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Abstract: Primary user (PU) and secondary users (SU) identification is critical to tiered spectrum 
sharing algorithms in cognitive radio (CR) networks. This paper focuses on a methodology to 
improve PU and SU identification using unsupervised classical learning methods. An 
experimental approach is studied using dynamic time warping (DTW) and dynamic frequency 
warping (DFW), which is DTW applied to the frequency domain. Principal component analysis 
(PCA) is used as a lightweight autoencoder. This work’s focus is to minimise the need for 
extensive training data and class labelling for efficient cognitive node deployment. A variety of 
different modulations are explored including quadrature amplitude modulation (QAM), phase 
shift keying (PSK), pulse amplitude modulation (PAM), frequency shift keying (FSK), amplitude 
modulation (AM), and frequency modulation (FM). 
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1 Introduction 
Cognitive radio (CR) seeks to solve many of the problems 
currently plaguing global wireless communications sectors. 
Wireless spectrum allocation is a finite resource that is 
currently strained as certain frequency bands are more 

lucrative than others, either through regulation or physical 
propagation properties. In 2021, over 54% of the world’s 
internet traffic was conducted on mobile phones 
(BroadBand, 2022). Furthermore, more than half of the 
world’s internet traffic is carried over WiFi (Yu et al., 
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2020). The demand for more wireless services and growth 
of mobile devices has further worsened the overpopulation 
of the already scarce spectrum. The demand for fast and 
reliable mobile service has led network operators to deploy 
more base stations and increase transmission power to meet 
service demands. In 2020, the United States Federal 
Communications Commission (FCC) unlicensed a 1.2 GHz 
bandwidth in US to help alleviate such traffic (FCC, 2020). 
However, given the rate of wireless traffic growth, a need 
for more efficient spectrum utilisation becomes apparent. 

Cognitive radio plays an enormous role in the expansion 
of unlicensed bands and exploits its inherent ability to 
mitigate interference between devices. However, existing 
CR solutions have suffered tremendous drawbacks in mass 
adoption as that they are impractical to roll out 
incrementally and often require heavy deep learning 
algorithms with a great deal of training data (Alshawaqfeh 
et al., 2015). This work seeks to alleviate the need for a 
burdensome deep learning algorithm in favour of 
unsupervised classical learning methods. A subdomain of 
CR systems involves opportunistic spectrum access, which 
heavily relies on analysing the dynamic wireless spectrum. 
The core principles of opportunistic spectrum access rely on 
spectrum monitoring. While spectrum monitoring has been 
researched for decades, CR has been an achievable outcome 
only in the past decade or so. 

Dynamic spectrum monitoring has been at the forefront 
of CR applications for many years. More specifically, 
Primary-Secondary user (PU-SU) identification is a critical 
principle that allows for decision making within CR 
networks that involve either licensed and unlicensed users 
or prioritised channels such as emergency service radios. 
Early approaches to CR and PU-SU identification involved 
spectrum sensing and algorithmic channel mapping (Plata 
and Reatiga, 2012; Wang et al., 2013) and is still an 
important part of CR spectrum access management (Sarala 
et al., 2020; Thanuja et al., 2020). The shift towards 
machine learning (ML) and artificial intelligence (AI)-based 
decision-making focuses on the outcomes of spectrum 
sensing including PU-SU detection (Janu and Kumar, 2022) 

There are opportunities for adversaries to attempt to 
spoof or masquerade themselves as primary spectrum users. 
However, multi-faceted approaches using ML techniques 
have been studied to counteract primary user emulation 
(PUE; Muñoz et al., 2022). While this is an apparent issue, 
this paper focuses primarily on non-malicious SU detection. 

While DTW has been used extensively in various fields 
for automated detection such as automatic handwritten 
signature verification (Parziale et al., 2019), irregular 
heartbeat detection (Cathelain et al., 2019), and speech 
recognition (Sun et al., 2014), it is comparatively under 
studied for cognitive radio applications. Teronpi et al. 
(2021) shows one of the few experiments on DTW for 
modulation recognition. However, this paper does not 
elaborate on the modulation classification mechanisms and 
does not explain the feature extraction methodology other 
than deeming it a “DTW based algorithm”. Therefore, it is 

not a direct equivocation of results compared with those in 
this paper. 

2 Methodology 
A novel feature extraction methodology for unsupervised 
PU-SU detection is presented in this paper which uses 
dynamic time warping (DTW), dynamic frequency warping 
(DFW), and principal component analysis (PCA). DTW is a 
commonly used technique in speech signal processing 
(Permanasari et al., 2019). However, this work explores the 
combination of DTW, DFW, and PCA with respect to signal 
features such as modulation comparisons, spectral 
characteristics, and time-frequency occupation. The goal of 
this research is to determine whether DTW and DFW can 
successfully differentiate between a known primary user 
(PU) and unknown secondary user (SU) when used in 
conjunction with the unsupervised PCA algorithm. The 
constraints set forth were to minimise the a-priori 
information of the PU and SU signals. Furthermore, an 
unsupervised ML algorithm was utilised as there are a 
fundamentally undefinable number of classes of SU’s. 
Therefore, this approach provides a deterministic 
identification of either a PU or a comprehensive outlier 
group of any other modulation to be defined as a SU. Lastly, 
the choice of DTW with PCA reconstruction was driven by 
the need for real-time PU-SU recognition. DTW, and DFW 
by analogous nature, has been shown to improve 
computation speed in hardware accelerated platforms 
(Wang et al., 2013). Furthermore, PCA reconstruction 
inherently reduces the dimensionality of the data and 
therefore was a logical first choice for part of the 
classification engine. 

2.1 Dynamic time warping (DTW) 
Dynamic time warping is at the most basic definition a 
metric to detect the similarities between two time-domain 
sequences. This is often calculated as the “distance” 
between the two signals under test. Cross correlation is a 
typical measure of distance in signal processing as it is 
computationally lightweight and provides a generally 
acceptable alignment in time. Inspiration to compare two 
signals’ distance can be extracted from cross correlation by 
subtracting and taking the magnitude of each point. 
Equation (1) shows the generalised discrete form of 
Euclidean distance measurement for a dataset with N 
samples. 

( ) [ ] [ ]
1

,  
N

n

d x y x n y n
=

= −∑  (1) 

While Euclidean distance measurement, as in cross-
correlation, is acceptable to use in signal similarity 
measurements, it only works well when the two signals are 
similar in Euclidean time. Euclidean distance is sensitive to 
slight temporal mismatches and is misleadingly large when  
 
 



 Analysis of unsupervised primary-secondary user recognition 235 

otherwise identical signals are slightly time-dilated versions 
of each other. DTW provides an alternative to Euclidean 
distance measurements such as correlation as it finds the 
optimal match, the warp path between two signals. Figure 1 
shows this comparison. 

Figure 1 Euclidean (a) vs. DTW (b) distance visualisation 

 
Source: Cross (2011) 

A single value at point (i, j) in the DTW algorithm can be 
recursively formulated in equation (2) 
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where i and j are indexes of each respective signal. It should 
be noted that this will form an i × j matrix which entails a 
computational complexity of O(N2). However, this work 
utilises a complexity-improved DTW algorithm, the 
FastDTW (Salvador and Chan, 2004). The FastDTW works 
on similar principles as the traditional DTW, but only 
calculates part of the i × j matrix. This is achieved by only 
calculating a local neighbourhood matrix around the warp 
path as defined by a tuning parameter, the radius. This in 
turn reduces the computational complexity to O(N) for 
small radii. 

2.2 Dynamic frequency warping (DFW) 
Like DTW, DFW operates on complex frequency-domain 
sequences, measuring the distance between two Fourier 
transforms (FTs). DFW uses the same processing algorithm 
as shown in equation (2) with FTs of the input signals rather 
than the time domain signals. Similarly, all principles of the 
FastDTW apply to the frequency domain “FastDFW”. If a 
DTW matrix of signal x and signal y is defined in equation 
(2), then a DFW of signal x and signal y can be defined as 

( ) [ ] [ ]
[ ]

[ ]
[ ]

1,  
, min 1, 1

,  1

dfw i j
dfw i j X i Y j dfw i j

dfw i j

⎧ ⎫+
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⎪ ⎪+⎩ ⎭
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where X and Y are FTs of x and y respectively. 
This concept seeks to utilise the frequency domain 

information to formulate a feature matrix for input to a 
machine learning (ML) algorithm. This is performed by 
constructing a feature matrix such that the element at row i, 
column j, is DFW(i, j). The ith row is a vector of length m 
that provides the DFW measure of X[i] relative to each of 
the m FTs, including itself. This is known as the feature 
vector of the ith data point. This feature vector derived from 

the DFW is what is used within the unsupervised ML 
algorithm defined within this paper. 

2.3 Principle component analysis (PCA) 
PCA is a dimensionality reduction method that is beneficial 
in machine learning. Dimension reduction is useful for 
reducing computational effort, data visualisation, and 
guarding against overfitting – the tendency of ML 
algorithms to learn non-existent patterns in the data when 
provided too many features. Given an arbitrary dimensional 
set of features, PCA extracts new features called principal 
components (PCs) which are mutually orthogonal, linear 
combinations of the original features. The first PC captures 
the axis of maximum data variance, the second, the second 
most axis of maximum data variance, and so on. 

PCA reconstruction is an extension of PCA that enables 
the algorithm to detect outliers, by examining the error of 
reconstructing a datapoint from its dimensionally reduced 
representation. PCA reconstruction was chosen as a 
preliminary means to detect outliers as it is a lightweight 
algorithm that is friendly to low-cost hardware 
implementations. Other outlier detection mechanisms can be 
tested in future work. Provided a set of m reconstruction 
errors e[i], i = 1, …, m, one may apply statistical techniques 
to select an appropriate threshold. The first quartile Q1 is 
defined as the error halfway between the lowest error and 
the median error. Similarly, the third quartile Q3 is the error 
halfway between the median and the largest error. Then, the 
interquartile range (IQR) may be calculated as IQR = Q3 – 
Q1. Finally, the threshold T may be set as T = Q3 + 
1.5*IQR. This is a common threshold tuning method for 
PCA reconstruction (Yang and Rahardia, 2019). 

3 Experiment formulation 
This experiment was designed to explore the capability for 
PU-SU detection using DTW and DFW with PCA in an 
unsupervised algorithm. The focus is on baseline 
differentiation and autonomous detection of an unauthorised 
SU transmission or SU interfering signal. This paper is not 
meant to be an exhaustive set of scenario permutations, but 
rather a preliminary experiment to test the viability of DTW 
and DFW for these purposes. Research for malicious SU 
masquerading, SU localisation, operating frequency 
negotiation, system-level ML processes, and similar topics 
are not within the scope of this research. However, their 
implications are discussed in context throughout this paper. 
The chief outcome of this research is to utilise this 
unsupervised detection based primarily on PU-SU 
modulation differences and interference within a system. 
System-level ML scheduling and negotiation algorithms 
will be explored in future work. 

The experimentation in this paper was performed using 
the HisarMod dataset (Tekbiy et al., 2019). The HisarMod 
dataset includes 26 modulation types from 5 different 
modulation families which are analogue, frequency shift 
keying (FSK), pulse amplitude modulation (PAM), phase 
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shift keying (PSK), and quadrature amplitude modulation 
(QAM). In the dataset, there are 1500 signals, which have 
the length of 1024 I/Q samples, for each modulation type. 
There are 20 different SNR levels in between –20 dB and 
18dB. The dataset encompasses 780000 different signals 
(Tekbiy et al., 2019). This dataset was initially designed to 
test blind modulation classification using deep learning 
techniques (Tekbıyık et al., 2020). Subsets of this dataset 
were taken for reduction of computational efforts. The 
selected data were chosen to represent either a targeted 
example scenario where PU-SU detection is needed, or a 
difficult to detect signal combination that was outlined in 
(Tekbıyık et al., 2020). 

This algorithm is evaluated on data that are unseen by 
the algorithm during its learning phase, which in this case is 
parameter fitting of the PCA model. As per standard 
practice, the data were split into training and validation sets. 
These are described in each experiment within the Results 
section. Furthermore, it is necessary to utilise a separate 
validation set to calculate the threshold. For this reason, the 
HisarMod dataset was separated into three sets: training, 
validation, and testing. Each set is unique and mutually 
exclusive to the others. In order to preserve an unsupervised 
detection algorithm, no outlier data were included in the 
training data. Only outlier data were incorporated into the 
test dataset. 

The feature vector for each experiment was created from 
this dataset by calculating the DTW/DFW distance of the 
test set from the training set. The relevant hyperparameters 
for this experiment are a DTW and DFW radius of one, with 
two principal components to observe data in a 2D space. 

4 Results and analysis 
Each experiment within this section uses DTW and DFW in 
combination with PCA reconstruction to calculate the F-1 
score to quantify the evaluation metric. Accuracy, the 
number of total correct predictions divided by the total 
number of predictions made, is often misleading on its own 
(Sokolova et al., 2006). This is especially true in 
experiments with scarce outlier cases. The F-1 score, 
however, is the harmonic mean of precision and recall. 
Precision is defined as the number of correctly predicted 
outliers divided by the total number of predicted outliers. 
Recall is defined as the number of correctly predicted 
outliers divided by the total number of outliers. This 
provides results that are less dependent on the frequency of 
outlier occurrences. 

4.1 8QAM PU with 32PSK SU 
An experiment to demonstrate the outcomes of DTW, DFW 
and the combination of both features was constructed using 
8QAM as the PU, and 32PSK as the SU. The signals were 
from the HisarMod dataset as outlined in the “Experiment 
Formulation” section. As previously mentioned, the goal  
 
 

was to design an experiment that showcases unsupervised 
learning using these features while minimising training data 
size and a priori information. For this reason, no signal 
metadata was used, and the sets are defined as follows: 

1 Training: 60 PU signals 

2 Validation: 20 PU signals (unique from training set) 

3 Testing: 20 PU signals and 20 SU signals (unique from 
both training and validation sets). 

 

This experiment was carried out for the select SNRs in the 
set [+18, +10, 0, –10, –20] dB. The experiment was run 100 
different times, each time randomly generating mutually 
exclusive training, validation, and testing set. 

In addition to the confusion matrix, the F-1 score was 
calculated for the aggregate of the 100 experiment runs. 
Figure 3 shows each SNR’s experiment run where the data 
point is the mean of the runs, and the error bars extend to 
the best and worst case run in each SNR. 

It is observed that the DTW with PCA performs 
adequately for the experiment. These results are comparable 
to those using trained deep learning models in relevant 
literature (Tekbiy et al., 2019; Abdel-Moneim et al., 2021) 
at different SNRs. However, the DFW alone did not 
produce meaningful results. Analysing the confusion 
matrixes in Figure 2, one can conclude that the DFW 
favoured identifying the SU as a PU signal. However, when 
used in a dimensional extension combined with the DTW, it 
is observed that there is not much improvement nor 
detriment to using the DTW with DFW in the outlined 
unsupervised PCA detector. However, all methodologies 
appear to begin to deteriorate as the SNR approaches 0 dB 
and lower. This is expected and is well documented in the 
literature. 

4.2 64QAM PU with random (non-64QAM) SU 
A similar experiment to the “8QAM PU with 32PSK SU” 
experiment was devised for a 64QAM PU and random, non-
64QAM SU. This experiment was designed to showcase a 
more dynamic environment where the in-channel signal was 
of any unknown modulation from a wide SU class including 
8PSK, 8PAM, 4FSK, AM-DSB, PM, and FM. Again, this 
goal outlines the need for unsupervised detection with 
minimal training data. For the same reasons, no signal 
metadata was used, and the sets are defined as follows: 

1 Training: 60 PU signals 

2 Validation: 20 PU signals (unique from training set) 

3 Testing: 20 PU signals and 20 SU signals (unique from 
both training and validation sets). 

Figure 4 shows the results from the 64QAM PU with 
random non-64QAM SU. This experiment showcased a 
promising result in that neither the DTW nor DFW alone 
performed well in correctly identifying a random SU.  
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However, a combination of both increased the performance 
of SU detection more than the sum of its parts. This result 
encourages further study of the usage of DTW plus DFW in 
PU-SU detection. 

Figure 2 Confusion matrixes with 8QAM PU and 32PSK SU 
from 18 dB to –20 dB. True-positive defined as SU 
detection in this experiment (see online version  
for colours) 

 

Figure 3 8QAM PU with 32PSK SU F1 score from 18 dB to  
–20 dB (see online version for colours) 

 

Again, in addition to the confusion matrix, the F-1 score 
was calculated for the aggregate of the 100 experiment runs. 
Figure 5 shows each SNR’s experiment run where the data 
point is the mean of the runs, and the error bars extend to 
the best and worst case run in each SNR. 

Figure 4 Confusion matrixes with 64QAM PU and random 
(non-64QAM) SU from 18 dB to –20 dB. True-positive 
defined as PU detection (see online version for colours) 

 

Figure 5 F1 score of 64QAM PU and random (non-64QAM) SU 
from 18 dB to –20 dB (see online version for colours) 

 

Similar to the 8QAM vs. 32PSK previously described, the 
DTW on its own favoured identification of the SU signal as 
a PU signal, especially at lower SNRs. However, the results 
from the DTW alone were not as accurate as the previous 
experiment. This is expected to be due to the more complex 
time envelope of higher order QAM signals than the 
previous experiment. This was the logical reasoning behind 
exploring the DFW. Similar to the previous experiment, the 
DFW did not perform well which was not expected  
given the visible difference in the frequency domain 



238 S.G. Miller and P.M. Kump 

representation of the signals under test. Likewise, the DFW 
favoured the identification of SU as PU while used alone. 

However, when combining the DTW and DFW in a 
multidimensional feature space, a drastic improvement to 
accuracy and F1 score were observed. This holds true even 
at lower SNRs. This can be seen most evident in Figure 5. 
The DTW with DFW feature set far outperformed the sum 
of their independent feature sets. The phenomenon of 
feature combination to a higher dimensional feature space is 
not unique and is often observed in both deep and classical 
learning alike. This result incentives further study as to 
which modulation schemes benefit the most from this 
feature combination. This will be discussed in the 
“Conclusions” section of this paper. 

4.3 AM-DSB PU with AM-DSB+2FSK interferer SU 
Lastly, an experiment was devised to emulate a common 
situation where a primary user is transmitting, and 
simultaneously experiences interference by an SU. This 
experiment used AM-DSB as the PU as up to this point all 
modulations tested were digital. The interferer used is 
2FSK, a digital modulation. So, in turn, the classes are AM-
DSB as PU, and AM-DSB+2FSK in the same channel as 
the SU. The SNRs of the signals were varied in a way as to 
keep the 2FSK SNR equal to or less than that of the AM-
DSB to make detection more challenging and the 
experiment more realistic. Figure 6 shows the confusion 
matrixes of this experiment. 

Figure 6 Confusion matrix of AM-DSB and AM-DSB+2FSK at various SNRs using DTW, DFW, and DTW + DFW (see online version 
for colours) 

 
 
The results from this experiment show that the DTW is 
effectively able to detect when an interferer is present in the 
cases of the modulations explored. Surprisingly, the high 
SNR PU and low SNR SU performed well. This was 
unexpected as it was hypothesised that wide dynamic 
ranges, 38 dB in this case, did not reduce the detection 
capability of an interfering SU. This must be investigated on 
an application-to-application basis as there may be an 
acceptable level of interference for some systems, while 
others may be more stringent. 

More consistently, the DFW did not provide any useful 
detection as a standalone feature. However, it should be 
noted that the DTW+DFW did not affect the PU-SU 
detection positively or negatively within any significant 
measurement. Therefore, there does not seem to be any risk 
in using both features together over just the DTW alone. 

5 Conclusions 
This work validated that through the usage of DTW and 
DFW plus PCA, one can effectively identify unknown and 
unlabelled SU signals from a known PU. Early results 
provided guidance that DTW is a valid feature extraction 
algorithm for unsupervised PU-SU detection. This 
capability was further exploited by taking a novel-to-
application approach using the DTW algorithm’s principles 
on the frequency domain to achieve DFW. The authors 
expected the DFW would help identify SU deviation of 
modulation type as it reflects the complex frequency 
domain which can be used in human-based modulation 
detection. Surprisingly, DFW showed little promise 
initially. However, experimentation combining a multi-
dimensional feature set with both DTW and DFW features  
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provided an example of how the amalgamation of these two 
features can differentiate PU-SU characteristics that are 
undetectable by either when used alone. This finding 
showcased a promising result in that neither the DTW nor 
DFW alone performed well in correctly identifying a 
random SU. However, a combination of both increased the 
performance of SU detection more than the sum of their 
parts. This finding reinforced the purpose of exploring the 
peripheral features using DTW plus DFW in future 
research. Furthermore, hyperparameter tuning will be a 
focus of future work to determine if these results can be 
improved. Wider DTW and DFW radii and higher numbers 
of PCs will be explored to determine the complexity 
tradeoffs of these hyperparameters with respect to 
performance. 
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