables (Clijsters et al., 2014; Craeghs et al., 2010). On the other hand, model-
based feed forward process control studies are conducted to utilise process information to 
construct process models either by mathematical modelling (Matthews et al., 2016; Wang 
et al., 2020; Ren and Wang, 2022) or simulation modelling (Lee and Prabhu, 2016; Irwin 
et al., 2021) and to make proper adjustments to the controllable process variables (Yeung 
et al., 2019). In addition, process optimisation studies are performed by utilising the 
process knowledge to make adjustments to controllable L-PBF variables such as laser 
power, layer thickness, scan velocity, and hatch distance (Lapointe et al., 2022; 
Druzgalski et al., 2020; Criales et al., 2017). 

There are numerous parameters that affect the quality and properties of the final part. 
Most of these parameters are predefined, that is, their values must be adjusted before 
processing and some are controllable, that is, they can be modified during processing. 
Lastly, some criteria are classified as undefined, that is, they depend on other parameter 
adjustments. The quality of the process and/or products involves criteria that are related 
to reliability, durability, serviceability, aesthetics, and compliance to certain standards. 
Qualification processes generally involve the repeatability of production processes and 
consistency in the quality of manufactured components which are currently considerable 
challenges, especially when producing components in larger quantities. Compared to 
alloys manufactured by traditional processes, AM alloys lack a large database and agreed 
upon properties. Therefore, a fuller understanding of the L-PBF process is crucial to 
develop process control for rapidly qualifying and certifying the quality of the AM parts. 
Hence measurements at pre-process, in-process, and post-process stages are required. 
Basically, pre-process measurements are vital in establishing relationships between input 
process parameters and part characteristics. These measurements often relate to powder 
properties (particle size distribution, density, thermal conductivity, spreadability etc.) and 
intrinsic characteristics of the L-PBF system (laser power, powder absorptivity, etc.).  
In-situ measurements are typically in-process monitoring tools such as measuring surface 
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temperature, monitoring meltpool shape and size, and spatter of the molten powder 
material. 

In this paper, a review for in-situ sensing, process monitoring and control in L-PBF is 
given, and it is stated that being able to characterise the process signatures is key to 
improving AM part quality. 

Most of the research on in-situ AM metrology focuses on two types of sensors, 
namely thermographic sensors and high-resolution imaging sensors. However, they only 
monitor the surface of the powder bed and are not utilised within a quality control 
framework that can be used to rapidly qualify and certify the build layer quality 
(Jayasinghe et al., 2022). The post-process measurements focus on the quality of interest 
(QoI) such as material/part quality: dimensional accuracy, surface roughness, porosity, 
mechanical performance, residual stress, etc. Image-based measurements can include 
optical profilers, such as white light interferometers and confocal microscopes, as well as 
multi-scale XCT. 

To establish foundations for L-PBF process control, process parameters are sub-
categorised as process signatures and product build quality according to the abilities to be 
measured and/or controlled. Process parameters are input to the process, and they are 
either potentially controllable or predefined. In this control scheme, predefined input 
parameters are given as set parameters and they will include factory specified powder 
feedstock related parameters such as powder material particle size, and L-PBF equipment 
specific parameters such as layer thickness, build plate temperature, etc. 

Furthermore, the future research should consider the predefined input parameters as 
uncontrollable inputs, [ ]1 2, , ,= … T

nr  r r r  together with parameters of uncertainty, 
controllable variables [ ]1 2, , ,= … T

mu  u u u  e.g., laser power and scan velocity that are 
effective on controlling the melting of powder material and solidifying fused tracks 
through cooling rates and hence finalising the build quality. These parameters and 
variables usually relate to the observable and resulting process signatures such as 
meltpool volume, temperature, porosity, deformation, or residual stress. Derivable 
parameters cannot be directly determined but can be estimated using numerical models. 
The uncontrollable process signatures, 1 2, , ,⎡ ⎤= …⎣ ⎦

T

pv  v v v , and the build quality 
measures, [ ]1 2, , ,= … T

my  y y y , are to be quantified to complete the framework necessary 
to understand not only the L-PBF process taking place on the powder bed surface but also 
subsequent intrinsic heat treatment effects below the powder bed. For correlation 
purposes, the study should further split process signatures into three groups namely: 
meltpool related, solidified track related, and fused layer related. Process signatures 
define the final product characteristics (geometric, mechanistic, and physical). Expanding 
relationships between the controllable PBF parameters and process signatures should help 
process control with the objective of setting in process knowledge into future control 
policies. 

Furthermore, there should be designs offered for surrogate models to utilise the in-
situ monitoring data and analyse their effects on the quality of interest (QoI) such as 
fused tracks and layers. 

For instance, a simple modelling could offer ( , )x θsy  and ( )xey  to characterise L-
PBF data-driven surrogate model projection and the subsequent experimental observation 
for the quality of interest of y . They are merely connected by the following expression 

( ) ( ), ( )= +x x θ xe sy y δ  where ( )xδ  is the model bias between the data-driven or 
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surrogate model estimate and the experimental measurement, x  signifies controllable 
variables that can be correctly controlled during tests (e.g., laser power and scan 
velocity), and θ  is the uncertainty source term to be adjusted or minimised. 

7 Remaining challenges and future research directions 

This review paper builds upon previous work presented on the topic of in-situ process 
sensing and monitoring methods for AM systems, in particular, PBF technology by 
Colosimo and Grasso, 2020; Colosimo et al., 2018; Colosimo, 2018. Later, Colosimo and 
Grasso (2020) reviewed several seminal studies (Renken et al., 2019) conducted on 
closed-loop control in L-PBF and concluded that there is still progress needed to transfer 
the technology from highly sensorised machines to intelligent machines in metal AM. 
They observed that several in-situ defect mitigation or defect correction solutions are 
presented in literature (Colosimo et al., 2019; Grasso et al., 2019; Heeling and Wegener, 
2018; Mireles et al., 2015) and pointed out that further studies are needed adapting 
process parameters based on model outputs or real- time sensor signals. 

As of today, there are a number of challenges and technological barriers still remain 
in establishing robust and smart AM machines for fabrication of zero-defect parts at first-
time in PBF machines. Even though new technological advances in new sensors, faster 
sensing methods, data fusion and processing developments and improvements are made 
to the existing in-situ process monitoring techniques, systems integration related 
limitations and challenges are yet to be resolved. 

The major limitation in PBF processes using current in-situ process sensing and 
monitoring methods is their inability to sense and gather necessary insights about the 
physical phenomenon taking place among the layers below the powder surface. The 
sensing information collected from the powder bed’s surface is not sufficient to 
understand effects of re-melting, keyholing, intrinsic heat treatment or conduction vs 
convection shifts that are repeatedly occurring below the top layer during processing. 

A second limitation is that there is not a robust and cost-effective in-situ technique to 
sense, monitor and detect porosity in solidified sections of the 3D build. The 
quantification of such volumetric defects using optical tomography or X-ray tomography 
are considered critical in several applications in industry, but sensor technology is not 
matured to be deployed in PBF systems. 

Dealing with large data streams collected through in-situ process sensing and 
monitoring is another challenge that is still open. Besides computational tools for real-
time management of such data streams are also not well developed yet. The systems can 
gather terabytes of in-situ data during the fabrication of a 3D build but the lack of 
computationally efficient methodologies for data processing hinders the potential of 
utilising such process insight effectively. 

Another issue is the interoperability related and lack of transferring solutions learned 
because there is no viable platform to transfer knowledge quicky and share process 
models generated about a 3D build obtained in one PBF-AM system to be utilised for 
parts produced even with the same machine but by other users at other locations. Only a 
few studies are available about the application of transfer learning methods to AM 
(Sabbaghi and Huang, 2018; Fischer et al., 2022). 
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There is a need to establish transferring knowledge more effectively. Ideally, it would 
be fairly expedient to conduct selected experiments in a controlled setting of process 
conditions, and then transfer this base knowledge to other process conditions. This would 
reduce the cost of experimentation and lead time for new parts. The major challenge in 
achieving this is the large variability among the PBF systems and laboratories. 

There is a pressing need to develop digital twin frameworks and cyber-physical 
systems that can integrate theories, experiments, and process simulations of L-PBF and 
other metal AM processes. Validated models and simulations have potential to enhance 
AM process performance and act as a technological enabler to achieve AM capabilities in 
zero-defect production (Arisoy et al., 2019; Yang and Özel, 2021; Jarosz and Özel, 
2022). The vision for a digital twin framework that combines in-situ sensing data with 
process simulation is a field that deserves further attention albeit with more intense 
research efforts. 

There is further research opportunity to extend in-situ process sensing and monitoring 
data to adaptively control the L-PBF AM processes. Even though some control strategies 
are developed to enable a feedforward approach for adjusting process parameters on the 
fly, the process insight gathered through in-situ sensing is not effectively used for 
achieving a fuller control that predicts and compensates occurrence of defects and 
porosity. 

Achieving capabilities for defect-free and first time-correct part production will not 
only depend upon in-situ process sensing and monitoring technologies, but also 
developing robust and optimal control strategies. A knowledge gap still exists to be able 
to develop intelligent process control tools and deliver solutions to the AM industry. 

Nevertheless, further research is deemed critical for real-time control of PBF 
processes to deal with automatic defect identification and subsequent correction of 
defects in futuristic smart AM systems. 

8 Discussion 

The process signatures obtained through data collected from machine’s control systems 
and sensors via in-situ process sensing and monitoring, which in return represents the 
health of the L-PBF AM process, can provide insights into techniques to control the 
structural integrity, surface roughness, and overall quality of the 3D build. In an ideal 
world, a real time enabled in-situ monitoring system should quickly identify process 
anomalies and product defects and generate a corrective action to the L-PBF process 
parameters or the machine appropriately. 

In-situ process sensing, and in-situ monitoring can increase understanding of the L-
PBF metal AM process, permitting further adjustment and calibration of the AM process 
digital models and process simulations, enhance layerwise build quality by perceiving, 
averting, or even balancing the process parameters for defect-avoidance, and backing 
quick process qualification. 

There is a lot to be done to address the issue of obtaining correlations between 
aforementioned process signature and quality attributes as defined by the user, and hence 
characterising anomalies and defects correctly. 

The proper selection of appropriate sensors along with monitoring techniques (more 
specifically choosing their spatial and temporal resolutions) is still an ongoing discussion 
among the researchers. 
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Another issue is to certify the accuracy required for in-situ process sensing in L-PBF 
processes and machines. There might be further needs in using additional tools and 
methods for achieving data fusion with high dimensional sensory data not just meltpool 
related monitoring and sensing. 

It is often times overlooked how much measurement error is involved in such sensing 
and monitoring systems that requires a closer look at uncertainty quantification. Further 
challenges exist about the certifying measurements for precision, how to interpret the 
measurement data to assess overall health state of a L-PBF system. There is further 
research required to get a grip about the challenges involved for adopting an on-axis or 
off-axis process sensing and monitoring as functions of accuracy, frequency, and spatial 
and temporal resolution. 

Further understanding about the correlation between process signatures and related 
anomalies and defects occurring during the L-PBF process as well as the resultant part 
quality is needed. On that note, there should be deeper investigations conducted on the 
relation between the frequency of defect occurrences and the qualification of the as-built 
part or component using the probability of the successfully detected anomalies, flaws, 
defects and connecting them with the part qualification metrics. One other problem is the 
challenges associated with the transfer of knowledge and expertise from one L-PBF 
machine to another one since mostly each machine would have unique characteristics and 
path planning or process parameters. Ultimately, the key challenge is to move the process 
sensing and monitoring technology from just observing the process to the adaptive 
control, feed forward or feedback control strategies to build control system architectures 
that already exist in other manufacturing processes and equipment. 

9 Conclusions 

This paper reviewed the literature on in-situ process sensing and monitoring methods and 
discussed research challenges and future directions for further efforts. As additively 
fabricated metal products mostly suffer from large variations in quality attributes that are 
known to be influenced by a large number of factors and these outside factors and their 
influence on various process signatures also make metal AM processes not fully 
manageable creating unacceptable levels of part-to-part inconsistency in quality. The 
process monitoring techniques should be integrated into robust quality control 
methodologies for a wider adoption of metal AM processes. The current challenge is to 
fully understand which monitoring techniques offer the best performance in terms of 
quality measurement and smooth integration into the manufacturing operation. The near-
term targets can be identified as improving imaging capabilities, clarifying what to 
monitor and when, setting expectations for assessing what can and cannot be done, and 
establishing better calibration procedures. The mid-term targets can be listed as 
establishing real-time control strategies, refining the use of statistical analyses to regulate 
the optimal signal flow into the control system, improving physically informed modelling 
abilities and enabling algorithms for speedier computations. The long-term aims can 
include utilising machine learning and artificial intelligence to develop processes that are 
self-learning and intelligent, and also transferable from machine-to-machine. 
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