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Abstract: Accurately tracking and managing indoor assets is crucial in many industries, such
as healthcare, manufacturing, and warehousing. This exploratory study presents a new approach
to indoor asset tracking using Nordic Semiconductor© innovative distance estimation techniques
based on Bluetooth 5.1 physical layer updates. Our multilateration algorithm calculates the asset’s
exact location by leveraging distance estimates from multiple receivers over an extended period.
We demonstrate the effectiveness of our system through real-world experiments conducted in an
office setting, which shows that our system can locate and track assets with an average error of
approximately ∼2.1 m using a BLE receptor density of approximately ∼3 per 550 m2. We also
discuss our methodology, potential applications of our system, and future enhancements to improve
the system’s accuracy and expand its capabilities.
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1 Introduction

With the development of interconnected devices (Internet of
Things or IoT) (De Oliveira et al., 2021), and the expansion
of infrastructures such as hospitals, airports, shopping malls,
libraries, and stadiums (Lam and She, 2019; Liu et al., 2007),
there is an increasing demand for a continuous and interactive
system to precisely localise and guide the general public.
Indoor Positioning Systems (IPS) are crucial for personal and
asset tracking in various industrial settings such as warehouses
(Zhao et al., 2016), hospitals (Yoo et al., 2018), and industrial
spaces (Flatt et al., 2015). However, indoor wireless signals are
susceptible to issues such as attenuation, reflection, scattering,
interference, and diffraction (De Oliveira et al., 2021; Kajioka
et al., 2014), which can impact their accuracy. Despite
the progress in research, standardisation for indoor location
systems remains lacking (Deak et al., 2012), providing
opportunities for further advancements in the field (Liu et al.,
2007; Yassin et al., 2016).

There is a growing trend in using personal devices
connected to WLAN/WPAN networks, leading to the creation
of a large wireless sensor network (WSN) (Wang et al., 2009)
that utilises technologies such as WiFi and Bluetooth low
energy (BLE). Both technologies operate on the unlicensed
ISM band of 2.4 GHz (Neburka et al., 2016), offering
low power consumption, easy deployment, and widespread
infrastructure. BLE, in particular, has been found to have
advantages over WiFi for indoor positioning system (IPS)
applications (Zhao et al., 2014), such as a faster scanning
rate, frequency hopping, lower power consumption, and
unobtrusive deployment. Various positioning techniques for
Bluetooth low energy (BLE) involve estimating the distance
between anchor stations with known positions and devices
with variable positions (Yassin et al., 2016). The three
fundamental methods are time of flight (ToF) (Liu et al., 2007),
angle of arrival/departure (AoA/AoD) (Yassin et al., 2016;
Liu et al., 2007), and received signal strength based (RSS-
based) (see Figure 1). The latter can be further divided into two
different approaches, the first being distance estimation based
on channel attenuation (Zhao et al., 2014), and fingerprinting,
which estimates the asset location by matching the online RSS
measurement with previously mapped values (Yassin et al.,
2016).

The main method for estimating distance and position
in BLE-based IPS is RSS/RSSI, but there are some
considerations to take into account (Lam and She, 2019). The
accuracy of this method depends on the signal rate and data
filters, as studied in Lam and She (2019). However, the channel
response is also impacted by radio-frequency phenomena,

such as absorption, refraction, or interference, which can make
it difficult to derive a deterministic formula to relate measured
radio power with distance/position (Neburka et al., 2016;
Faragher and Harle, 2015). To improve the position error, data
filters such as median filtering (Faragher and Harle, 2015) or
Kalman filtering (De Oliveira et al., 2021) can be applied.
Antenna directivity is also crucial for RSS-based algorithms,
as signal intensity plays a key role in their accuracy (Kajioka
et al., 2014). Several studies have investigated the performance
of multilateration RSS-based methods (De Oliveira et al.,
2021; Dinh et al., 2021; Faragher and Harle, 2015). For
example, De Oliveira et al. (2021) and Dinh et al. (2021)
reported an overall system accuracy of 2.33 m and 1–2 m,
respectively, with a density of 3 anchors per 70 m2 and 96 m2.
In contrast, Faragher and Harle (2015) achieved an accuracy
of 2.5 m with a lower density of 3 anchors per 118 m2.

Figure 1 Different distance/positioning methods based on
Bluetooth technology (see online version for colours)

A new strategy utilising updates and optimisations from
the Bluetooth 5.1 standard has been proposed to overcome
some of the RSS-based constraints. Bluetooth 5.1 is an
evolution of its precedent 5.0, presented by Bluetooth SIG©
in 2019, and includes improvements to the Bluetooth core
specification such as advanced Generic Attribute Profile
(GATT) catching, changes on channel advertisement routine,
and direction-finding capability (Bluetooth SIG, 2020). This
latest version brings great potential to applications on IPS
(Suryavanshi et al., 2019). At the link layer, a new field named
Constant Tone Extension (CTE) was added to the end of
the packet structure (Bluetooth SIG, 2020). The tone has a
variable length – configured by the host controller interface
(HCI) – and constant frequency, wavelength, and phase
signal material. These allow for In-Phase and Quadrature
(IQ) modulation to be performed (Figure 2). In addition to
angle calculation, some Bluetooth radio manufacturers such
as Texas Instruments© (2021) and Nordic Semiconductor©
(2021) made use of this new physical update brought with
BLE 5.1 to internally develop solutions to distance estimation.
These new techniques make use of new properties offered by
the CTE extension to compute the IQ-modulated properties
based on signal propagation calculations – inverse fast-Forrier
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(IFFT), phase-slope, and link-loss (RSSI) – to obtain more
robust and precise distance estimations. Proprietary methods
for distance estimation in BLE-based Indoor Position Systems
promise easier deployment, smaller infrastructure, and more
robust results in real-world scenarios compared to raw RSS-
based methods that require additional data processing.

Figure 2 New Bluetooth 5.1 packet structure embracing the CTE
appendices (see online version for colours)

Therefore, the aim of this study was to assess the effectiveness
and potential of the recently introduced distance estimation
techniques in Bluetooth 5.1 by designing a low-cost solution
for asset tracking in practical indoor settings. Signal phase
processing-based methods for distance estimation is an
inventive approach, as they are relatively new and have only
recently been adopted as the industry standard since their
introduction in 2019.

This paper explores and compares the new distance
estimation methods provided by Nordic Semiconductor©
hardware and the nRF Connect SDK for configuring the
physical layer structure in our asset tracking solution. It
also presents a proposed system architecture comprising
the necessary physical components and software stack. The
methods were evaluated through field tests in an active office
setting to establish a baseline and benchmark. After distance
estimation, a complete IT infrastructure was created including
base stations, a back-end engine, and a position estimation
interface. To compute asset location from the distance between
the asset and base stations, we chose multilateration for its low
complexity and computational cost (Jianyong et al., 2014).

The rest of the paper is organised as follows: Section 2
details the different distance methods implemented by Nordic
Semiconductor© used in our solution; Section 3 describes the
implemented system’s hardware and firmware, data workflow
and back-end engine; Section 4 outlines the test environment
and experiments; Section 5 present the obtained results and
analyses the underlying reasons for the results; lastly, Section 6
summarises the paper and suggests future work.

2 Distance estimation methods

For the distance estimation, functionalities available by the
library Distance Measurement compatible with nRF52 and
nRF53 SoC series were utilised. The library is included
in the nRF Connect SDK. As it is pre-built for the RTOS
operating system in C++ language, it cannot be analysed
in depth (Nordic Semiconductor©, 2023). The Bluetooth
5.1 distance estimation feature uses IQ modulation and
sampling to obtain frequency and phase attributes for the
algorithm. IQ modulation converts two different magnitudes

into one signal by using a cosine function for the In-Phase
signal and a sine function for the Quadrature signal, which
are 90◦ out of phase (Naidu, 2003). The IQ signals are
amplitude-modulated by manipulating I and Q magnitude
vectors. Equation (3) represents the modulated signal with
the corresponding In-Phase (equation (1)) and Quadrature
(equation (2)) components.

I(t) · cos(2πft) (1)
Q(t) · sin(2πft) (2)
s(t) = I(t) · cos(2πft) +Q(t) · sin(2πft) (3)
s(t) = A · cos(2πft+ ϕ(t)) =

A · cos(2πft) · cos(ϕ(t))− (4)
A · sin(2πft) · sin(ϕ(t))

The incoming signal s(t) is phase-modulated, which can
be represented as in equation (4) (in an expanded form of
equation (3)), where f is the carrier frequency, t is time, A the
amplitude of the signal, and ϕ(t) is the instantaneous phase.
Based on that, Bluetooth radio when receiving the s(t) (present
in the CTE appendices), performs an amplitude and phase
sampling that after demodulation enables the retrieving of I
and Q individual components (equation (5)).

I(t) = A · cos(ϕ(t))
Q(t) = −A · sin(ϕ(t)) (5)

A =
√
I2 +Q2 ϕ = arctan(Q/I)

2.1 Multi-carrier phase slope estimation (Phase)

For this method, the library measures the phase difference
between the two devices at multiple carrier frequencies.
The process consists of device A transmitting a signal to
device B, and this one then returning the signal back to
A at the same frequency. Device A measures the phase
difference between the received signal and its local oscillator
(Nordic Semiconductor©, 2023). The distance based on phase
difference can be represented as in equation (6), whereΘ is the
phase difference, f is the modulation frequency, and c is the
speed of light (Óafsdóttir et al., 2016). It should be noted that
the distance has to be smaller than the frequency wavelength.

Θ = 4π · d · f
c

(6)

To avoid that limitation, a multicarrier phase ranging is
implemented by Nordic Semiconductor©, where continuous
wave signals are transmitted at different frequencies.
Considering two frequencies (f1 and f2) and applying the
two frequencies to equation (6), equation (7) is obtained. To
improve solution resilience, more than just two frequencies
are used. By crossing the results of phase differences obtained
in the function of frequency, a curve graph is generated, where
the slope represents the distance. This method is known as
‘Phase Slope’.

d =
c

4π
· θ2 − θ1
f2 − f1

(7)



Leveraging Bluetooth 5.1 location services for improved multilateration 215

2.2 IFFT of spectrum

Inverse fast Fourier transform (IFFT) is used to convert
a signal from the frequency domain to the time domain.
When converted, the distance can be obtained from the time
delay constant (Wu et al., 2021). This technique is also used
in reflective radar, where the delay is twice the distance
between the antenna and a reflective object (round-trip delay)
or just once, where two devices transmit to each other (1-
way ranging mode). That is the approach implemented when
two Nordic Semiconductor© devices running the distance
estimation algorithm measure the distance between them.

2.3 Friis path loss (RSSI)

Friis formula relates the power level between two antennas to
a function of distance and operating frequency:

Pr = Gt ·Gr ·
(

λ

4πd

)2

· Pt (8)

where Gt and Gr represent the gain of the transmitter
and receiver antenna respectively, λ is the wavelength of
the transmitted frequency, and d is the distance between
devices. An inversely proportional relation of 1/d2 between
distance and received signal can be perceived. The path-loss
theory shows instead that the relationship is dependent on the
environment, transforming the relation into 1/dn, where n is
known as the path-loss factor. This factor may vary from 1.6
to 6, with experimental measurements being used to obtain it
(Zhao et al., 2014).

2.4 High precision (HPrecision)

As mentioned above, Nordic Semiconductor© keeps its
library pre-compiled, so no further deterministic mathematical
analysis assumptions are possible. It is based on the same IFFT
of the spectrum method, with the addition of more computation
in order to obtain better precision. In consequence, the
processing time increases (to the order of tens of milliseconds),
as well as the power consumption (Nordic Semiconductor©,
2023).

3 Architecture

The proposed indoor localisation solution allows for
deployment in large buildings, requiring internal network
infrastructure. Figure 3 represents the components of the
system, which are described next.

3.1 Base station

Is the element tasked with gathering BLE signals and
computing distances from the assets to be tracked (Figure 4).
The base station consists of a Nordic nRF5340_DevKit
(DevKit) flashed with the distance measurement firmware.
Connected to the DevKit, a Raspberry Pi, running a Python
script, collects and parses the data and inserts it into the
database. The antenna element plays a crucial role in the

overall system performance (Kajioka et al., 2014), factors
such as directivity, gain, and sensitivity influence the coverage
area and may erroneously interfere with the obtained position
estimations. Based on that an external monopole antenna was
deployed (instead of DevKit PCB printed antenna) to ensure
an isotropic radiation pattern over the surrounding space and
consequently achieve a more uniform coverage around the
base station placement. A metallic plate was attached to the
bottom of the antenna pole and connected to the return signal
with the purpose of creating a solid “image antenna” therefore
increasing the antenna gain. All the base stations were fixed
to a wall at a height of approximately 2 m.

Figure 3 System physical architecture and hierarchy (see online
version for colours)

Figure 4 Picture of base station assembly (see online version
for colours)

3.2 Database

A server deployment capable of storing information about the
asset tracking system, including information about the current
state of the system and building details - dimensions, floor
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data and platform-specific information about the base stations’
location, media access control (MAC) address, and identifiers.
The database is deployed using MySQL and is used by various
elements of the system to query and add data about positions
and distance estimation events.

3.3 Asset tracking engine

A Backend system on an applicational server that composes
the core of the solution. The processing of localisation
algorithms runs on this platform. It queries the database to
fetch building and beacon information and calculates the
location of assets based on data received from base stations
and stores new locations in the database.

3.4 Beacon/Asset

Beacon and asset are different physical entities, where the
beacon is the device that emits a BLE radio signal. In this
context, the beacon will be linked to a specific asset (target of
localisation). Therefore in the context of these experiments,
they can be treated as one.

3.5 Information workflow

Figure 5 illustrates the main system information workflow
for computing the location of assets. There are five entities
represented in the flow diagram, four of them are previously
explained components, and the remaining entity is the front
end, used only to visualise the current state of the assets
in the building. Database is the core entity that needs to
be fully configured before the system’s deployment. Other
elements query the database for an initial configuration. Base
stations need to know the addresses of all other base stations
in the building and start scanning for assets and computing
distances. Engine startup is similar, regarding the database
queries. The base station redirects the resulting scan to the
Asset Tracking engine and Database via web socket and API
respectively. Engine processes the event data, if the positioning
is successful, it stores the new location of the given asset in
the database.

3.6 Software

The software ecosystem in Figure 6 has dependencies between
several modules, including a base station with components,
a database, and a third module that can be used for real-
time asset tracking or data storage and computation during
development. The real-time tracking scenario uses a server to
process data and output estimated positions to the database.
The development scenario uses a software infrastructure called
Playground to run previously gathered and annotated samples
and evaluate results. The core code for the system called the
‘Asset tracking module’, is shared between the Playground
and the real-time tracking back-end.

3.7 Asset tracking module

This module performs calculations and algorithm
implementation to estimate locations for each asset using input

signals, it is developed using Python and can communicate
directly with the database. It can be used in real-time when
deployed in the Real-time tracking back-end or in a simulation
when running the playground on a local machine.

Figure 5 System elements information workflow (see online
version for colours)

Figure 6 Software stack (see online version for colours)

3.8 Playground

This project, developed using Python, is a development
tool that allows running individual parts of the algorithm
and location estimation mechanics in the Asset Tracking
Module, with the ability to explore and evaluate results using
annotations for each sample. It includes tools for signal input
evaluation and interpretation, error plots, position plots on
a map, sample playback with map overlay, and other useful
metrics.

3.9 Back-end

Also a Python-based component depending on the same
Asset tracking module. Using a socket, the Back-end receives
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scans directly from the base station and computes a location
estimation through the Asset tracking. For a proof-of-concept,
a front-end is used to check the current system status and
locations.

3.10 Database

A simple database deployment with our system infrastructure
(tables/collections). Currently using MySQL due to ease of
implementation and deployment.

3.11 Base Station(s)

A Python script is used at startup to load the database
and initialise it. The communication between Raspberry and
DevKit uses the serial port.

4 Experiments

The indoor location implementation uses a radio propagation
model to calculate the distance between an asset and
base stations. The first set of methodologies includes
experimentation for distance estimation with a single pair of
DevKits (Section 4.2), while the latter approximates the real
asset tracking scenario (Section 4.3).

4.1 Environment

The study used an open office setting as a realistic indoor
scenario, with desks, electronic devices connected by WiFi
and Bluetooth, and people present to affect distance estimation
accuracy. The location of the base stations and assets was
recorded and compared to the ground truth. The asset’s
location was changed frequently during the acquisition.

4.2 Distance estimation with line of sight (LoS)

In order to compare different estimation methods provided
by Nordic Semiconductor DevKit (i.e., RSSI, Phase, IFFT,
and HPrecision), distance computations were performed
between a fixed base station and an asset moving away in
a straight line. The asset’s location was switched every 60
min (approximately), resulting in three different test distances:
5.2 m, 9.0 m, and 12.7 m. In this experiment, no obstacles were
present between the asset and the fixed base station, but the
circulation of people within the office was allowed. Before
calculating the errors, raw distance estimations were filtered
using a median filter with a sliding window of 5 samples,
which removed outliers. Then, for each position, the average
error was calculated. The overall average error – including all
tested distances – was also calculated. To calculate the errors,
the 60 s surrounding the moments when the asset position
was moved were excluded. This operation allowed for the
exclusion of distance estimations while the asset was moving,
and to account for imprecise annotations of relocation timings.

4.3 Asset tracking

The aim of this experiment was to locate a single asset
through time with three base stations in an indoor close-to-
real-world scenario, with electromagnetic interference from
other devices. Tests were performed in an open space office,
having the base stations located in three corners of the space,
separated by a maximum of 30 m. The placement of the base
stations was planned to allow for coverage of the experimental
environment, but it was not optimised any further. Figure 7(B)
shows the building schematic and the location of the three
base stations (green circles). The asset was placed in different
positions, switched every 30–60 min, over a total of 13 h.

Figure 7 Algorithm heatmap (A) and analysis (B). Pixelised
schematic scale, where 1 pixel corresponds to 0.20 m
(see online version for colours)

To locate the asset, a multilateration algorithm uses each
of the aforementioned distance metrics. First, we calibrated
raw distance estimations by subtracting the offsets, as
recommended by Nordic (Nordic Semiconductor©, 2022a).
According to Nordic Semiconductor© (2022a), these offsets
may depend on the design of the radio circuit, the antenna used,
and the PCB layout, and should, therefore, be compensated.
To obtain these offsets, we have calculated the average
errors (i.e., the average difference between the measurement
values and the actual distances) obtained in the LoS
experiments (Section 4.2). Next, we applied a median filter
to remove outliers, using a sliding window with 3 samples
(experimentally set). Considering more than one static single
measurement (as suggested on Nordic Semiconductor©
(2022a) makes the offset obtained more precise and exempted
from external interference.

This was performed within a 1-min window prior to the
current reading.
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Then, for each base station/asset pair, the average distance
of the window is computed. This distance is illustrated as the
radius of the black circumferences in Figure 7. Through early
experimentation, we noticed that the distance measurement
errors follow a symmetric distribution around the mean – in
other words, a Gaussian distribution. Therefore, for each base
station connecting to the asset, Gaussian rings representing
probabilities for the asset location were generated. The rings
are centred on the corresponding base station, with radii
equal to the average distance, a standard deviation of 15
pixels (corresponding to 15 times 0.20 = 3 m), and a ring
thickness of 3 m (experimentally set). The Gaussian rings
corresponding to the same asset were then summed and
overcast to the shape of the building schematic. The resulting
matrix values were divided by the number of base stations,
to normalise probability values. A threshold of 0.99 was
applied to the matrix to exclude low-intensity (or low-
probability) positions. Finally, the weighted average of the
resulting probabilities (heatmap shown in Figure 7(A) and
blue shading in Figure 7(B)) corresponds to the position
estimation (centre of the white ellipse in Figure 7(B). The
standard deviations in the horizontal and vertical axis provide
an expected uncertainty area for the asset location (white
ellipse in Figure 7(B).

5 Results and discussion

Figure 8 shows raw distance estimations and ground truth
obtained in the LoS experiment described in Section 4.2.
Table 1 provides a quantification of the errors, after applying
median filtering to the raw data.

Table 1 Line of sight distance estimation results

Distance Error Error Error Error
method 5.2 m 9.0 m 12.7 m Total

RSSI –4.1 ± 0.4 –6.5 ± 0.6 –9.5 ± 1.2 –7.7 ± 2.1
Phase 10.1 ± 0.5 5.9 ± 0.6 13.1 ± 0.5 9.7 ± 3.4
IFFT 1.7 ± 0.1 0.9 ± 0.1 2.7 ± 0.1 1.9 ± 0.9
HPrecision 2.1 ± 0.7 2.0 ± 0.1 3.0 ± 0.1 2.5 ± 0.5

Errors shown in m as average ± standard deviation.

Analysis reveals that the methods of Phase and RSSI provide
the worst distance estimation results, with 9.7 m and –7.7 m
total average error, respectively. All the errors in this scenario
were positive, with the exception of the RSSI method. In
the case of RSSI, the mean absolute error increased from
4.1 m to 9.5 m when increasing the distance from 5.2 m to
12.7 m. This is in accordance with the expected path-loss
behaviour for RSS-based methods (Section 2.3) because the
path-loss factor considered by the algorithm is static and
possibly not adequate for the environment of this work. The
dispersion of the RSSI method’s errors was very high (as can
be visualised in Figure 8), but the median filter attenuated
this limitation, resulting in an error dispersion lower than the
Phase method. The Phase method revealed the highest offset
and error dispersion overall, with errors varying dramatically
with distance (from 5.9 m to 13.1 m). This error is expected

since the measurement is based on phase propagation delay
– any reflection will always have a greater phase difference
when compared to the LoS path (Óafsdóttir et al., 2016). The
errors of the IFFT and HPrecision remained under 3 m for
all tested conditions, with standard deviations of less than
1 m denoting higher consistency of both methods. Although
we reported the results of a single base station/asset pair in
this LoS experiment, the other base stations were already
mounted in the office. The orchestration of the connections
between each pair asset/base station resulted in momentary
connection loss with the reported base station, which justifies
the lack of information in some of the periods shown in
Figure 8. The distance estimation process is divided into two
phases: an initial synchronisation where the Nordic devices
exchange packets between them, and a second part of distance
measurement. This process can be configured through variable
settings like advertising and scan window period, time-slot
between measurements, or even events’ queue limit count
(Nordic Semiconductor©, 2022a). The phenomenon detected
shows that some synchronisation settings must be optimised
in order to avoid these blindness periods in the future. To
evaluate the results of the asset tracking solution described in
Section 4.3, we set up an experiment that intended to simulate
a real-world scenario. Table 2 represents an overview of the
location results for each of the provided distance metrics
after applying the correction for the offsets mentioned in
Section 4.3.

Table 2 Asset tracking results

Method RSSI Phase IFFT HPrecision

Avg 6.4 ± 5.0 3.6 ± 2.5 2.5 ± 2.1 2.1 ± 1.6
Error(m)
Avg 6.3 ± 5.1 3.5 ± 2.4 2.4 ± 2.0 2.1 ± 1.5
Error*(m)
Location 35.4 ± 14.9 22.8 ± 16.1 22.3 ± 8.0 20.0 ± 7.3
area( m2)
Location OK % 42.1 30.6 69.0 80.7
Dataset time(h) 13
#Events 36683

Errors shown as average± standard deviation. *Excluding 60 s before
and after asset position change.

In this table, average error metrics represent the distance
between the centre of the estimated ellipse and the actual
ground truth position (with and without excluding a window
of 60 s before and after asset position changes). The average
error with a 1 min exclusion window thus denotes the errors
measured while the asset was static.

The ‘Location Area’ metric presented in Table 2 represents
the average of the area of the ellipse for all processed positions,
being thus a measurement of location certainty. ‘Location OK’
is a percentage of the processed positions where the ground
truth lies inside the ellipse. This provides a rough indication of
proximity to the ground truth, since the estimated position may
be relatively close to the ground truth without being inside the
ellipse. The dataset used for this preliminary evaluation had a
total duration of 13 h, 14 different asset locations, and 36683
events reported. The best-performing result was achieved
using the HPrecision method, with an average error of
2.1±1.6 m, followed by the IFFT method with a slightly higher
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Figure 8 Line of sight distance estimation experiment. Ground truth distances (green), distance estimations provided by each of the methods
(light blue), and estimated distances after filtering (dark blue) are shown. The last graph shows the differences between estimated
and ground truth distances (see online version for colours)

error of 2.5±2.1 m. This is the most comparable metric with
other studies. The proposed ellipse area provides useful insight
into the solution’s performance within this controlled scenario,
but it is not a sufficiently reliable metric for comparison with
other studies or scenarios. The average size of the ellipse
was also smaller for the HPrecision input, with a 20.0 m2

average area. These results showed that not only the centre
of the ellipse was on average closer to the real position, but
the area of the estimation was also more compact. Moreover,
the estimated ellipse contained the ground truth more often
in the HPrecision distance, totaling 80.7% of the time. The
RSSI measurements, contrarily, revealed the least consistent
and accurate location measurements as denoted by the highest
location errors overall. The performances reported in our study
were consistent with Nordic documentation concerning the
expected performance of the different distance estimation
methods (Nordic Semiconductor©, 2022b). Although in this
study no specific efforts were taken to optimise location
estimates (i.e., we used a standard multilateration approach),
these results show localisation of assets with errors that
are already compatible with real-world requirements to
support asset management with room-level accuracy. The
current implementation approach does not ensure real-time
estimations of the asset position, but this should not be a critical
issue for the intended real-world application, as the assets
usually stay in the same position for hours at a time. This issue
may still be considered and improved in the future.

Besides environmental factors, other possible causes for
error currently include:

• asset tracking module factors, nominally
low-complexity algorithms may under-analyse
important data aspects

• the small dataset hinders the optimisation of the
algorithm at this stage and may lead to bias

• although our LoS estimations can be considered more
realistic and challenging, the offsets considered as an
input for the localisation algorithm should be
determined using a reference distance of 60 cm between
the devices according to Nordic (Nordic
Semiconductor©, 2021)

• non-optimal base station placement. The current
placement has two base stations sharing the vertical axis
of the schematic, which may have led to higher errors
on the horisontal axis. Besides that, the base stations
were placed in corners, which may change the radiation
pattern

• annotation errors, namely imprecise annotation of
timings, can negatively impact the results

• schematic resolution scale uncertainty of 0.20 m

• schematic not yet being used as input in the location
processing

• most-likelihood area for asset position can be improved
– from an ellipse to a more accurate post-thresholding
cloud
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• nRF Distance Measurement library settings for
synchronisation and events queue control between
Nordic devices require more experimentation for better
system behaviour in order to avoid significant time slots
without events.

These and other aspects should be taken into account to
improve localisation performance. For instance, combining
the results provided by the different metrics could be a
promising way forward. Moreover, the impact of obstacles
could be reduced by taking into account the building
schematics information. Applying more dynamic filtering
approaches, such as Kalman filters, could also improve
the results. Base station placement is critical and could
be improved with further knowledge of the building and
construction materials.

6 Conclusion

In this initial study, we assessed the capabilities of novel
Bluetooth 5.1 distance estimation techniques for indoor
localisation. The HPrecision metric yielded the best outcomes,
achieving an average positioning error of 2.1±1.6 m after
using a standard multilateration algorithm. The results were
obtained in a challenging indoor setting with obstacles (e.g.,
people and objects) and possible interference from other
IoT devices. Although we did not incorporate any specific
optimisations to exploit the collected data, the obtained
results are already compatible with numerous real-world
applications, demonstrating an intriguing correlation between
accuracy and required infrastructure size. The findings provide
a promising foundation for future optimisation. Regarding
future work, we plan to incorporate more data volume and
diversity to

• completely comprehend the factors that can influence
accuracy

• optimise the localisation hyperparameters (e.g., via a
grid search)

• locate multiple assets concurrently using more than
three base stations

• execute localisation for multiple floors

• optimise base station placement.

A market-ready solution can benefit from integrating with
outdoor localisation (e.g., Google Maps) and having more
infrastructure deployment scalability by decreasing hardware
components and computing expenses.
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