
 
European J. of Industrial Engineering
 
ISSN online: 1751-5262 - ISSN print: 1751-5254
https://www.inderscience.com/ejie

 
An integrated two dimensional cutting stock and lot sizing
problem with two criteria
 
Ayse Burcu Sanan, Meral Azizoğlu
 
DOI: 10.1504/EJIE.2023.10054219
 
Article History:
Received: 29 March 2022
Last revised: 14 June 2022
Accepted: 07 August 2022
Published online: 01 September 2023

Powered by TCPDF (www.tcpdf.org)

Copyright © 2023 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ejie
https://dx.doi.org/10.1504/EJIE.2023.10054219
http://www.tcpdf.org


   

  

   

   
 

   

   

 

   

   766 European J. Industrial Engineering, Vol. 17, No. 5, 2023    
 

   Copyright © 2023 Inderscience Enterprises Ltd. 
 
 

   

   
 

   

   

 

   

       
 

An integrated two dimensional cutting stock and lot 
sizing problem with two criteria 

Ayse Burcu Sanan and Meral Azizoğlu* 
Department of IE, 
METU, 
Ankara 06800, Turkey 
Email: burcu.ergen@metu.edu.tr 
Email: ma@metu.edu.tr 
*Corresponding author 

Abstract: In this study, we consider an integrated two dimensional cutting 
stock and lot sizing problem arising in an aircraft manufacturing plant. The 
items are to be cut from steel panels of identical size to satisfy all periodic 
demands over a specified planning horizon. Two objectives, minimising the 
number of panels cut and the total inventory carrying cost of the items, are 
defined and all non-dominated objective vectors concerning the defined 
objectives are generated. To generate each non-dominated objective vector, we 
propose a mixed integer linear programming model whose efficiency is 
improved by optimality properties and bounding mechanisms. The results of 
our experiments have revealed that the instances with few items can be solved 
for up to 14 periods and the instances with more items can be solved for up to 
seven periods, in two hours. [Submitted: 29 March 2022; Accepted: 7 August 
2022] 
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1 Introduction 

The cutting stock problem and the lot sizing problem have been studied by many 
researchers for several decades owing to their practical importance. The majority of the 
past research has considered those problems separately due to their individual 
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computational complexity. Recent researchers have recognised that their integration leads 
to improved product volumes and reduced production costs. Moreover, the newly 
developed advanced computing technologies could handle higher complexities, hence 
offering a challenge to studying the integrated problems. 

In this study, we consider an integrated two dimensional cutting stock and lot sizing 
problem. We assume a given planning horizon where the periodic demand for the small 
rectangular items should be obtained from larger rectangular blocks of identical size. We 
assume two-stage guillotine cuts, where the first stage is horizontal. The problem is to 
find the number of rectangular items to be cut in each period. Two objectives of our 
concern are to minimise the number of panels (cutting stock problem related) and to 
minimise the total inventory holding cost of the small items (lot size problem related). 

The two dimensional cutting stock and lot sizing problem has many application areas 
including but not limited to copper, furniture, glass and fibreglass industries. Our 
particular interest in the problem is from an application to an aircraft company located in 
Ankara, Turkey, to manage its steel cutting operations. The steel cutting operations in the 
plant are performed using a guillotine cutting machine. The items having specified daily 
demand have to be cut from identical big steel plates. 

The number of plates used in each period defines the total raw material cost and raw 
material inventory holding amounts at the stock area that should be minimised. The small 
steel items have irregular shapes as shown in Figure 1. 

Figure 1 The items to be cut (see online version for colours) 

  

The cutting operations at the plant involve two stages. First, the smallest rectangular 
shape covering the entire irregular item is cut by the guillotine cutting machine and then a 
precise shape is obtained using a programmable rotating cutter. The items have rigid 
orientations such that their widths and lengths should fit those of the panels. 

The irregular-shaped items are used as components in the final products of the 
company, hence their daily requirements are projected from the production levels of the 
final products. As the items are used in final products, any delay in their cutting times 
would delay the promised delivery times of the final products; hence the items should be 
cut no later than their required times. Moreover, their inventory carryings over long 
periods are undesirable, as some of them are fragile and some occupy space till their 
required times. 

The production managers of the aircraft company want to see a set of solutions that 
demonstrates meaningful trade-offs between raw material costs of the panels and 
inventory carrying costs of the items. To help the production managers, we generate all 
non-dominated objective vectors considering these two objectives. From this set, they can 
make a final choice from the presented cutting plans using their preferences. To generate 
the set of non-dominated objective vectors, we develop several mathematical models 
along with several properties of the best solutions. 
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To the best of our knowledge, our study is the first reported research on the  
multi-criteria integrated two dimensional cutting stock and lot sizing problem. 

The rest of the paper is organised as follows. In Section 2, we review the related 
research. Section 3 defines the problem and the mathematical models. In Section 4, we 
discuss the details of our solution approach to generate all non-dominated objective 
vectors. We discuss the results of our experiments in Section 5. In Section 6, we give the 
main conclusions and discuss the future research directions. 

2 Literature review 

In this section, we first review single criterion two dimensional cutting stock problems 
(2DCSPs) and then multi-criteria cutting stock problems. Finally, the literature on the 
integrated cutting stock and lot sizing problems is summarised. 

2.1 Single criterion 2DCSPs 

A comprehensive review of single criterion one-dimensional cutting stock was given in 
Delorme et al. (2016). Gilmore and Gomory (1965) introduced the 2DCSP along with  
k-stage and multiple stock size extensions. They proposed a mathematical model and a 
column generation technique that became the basis for the evolving research. 

Extensive research on the 2DCSP exists. Furini et al. (2016) and Martin et al. (2020) 
considered 2DCSP with an unlimited number of stages and propose integer programming 
models for their solutions. Some noteworthy studies that consider two-stage 2DCSP are 
due to Cintra et al. (2008), Furini et al. (2012), Silva et al. (2010), Furini and Malaguti 
(2013) and Ayasandır and Azizoğlu (2022). Cintra et al. (2008) developed heuristic 
algorithms for the two-stage 2DCSP using the linear programming relaxations of Gilmore 
and Gomory’s (1965) model. Later on, Furini et al. (2012) proposed a heuristic algorithm 
for the two-stage 2DCSP using the column generation idea and showed that the algorithm 
is superior to that of Cintra et al. (2008). Pseudo-polynomial mathematical models for the 
two and three stages 2DCSP were developed by Silva et al. (2010). Furini and Malaguti 
(2013) extended Silva et al.’s (2010) model and Gilmore and Gomory’s (1965) column 
generation idea to the two-stage 2DCSP with multiple stock sizes and proposed three 
mathematical programming models. Their objective was to minimise the total area of the 
panels. Recently, Ayasandır and Azizoğlu (2022) extended the most efficient model of 
Furini and Malaguti (2013) to their total net profit objective. They also proposed a new 
model along with some optimality properties and showed that the new model outperforms 
Furini and Malaguti’s (2013) model. 

2.2 Multi-criteria cutting stock problems 

We are aware of too few studies on multi-criteria cutting stock problems. These are due 
to Kolen and Spieksma (2000), Cui and Yang (2010) and Aliano Filho et al. (2018, 2019) 
for one, De Armas et al. (2011) and Mellouli et al. (2019) for two and Gonzalez et al. 
(2016) for three dimensional problems. Kolen and Spieksma (2000) studied total cutting 
loss and the number of different patterns used in objectives. They presented a branch and 
bound algorithm to find the Pareto set. Cui and Yang (2010) considered three objectives: 
the total panel cost, the profit from the leftovers (the unused length of a panel is leftover 



   

 

   

   
 

   

   

 

   

    An integrated two dimensional cutting stock and lot sizing problem 769    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

once it is longer than a threshold) and the profit from the leftovers coming from past 
cutting operations. They proposed a heuristic algorithm that first cuts the major part of 
the demand and then the rest. Aliano Filho et al. (2018) studied two objectives: the 
number of times a cutting pattern is used and the number of different cutting patterns. 
They generated all non-dominated objective vectors and presented four methods: the 
weighted sum, the Chebyshev’s metric, the ε-constraint and an improved version of 
Chebyshev’s metric. Aliano Filho et al. (2019) considered two objectives: the cost of 
using cutting patterns and the cost of different cutting patterns. They generated all  
non-dominated objective vectors using an exact scalarisation approach. De Armas et al. 
(2011) considered two objectives: the total profit and the number of panels. To generate 
the set of non-dominated objective vectors, they proposed a non-dominated sorting 
genetic algorithm, strength Pareto evolutionary algorithm, and indicator-based 
evolutionary algorithm. Mellouli et al. (2019) considered the material waste and the setup 
costs as two objectives. They used a genetic algorithm to find the set of all  
non-dominated objective vectors. Gonzalez et al. (2016) studied two objectives: the total 
volume and weight of the items placed. They applied evolutionary algorithms and 
developed a multiple-level filling heuristic to obtain all non-dominated objective vectors. 

2.3 Integrated cutting stock and lot sizing problems 

We first review the most-noteworthy single criterion integrated cutting stock and lot 
sizing studies and then discuss two multi-criteria studies that exist in the literature. We 
refer the reader to Melega et al. (2018) for the classification and extensive review of the 
integrated cutting stock and lot sizing problems. 

2.3.1 Single criterion integrated cutting stock and lot sizing problems 

Farley (1988) was the first author who addressed the integrated cutting stock and lot 
sizing problem. He considered the clothing industry and proposed integer and quadratic 
programming models to minimise the total cutting, sewing, and storing costs. Hendry  
et al. (1996) proposed a two-stage solution approach for the integrated cutting stock and 
lot sizing problem in the copper industry. In the first stage, the cutting stock problem was 
solved heuristically and in the second stage, the lot sizing problem was solved using an 
integer programming model. Nonås and Thorstenson (2000, 2008) studied the integrated 
two dimensional cutting stock and lot sizing problem arising in a Norwegian truck 
company. They assumed irregular shapes and stochastic demand and aimed to minimise 
the total raw material cost and setup cost. Nonås and Thorstenson (2000) presented a 
column generation procedure to solve small-sized instances and Nonås and Thorstenson 
(2008) improved the procedure using a sequential heuristic by Haessler (1971) to solve 
large-sized instances. Poltroniere et al. (2008) studied an integrated one dimensional 
cutting stock and lot sizing problem arising in the paper industry. They aimed to 
minimise the sum of inventory costs, setup costs, material waste costs and final item 
inventory costs. They developed an integer programming model and two heuristic 
procedures. Gramani and França (2006) studied an integrated two dimensional cutting 
stock and lot sizing problem in the wooden industry. They aimed to minimise the total 
setup costs, number of plates, and inventory carrying costs of items, and proposed a 
network flow-based solution approach. Gramani et al. (2009) extended Gramani and 
França’s (2006) model to include the production and inventory holding costs of the final 
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products. They proposed a Lagrangian relaxation-based heuristic approach where the 
subproblems require an exponential effort. Silva et al. (2014) studied an integrated two 
dimensional cutting stock and lot sizing problem in the furniture industry. They aimed to 
minimise the total material, waste and storage costs. They proposed two integer 
programming models by extending the previously reported models in the literature. Leao 
et al. (2017) studied the integrated one dimensional cutting stock and lot sizing problem 
in the paper industry. They developed three mathematical models: pattern-oriented, 
period decomposition, and machine decomposition. To solve the machine decomposition 
model, they proposed a heuristic that uses a column generation method along with an 
adaptive neighbourhood search. Vanzela et al. (2017) studied the integrated two 
dimensional cutting stock and lot sizing problem arising in the Brazilian furniture 
industry. They proposed a mathematical model and a column generation-based heuristic 
to minimise the raw material waste, production, and inventory costs and to include the 
safety stock level and saw capacity constraints. Signorini et al. (2022) studied a one 
dimensional cutting stock and lot sizing problem arising in the concrete industry. They 
proposed two mathematical models and two heuristic procedures to minimise total 
production and inventory costs. Cristofoletti et al. (2021) studied a three dimensional 
cutting stock and lot sizing problem arising in the mattress industry. They presented a 
mathematical model to minimise total costs and waste. Andrade et al. (2021) considered a 
one dimensional cutting stock and lot sizing problem for a manufacturer of automotive 
springs to minimise inventory costs and losses in the steel bar cutting process. They 
proposed a branch and price algorithm using a column generation method. 

2.3.2 Multi-criteria integrated cutting stock and lot sizing problems 

Campello et al. (2020) and Oliveira et al. (2021) studied integrated one dimensional 
cutting stock and lot sizing problems. Campello et al. (2020) presented multi-criteria 
approach arising in the paper industry. Their objectives were minimising total production 
costs, inventory costs of paper rolls, and setup costs of machines and minimising total 
material waste and inventory costs of items. They proposed a weighting approach and an 
ε-constraint method to generate all non-dominated objective vectors. Oliveira et al. 
(2021) proposed a general goal programming methodology and tested their approach on 
one-dimensional problems. 

To the best of our knowledge, there is no reported study on the multi-criteria 
integrated two dimensional cutting stock and lot sizing problem. 

3 Problem definition and mathematical models 

We consider a single panel type and multiple periods. There are n item types to be cut 
from several copies of the single panel type that is defined by its length L and width W. 
Item j, j  {1, …, n} is characterised by its length lj and width wj. We assume that the 
items are sorted in their non-increasing order of widths, i.e., w1 ≥ w2 ≥ … ≥ wn. 

The cuts are guillotine type and orientations of the items on the panels are important, 
i.e., the width and length of the item should be consistent with those of the panel.  
Figure 2 depicts the placement of the items on a particular panel. The figure shows a  
two-stage guillotine cut where the first stage is horizontal. Each horizontal cut defines a 
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level and the width of the level is defined by the first item, which is, by construction, the 
largest-width item assigned to that level. 

Note that we define horizontal levels because the first stage guillotine cut is 
horizontal. Vertical levels would be defined if the first stage of the guillotine cuts was 
vertical. The shaded area of the panel shows the waste resulting from the placements of 
items on the panel. We say an item initialises a level if it is the first assigned item to that 
level. In Figure 2, items 1, 2 and 3 initialise levels 1, 2 and 3, respectively. The other 
items assigned to a level are referred to as additional items. In Figure 2, items 2 and 3 are 
the additional items assigned to level 1; items 2 and 5 are the additional items assigned to 
level 2; items 3, 5 and 6 are the additional items assigned to level 3. 

There are T time periods whose cutting assignments should be planned together. Item 
j has a demand of djt units in period t. The demand of period t should be satisfied from the 
cuts of periods 1 through t. The cost of holding a single unit inventory of item j is hj 
money units. No backlogging or lost sales are allowed. 

Figure 2 The placement of items on a panel (see online version for colours) 
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We aim to define a cutting plan for each panel used at each period t with a perspective of 
minimising the following two measures over the planning horizon. 

1 Total inventory holding cost – TIC. 

2 Total number of panels used, i.e., the total cost of panels – TP. 

We propose two mixed integer linear programming (MILP) models that are modified 
from the models by Ayasandır and Azizoğlu (2022) for the single period, single 
objective, multiple panel types 2DCSP. Ayasandır and Azizoğlu (2022) extended the first 
model from Furini and Magnanti (2013) who had proved its outperforming performance 
over the previously reported models. Ayasandır and Azizoğlu (2022) showed that their 
second model outperforms the first model, hence it is even better. Our contribution to 
those models is to consider additional decisions to capture the inventory carrying 
amounts between two consecutive periods. 

We next explain these MILP models. 

3.1 MILP model I 

We define 
1 1

n T
jt

j t
D d

 
   as the total item demand over all periods. At least one 

item is cut at each level of a panel, hence there are at most D levels over all panels. 
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Recall that the items are in their non-increasing order of widths. Hence in period t, 

any item j may be cut from levels in range [1, jt] where 
1

j T
jt sr

s r t
d

 
   and  

0t = 0. Any level i in period t can be used to cut the items in the range [it, n] where  
it = min {r: 1 ≤ r ≤ n, rt ≥ i}; i = 1, …, D. Hence, it returns the item that initialises 
level i in period t. 

The binary decision variables are defined as: 

if panel is used in period
1,

{1, , }, {1, , }

0, otherwise                             
kt

k t

q k D t T


  



… …  

if item initialises a level in period
1,

{1, , }, {1, , }

0, otherwise                                           
it

i t

y i D t T


  



… …  

if level is used by panel in period
1,

{1, , 1}, { , , }, {1, , }

0, otherwise                                                      
kit

i k t

z k D i k D t T


    



… … …  

The quantity-based decision variables are as stated below: 

xijt the number of additional items (addition to the initialising item) of type j put in level 
i in period t. i  {1, …, D – 1}, j  {it, …, n}, t  {1, …, T} 

Ijt amount of item j carried (inventory) from period t to t + 1. j  {1, …, n}, t  {1, …, 
T}. 

The constraint set is defined below. 

 Inventory – cut amount balance: The amount that initialises a level together with the 
amount further cut at that level plus inventory carried from the previous period is 
equal to the total demand in the current period plus the inventory carried to the next 
period. 

1,

, 1

1 1

{1, , }, {1, , }
jt jt

j t

ijt it j t jt jt

i i

x y I d I j n t T




  

       … …
 



 (1) 

 Length capacity: For each period, the sum of the lengths of the items cut from any 
level should not exceed the length of the panel. 

  {1, , 1}, {1, , }it

it

n

ijt j it

j

x l L l y i D t T


       … …


 (2) 

 Width capacity: The sum of the widths of the items that initialise the levels of the 
panel should not exceed the width of the panel. 

 
1

{1, , 1}, {1, , }it kt

D

kit kt

i k

z w W w q k D t T
 

       … …   (3) 
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 Level-panel relation: A level should either initialise or be assigned to a level of a 
panel. 

1

1

{1, , }, {1, , }
i

kit it it

k

z q y i D t T




    … …  (4) 

 Binary variables, non-negativity and integrality: 

{1, 0} {1, , }, {1, , }, {1, , }kitz k D i D t T   … … …  (5) 

{1, 0} {1, , }, {1, }ity i D t T  … …  (6) 

{1, 0} {1, , }, {1, , }ktq k D t T  … …  (7) 

0 and integer {1, , }, {1, , }, {1, , }ijtx i D j n t T   … … …  (8) 

0 {1, , }, {1, , }jtI j n t T  … …  (9) 

The performance criteria are defined as: 

1 minimise total inventory cost, 
1 1

n T
j jt

j t
TIC Min h I

 
    

2 minimise total number of panels, 
1 1

.
D T

kt
k t

TP Min q
 

    

We hereafter refer to equations (1) through (9) sets as x  XM1 and refer to model I as: 

1s.t. M

Min TIC

Min TP

x X
 

3.2 MILP model II 

Ayasandır and Azizoğlu (2022) noted that once the total demand over all items (D) is 
high, the model with decision variables defined on the total demand value – like model I 
– may become hard to solve. Recognising this fact, they proposed an alternative model 
that defines the decision variables on the number of available panels. We extended their 
alternative model to include the inventory-related decisions over multiple periods. 

We let P be an upper bound on the number of panels cut and let UBLjt be an upper 
bound on the number of levels for item j in period t. Later, we will discuss the way P is 
defined in our implementation. 

Note that 
1

T
jr

r
d

  is the maximum amount of item j cut in period t, as no backlogs 

are allowed and all demand should be met. From each panel, up to 
j

W

w
 
 
 

 levels for item j 

can be cut and over P panels 
j

W
P

w
   
 

 levels can be cut. We define UBLjt as follows: 
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, {1, , }, {1, , }
T

jt jr
jr t

W
UBL Min d P j n t T

w

      
  
 … …  

We define the decision variables as: 

1, if panel is used in period {1, , }, {1, }

0, otherwise                                                                        
kt

k t k P t T
q

 
 


… …
 

1, if item initialises level of panel in period

0, otherwise                                                              
imkt

i m k t
z


 


 

The quantity-based variables are defined as: 

xjimkt additional amount of type j cut at level m initialised by item i in panel k in period t. 

i, j  {1, …, n} and i ≤ j and 1,i

j

L l

l

   
 

 m  {1, …, UBLit}, k  {1, …, P},  

t  {1, …, T} 1i

j

L l

l

   
 

 is used to force an integer solution. 

Ijt amount of item j carried from period t to t + 1. t  {1, …, T}, j  {1, …, n}. 

The constraint set is given below. 

 Inventory – cut amount balance: The amount that initialises a level together with the 
amount further cut at that level plus inventory carried from the previous period is 
equal to the total demand in the current period plus the inventory carried to the next 
period. 

, 1

1 1 1 1 1

{1, , }, {1, , }
jtit UBLUBLn P P

jimkt jmkt j t jt jt

i m k m k

x z I d I j n t T

    

       … …  (10) 

 Length capacity: The sum of the lengths of the items assigned to any level cannot 
exceed the length of the panel for each period. 

1

{1, , }, {1, , },

{1, , }, {1, , }

n

j jimkt i imkt imkt it

j

l x l z L z i n m UBL

k P t T



      

 

 … …

… …

 (11) 

 Width capacity: The sum of the widths of the items that initialise the levels of the 
panel cannot exceed the width of the panel. 

1 1

{1, , }, {1, , }
itUBLn

i imkt kt

i m

w z W q k P t T
 

     … …  (12) 

 Binary variables, non-negativity and integrality: 

 {1, 0} {1, , }, 1, , ,

{1, , }, {1, , },

imkt itz i n m UBL

k P t T

  

 

… …

… …
 (13) 
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{1, 0}, {1, , }, {1, , }ktq k P t T  … …  (14) 

 0 and integer {1, , }, {1, , }, 1, , ,

{1, , }, {1, , }

jimkt itx j n i n m UBL

k P t T

   

 

… … …

… …
 (15) 

0 {1, , }, {1, , }jtI j n t T  … …  (16) 

Note that the value of P is important in terms of the number of decision variables. The 
smaller the value of P is, the fewer the number of decision variables. 

The performance criteria are defined as: 

1 minimise total inventory cost, 
1 1

n T
j jt

j t
TIC Min h I

 
    

2 minimise total number of panels cut, 
1 1

.
p T

kt
k t

TP Min q
 

    

We refer to constraints (10) through (16) sets as x  XM2 and refer to model II as: 

2s.t. M

Min TIC

Min TP

x X
 

4 Solution approach 

We aim to generate all non-dominated objective vectors and an efficient solution 
corresponding to each non-dominated objective vector. In doing so, the constraint set of 
model II, i.e., x  XM2, is used. 

The section is organised as follows: in Subsection 4.1, we define non-dominated 
objective vectors and extreme non-dominated objective vectors. Subsection 4.2 discusses 
the generation of all non-dominated objective vectors. In Subsection 4.3, we develop 
some mechanisms to reduce the computational burden of the models. 

4.1 Non-dominated objective vectors 

A solution (cutting and lot sizing plan) S in x  XM2 is said to be efficient if there does not 
exist a solution S in x  XM2 such that TIC(S) ≤ TIC(S) and TP(S) ≤ TP(S) with strict 
inequality holding at least once. The objective vector (TIC(S), TP(S)) corresponding to 
the efficient solution S is said to be a non-dominated objective vector. 

An efficient solution S is said to be extreme efficient if it has the best possible value 
for one objective. The associated non-dominated objective vector is said to be an extreme 
non-dominated objective vector. 

We now discuss the generation of the two extreme non-dominated objective vectors. 

4.1.1 Extreme non-dominated objective vector having smallest TIC value 

Consider the following MILP: 
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2s.t. M

Min TIC

x X
 

The optimal solution produces all 
1

n
jt

j
d

  units in period t and has a TIC value of zero. 

Hence, the problem decomposes into t single period models with no inventory decisions. 
We let 2MX   be the set of constraint (11) through (15) and define the following single 

period problem P(t) for each t. 

1 1 1 1 1

2

( )

s.t. {1, , }
jtit UBLUBLn P P

jimkt jmkt jt

i m k m k

M

Min P t

x z d j n

x X
    



  



  …  

Let P*(t) be the optimal solution. 

The minimum number of panels with zero inventory is *
max

1
( ).

T

t
P P t


  Note that 

Pmax is an upper bound on the number of the panels of all non-dominated objective 
vectors and (TIC, TP) = (0, Pmax) is an extreme non-dominated objective vector. 

4.1.2 Extreme non-dominated objective vector having smallest TP value 

Consider the following problem: 

2s.t. M

Min TP

x X
 

The optimal solution to the above problem gives the smallest TP value of all efficient 
solutions. The resulting solution may not be efficient as there may exist another solution 
with a smaller TIC value. Such a solution can be found through the following two-step 
procedure. 

Procedure 1: Generating an extreme non-dominated objective vector with the smallest 
TP value 

Step 1 Solve the problem below for T = 1 and 1
1

{1, , } :
T

j jt
t

d d j n


   …  

1s.t. M

Min TP

x X
 

Let Pmin be the optimal solution. 

Step 2 Solve the below problem: 

*

min

1 1

2

s.t.
TP T

kt

k t

M

Min TIC

q P

x X
 





  
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Let TIC* be the optimal solution. 

Note that TIC* is an upper bound on the total inventory cost of all efficient solutions and 
(TIC, TP) = (TIC*, Pmin) is an extreme non-dominated objective vector. 

The other non-dominated objective vectors have TIC in [1, TIC* – 1] and TP in  
[Pmin + 1, Pmax – 1] when the TIC and TP values are integers. 

Note that Pmin is the number of panels for cutting all items in a single period. Hence, 
it is an upper bound on the number of panels used per period. Recognising this fact, we 

use Pmin in place of P (like using k  {1, …, Pmin}, 
min

1 1

P T
kt

k t
q

   ) in the model that 

returns the extreme solution with minimum total inventory cost. 
The models that deliver the extreme solutions are two stage two-dimensional cutting 

stock models with guillotine cuts. 2DCSPs with guillotine cuts are strongly NP-hard (see 
Furini and Malaguti, 2013), so is our problem of generating extreme, thereby all,  
non-dominated objective vectors. 

4.1.3 Generating all non-dominated objective vectors 

We first present a property of the non-dominated objective vectors (Theorem 4.1) and use 
it to generate their set. 

Theorem 4.1: There exists a non-dominated objective vector corresponding to each 
number of panels between Pmin and Pmax. 

Proof: Among all non-dominated objective vectors *
max

1
( )

T

t
P P t


  is the minimum 

number of panels while carrying no inventory and Pmin is the minimum number of panels 
while carrying maximum inventory. 

Assume * ( )mP t  is the number of panels used in period t in the Pmin solution, i.e., 

*
min

1
( ).

T
m

t
P P t


  For any period t, for which * *( ) ( )mP t P t  putting an extra panel to 

* ( )mP t  reduces the total inventory amount. Extra panels can be put till the number of 

panels reaches Pmax and each addition reduces the total inventory amount. Hence, there 
exists a non-dominated objective vector for each value of P between Pmin and Pmax. 

# 

Using the result of the above theorem, we define the following problem to generate an 
efficient solution with P panels. 

min

1 1

2

s.t.
P T

kt

k t

M

Min TIC

q P

x X
 





  

We hereafter refer to the above model as the Min TIC|P model. 
Procedure 2 below generates all non-dominated objective vectors using the Min TIC|P 

model. 

Procedure 2: Generating all non-dominated objective vectors 
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Step 1 Find Pmin and Pmax using the methods in Subsection 4.1. 

Let r = 1, P = Pmax. 

Step 2 Let r = r + 1 and P = P – 1. 

Solve the Min TIC|P model. 

The optimal solution (TIC*, P) is the rth non-dominated objective vector. 

Step 3 If P ≥ Pmin then go to step 2. 

Else, all r non-dominated objective vectors are generated. 

4.2 Solving the min TIC|P model 

In this section, we develop some mechanisms to reduce the computational burden of the 
Min TIC|P model. In Subsections 4.2.1 and 4.2.2, we present upper and lower bounds on 
the number of panels of any efficient solution. Subsection 4.2.3 defines lower bounds on 
the total inventory cost value. Subsection 4.2.4 discusses some reductions for the  
panel-related variables and Subsection 4.2.5 introduces some valid inequalities. 

4.2.1 Upper bounds on the TP values 

We derive several upper bounds on the number of panels in period t for any  
non-dominated objective vector. We use the best of those upper bounds to reduce the 
number of panel-related decision variables and constraints. 

 Upper bound 1: Recall that Pmin is the maximum number of panels that could be used 
for any period t. The minimum number of panels that should be used in periods 1 

through t – 1 is 

1

1 1 .

t n
jr j j

r j
d l w

L W



 
   
  

 
 Hence, 

1

1 1
min

t n
jr j j

r j
d l w

P
L W



 
      

 
 

is a valid upper bound on the number of panels used in period t. 

 Upper bound 2: maxtP  is the minimum number of panels for a single period t with  

dj1 = djt. max
1 r

T

r
P

  is the number of panels with no inventory carrying for periods t 

through T, hence is a valid upper bound on the number of panels in period t. 

 Upper bound 3: Let TP*(t) be the minimum number of panels for a single period t 

with 
1

1
1

.
t

j jr
r

d d



  At least TP*(t) panels should be cut in the first (t – 1) periods, 

leaving at most P – TP*(t) panels for period t. 

An overall upper bound on the number of panels in period t, Pmax(t), is found as: 

1

1 1 *
max min max( ) , , ( )r

t n
Tjr j j

r j

r t

d l w
P t Min P P P TP t

L W



 



            

    
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In our models, in place of P, we use Pmax(t) at all appropriate places and update the 

parameter UBLjt as max
1

, ( ) .
T

jr
r

j

W
Min d P t

w

    
  

  

4.2.2 Lower bounds on the TP values 

We derive two lower bounds on the number of the panels in periods 1 through t. We 
define a constraint using the best of the lower bounds. 

 Lower bound 1: The minimum number of panels to be used in periods 1 through t is 
found by considering the total area required by the total demand of the periods and 

the total area available. The resulting expression is 1 1 .

t n
jr j j

r j
d l w

L W
 

   
  

 
 

 Lower bound 2: Recall that maxtP  is the minimum number of panels required to 

satisfy the demand of period t. In the first t periods, at least max{ }rMax P  r  {1, …, 

t} panels should be used. We add the following constraint to model II that uses the 
lower bounds. 

max ( ) 1 1
max

1 1
, {1, , }r

t n
jr j jP t t r j

kr r
k r

d l w
q Max Max P t T

L W
 

 

          

   …  (17) 

4.2.3 Bounds on the TIC values 

We included the following two constraints based on the total inventory cost. 

( ) ( 1) 1TIC P TIC P    (18) 

 min min( )TIC P TIC P P P    (19) 

where TIC(P) is the optimal TIC value with P panels. 
Constraint (18) uses the definition of the non-dominated objective vectors and the 

integrality of the TIC values. Constraint (19) uses the fact that there are (P – Pmin)  
non-dominated objective vectors with number of panels in [Pmin + 1, P]. Hence, the 
difference between TIC values of Pmin and P solutions should be at least P – Pmin. 

As TIC(Pmin) is not available, we find an upper bound using the below procedure: 

Procedure 3: Finding an upper bound for the TIC(Pmin) 

Step 1 Find the item assignments to the panels using Procedure 1. 

Step 2 Let t be the earliest period having positive demand. 

Step 3 Let r be the item having the largest demand in period t. 

Step 4 Let s be the panel that has maximum units of item r and assign panel s to period 
t. 

Update the demands of the items considering the items assigned to panel s. 
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Step 5 Stop if all updated demands are zero. Else, go to step 2. 

4.2.4 Bounds on the decision variables 

We derive a theorem to restrict the panel cuts only to the periods having positive demand. 

Theorem 4.2: If 
1

0
n

jt
j

d


  for period t, then 
max ( )

1
0

P t
kt

k
q


  for period t. 

Proof: Assume there is a panel cut in period t with 
1

0.
n

jt
j

d


  Then the panel can be 

shifted to period t + 1 without increasing the number of panels while reducing the total 
inventory cost. Hence, a solution in which there is a panel cut cannot be efficient. 

# 

Using the result of the above theorem, we only define decision variables qkt, zimkt and xjimkt 

for period t, such that 
1

0,
n

jt
j

d


  however, keep Ijt variables for all t. 

4.2.5 Additional constraints for panel assignments 

Margot (2010) states that “an integer linear program is symmetric if its variables can be 
permuted without changing the structure of the problem.” Recognising this result, we 
introduce three symmetry elimination constraints for model II. 

We first fix some qkt values for the first period, t = 1, as follows; 

 *
1 1 1, , (1)kq k P  …  (20) 

This is because at least P*(1) panels should be used in the first period as no backlogging 
is allowed. For the panels P*(1) through Pmax(t) we use the following relation: 

 *
1 ( 1)1 max(1), , ( )k kq q k P P t  …  (21) 

 ( 1) max1, , ( ) , {2, , }kt k tq q k P t t T  … …  (22) 

Constraints (21) and (22) sets are used to eliminate the solutions that skip panel k but use 
panel k + 1. Constraint (23) set uses the same idea for the levels and eliminates the 
solutions of the same panel that skips level m but uses level m + 1. 

 
 

( 1)

max

1

{1, , }, 1, , ,

1, , ( ) , {1, , }

where 0

imkt i m kt it

n
jt

j

z z i n m UBL

k P t t T

d





  

 



… …

… …  (23) 

We let 2MX   be the set of constraints (10) through (23) sets and state improved model II 
as 
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min

1 1

2

s.t.
P T

kt

k t

M

Min TIC

q P

z X
 







  

5 Computational experiments 

In this chapter, we present the computational experiments designed to test the 
performances of our solution approaches. To generate the non-dominated objective 
vector set through mathematical model optimisation, we integrate CPLEX version 12.8.0 
into the Java programming language. The heuristic algorithm for finding an extreme  
non-dominated objective vector is coded in the Java programming language using 
Netbeans IDE 8.2. The experiments are conducted on Intel® Xeon® E-2246G CPU @ 
3.6 GHz, 16.0 GB RAM Windows 10. 

In Subsection 5.1, we present the features of our instances and data generation 
scheme. In Subsection 5.2, we discuss the results of our experiments in detail. 

5.1 The instance features and data generation 

In our experiments, we use both real data from the aircraft manufacturing plant and data 
from the literature. We take a total of 56 real instances, 40 of which have seven periods 
and 16 of which have 14 periods. We define the instance features for seven and 14 
periods in Tables A1 and A2, respectively. The tables report the number of item types, n, 
the total demand, D, wmax(wmin) is the maximum (minimum) width over all items of the 
problem instance, lmax(lmin) is the maximum (minimum) length over the items in the 
problem instance. W and L are the width and length of the panel, respectively. The 
measurement units of all dimensions are millimetres. 

In Table A1, instances 1 through 8 have originally seven periods whereas instances 9 
through 40 are formed by splitting one 14-period instance into two parts. We obtain 32 
instances with seven periods by splitting 16 periods with 14 periods. We refer to the real 
data as SetR. 

We further include 18 problem instances whose wmax, wmin, lmax, lmin, W and L values 
are taken from Hifi and Roucairol (2001). We refer to this dataset as SetL. 

For each of the 18 instances in SetL we select two T values: 7 and 14, and two n 
values: 3 and 5, hence we use a total of 72 (18 * 2 * 2) problem instances. Table A3 gives 
the features of these instances together with their names known in the literature. 

We generate the lj values from a discrete uniform distribution (DU) between lmin and 
lmax, wj values from DU between wmin and wmax. The demand of item j for period t, i.e., djt 
is generated from DU between 0 and 5. hj values are taken from DU between 1 and 3 to 
be compatible with the values of our practical application. 
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5.2 Results of the experiments 

In this subsection, we report the results of our experiment for SetR instances  
(Subsection 5.2.1) and SetL instances (Subsection 5.2.2). 

5.2.1 Results of the real life instances, SetR 

We first compare the performance of models I and II (without any improvement 
mechanism) on SetR instances. Tables 1 and 2 report the total CPU time of generating all 
non-dominated objective vectors and their average and maximum CPU times for T = 7 
and 14, respectively. 

Table 1 Models I and II performances, T = 7, SetR 

Instance D 
Number of  
non-dom. 
vectors 

Model I  Model II 

Total CPU 
time 

Avg. 
CPU time 

Max. 
CPU time 

 Total CPU 
time 

Avg. CPU 
time 

Max. 
CPU time 

1 45 2 7.77 3.88 7.42  1.17 0.59 1.13 

2 50 2 15.23 7.62 14.81  4.77 2.38 4.23 

3 32 2 1.72 0.86 1.31  3.09 1.55 3.05 

4 54 3 91.03 30.34 85.25  1.42 0.47 1.41 

5 300 3 14,572.25 4,857.42 7,200 (2)1  7,583.06 2,527.69 7,200 (1) 

6 61 3 887.95 295.98 502.31  13.02 4.34 7.09 

7 264 5 28,825.86 5,765.17 7,200 (4)  14,617.72 2,923.54 7,200 (2) 

8 24 2 4.06 2.03 3.83  2.92 1.46 2.63 

9 24 2 3.55 1.77 3.38  0.08 0.04 0.06 

10 36 3 12.81 4.27 8.86  0.78 0.26 0.59 

11 10 1 0 0 0  0.02 0.02 0.02 

12 12 2 0.03 0.02 0.02  0.19 0.09 0.14 

13 29 1 0.44 0.44 0.44  0.06 0.06 0.06 

14 15 1 0.03 0.03 0.03  0.02 0.02 0.02 

15 15 1 0 0 0  0 0 0 

16 30 1 0.2 0.2 0.2  0 0 0 

17 94 1 0.2 0.2 0.2  0 0 0 

18 144 1 3.03 3.03 3.03  0.11 0.11 0.11 

19 72 1 2.09 2.09 2.09  0.03 0.03 0.03 

20 216 2 1,838.53 919.27 1,834.83  0.16 0.08 0.14 

21 24 2 0.94 0.47 0.84  0.03 0.02 0.03 

Notes: 1numbers in parentheses is the number of non-dominated solutions that remain 
unsolved in two hours. 
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Table 1 Models I and II performances, T = 7, SetR (continued) 

Instance D 
Number of  
non-dom. 
vectors 

Model I  Model II 

Total CPU 
time 

Avg. 
CPU time 

Max. 
CPU time  

Total CPU 
time 

Avg. CPU 
time 

Max. 
CPU time 

22 18 2 2 1 1.83  0.16 0.08 0.09 

23 16 2 3.95 1.98 3.44  4.56 2.28 4.17 

24 40 2 18.45 9.23 17.17  23.56 11.78 21.25 

25 9 1 0 0 0  0 0 0 

26 48 3 67.91 22.64 48.67  1.94 0.65 1.77 

27 56 1 2.52 2.52 2.52  3.48 3.48 3.48 

28 72 3 355.23 118.41 303.8  326.94 108.98 192.14 

29 120 2 28.72 14.36 27.63  0.06 0.03 0.03 

30 24 1 0.42 0.42 0.42  0 0 0 

31 14 2 0.67 0.34 0.58  0.05 0.02 0.03 

32 36 4 13,978.61 3,494.65 7,200 (1)  3.19 0.8 1.8 

33 42 1 0.83 0.83 0.83  0.63 0.63 0.63 

34 24 2 5.55 2.77 5.2  0.17 0.09 0.09 

35 61 2 116.11 58.05 114.53  6.16 3.08 5.67 

36 23 2 5.05 2.52 4.77  1.23 0.62 1.11 

37 51 2 10.89 5.45 9.45  0.05 0.02 0.03 

38 66 3 58.67 19.56 57.02  1.58 0.53 1.44 

39 186 4 21,740.28 5,435.07 7,200 (2)  15,105.2 3,776.3 7,200 (2) 

40 252 2 7,212.41 3,606.2 7,200 (1)  176.02 88.01 162.69 

Average  2 2,247 617 977  947 237 550 

Notes: 1numbers in parentheses is the number of non-dominated solutions that remain 
unsolved in two hours. 

The tables also include the number of non-dominated objective vectors that could not be 
found in 7,200 seconds. In finding the total, average, and maximum CPU times, the CPU 
times of the unsolved instances are taken as 7,200 seconds. 

As can be observed from the above tables, the number of non-dominated vectors 
increases as the number of periods increases. Note that on average there are 2 and 4  
non-dominated objective vectors when there are 7 and 14 periods, respectively. 
Moreover, the average CPU time, i.e., the average time to reach a non-dominated 
objective vector, increases from 617 seconds to 2,322 seconds for model I and from 237 
seconds to 678 seconds for model II, as T increases from 7 to 14. 

From Tables 1 and 2, we observe the significantly better performance of model II 
over model I. Note that for T = 7 the average total and average CPU times for model I are 
2,247 and 617 seconds, respectively. The respective average total and average CPU times 
reduce to 947 and 237 seconds when model II is used. Moreover, when T = 7 and 14, 
model I cannot find 10 out of 82 and 19 out of 56 non-dominated objective vectors,  
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respectively. On the other hand, model II cannot find 5 and 6 non-dominated objective 
vectors, for T = 7 and 14, respectively. Those results are due to the fact the decision 
variables of model I are related to the total demand, whereas model II generates the 
decision variables based on the total number of panels used. 

In many practical applications and in our real case, the number of panels is 
significantly smaller than the total demand, hence giving a nice challenge for model II. 

Table 2 Models I and II performances, T = 14, SetR 

Instance D 
Number of 
non-dom. 
vectors 

Model I  Model II 

Total 
CPU time 

Avg. CPU 
time 

Max. 
CPU time 

 Total 
CPU time 

Avg. CPU 
time 

Max. 
CPU time 

1 60 5 22,312.14 4,462.43 7,200 (3)1  18.28 3.66 7.03 

2 22 3 1.13 0.38 0.56  4.94 1.65 2.75 

3 44 2 178.22 89.11 176.03  0.28 0.14 0.16 

4 45 1 1.89 1.89 1.89  0.03 0.03 0.03 

5 238 2 7,231.25 3,615.63 7,200 (1)  25.64 12.82 23.77 

6 288 3 8,022.14 2,674.05 7,200 (1)  2.38 0.79 2.17 

7 42 4 386.75 96.69 232.34  4.25 1.06 2.28 

8 56 3 251.42 83.81 138.41  450.3 150.1 282.14 

9 57 4 2,924.16 731.04 1,406.63  6.16 1.54 3.17 

10 128 3 8,721.84 2,907.28 7,200 (1)  5,506.23 1,835.41 4,111.95 

11 144 3 960.56 320.19 662.36  2.03 0.68 1.88 

12 50 6 28,875.61 4,812.6 7,200 (4)  40.16 6.69 13.48 

13 66 3 10,854.89 3,618.3 7,200 (1)  37.06 12.35 19.3 

14 84 3 10,833.23 3,611.08 7,200 (1)  7,253.53 2,417.84 7,200 (1) 

15 117 5 15,903.08 3,180.62 7,200 (2)  43.56 8.71 20.88 

16 438 6 41,701.5 6,950.25 7,200 (5)  38,354.44 6,392.41 7,200 (5) 

Average  4 9,947 2,322 4,215  3,234 678 1,181 

Notes: 1numbers in parentheses is the number of non-dominated solutions that remain 
unsolved in two hours. 

We next study the effect of the improvement mechanisms on the efficiency of model II 
and report the results for model II and improved model II using SetR instances for 7 and 
14 periods, in Tables 3 and 4, respectively. 

As can be observed from Tables 3 and 4, the performance of model II improves 
significantly by the improvement mechanisms. This implies the effort spent to generate 
the mechanisms is much less than the CPU time reductions obtained through their use. 
For almost all instances – with few exceptions having too small differences – the CPU 
time required by improved model II is less than that required by model II. The average 
CPU times for T = 7 and 14 reduce from 237 to 12 seconds and from 678 to 173 seconds, 
respectively. The number of unsolved instances is 5 for model II while improved model 
II finds all non-dominated objective vectors when T = 7. When T = 14, the respective 
unsolved instances are 6 and 2 for model II and improved model II. 
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Table 3 Model II and improved model II performances, T = 7, SetR 

Instance D 
Number of 
non-dom. 
vectors 

Model II  Improved model II 

Total 
CPU time 

Avg. 
CPU time 

Max. 
CPU time  

Total 
CPU time 

Avg. CPU 
time 

Max. 
CPU time 

1 45 2 1.17 0.59 1.13  0.06 0.03 0.05 

2 50 2 4.77 2.38 4.23  0.13 0.06 0.08 

3 32 2 3.09 1.55 3.05  0.14 0.07 0.09 

4 54 3 1.42 0.47 1.41  0.13 0.04 0.11 

5 300 3 7,583.06 2,527.69 7,200 (1)1  180.83 60.28 173.58 

6 61 3 13.02 4.34 7.09  2.70 0.90 1.20 

7 264 5 14,617.72 2,923.54 7,200 (2)  1,856.50 371.30 1,808.53 

8 24 2 2.92 1.46 2.63  0.20 0.10 0.19 

9 24 2 0.08 0.04 0.06  0.03 0.02 0.03 

10 36 3 0.78 0.26 0.59  0.09 0.03 0.05 

11 10 1 0.02 0.02 0.02  0 0 0 

12 12 2 0.19 0.09 0.14  0.06 0.03 0.03 

13 29 1 0.06 0.06 0.06  0 0 0 

14 15 1 0.02 0.02 0.02  0.05 0.05 0.05 

15 15 1 0 0 0  0 0 0 

16 30 1 0 0 0  0.03 0.03 0.03 

17 94 1 0 0 0  0 0 0 

18 144 1 0.11 0.11 0.11  0 0 0 

19 72 1 0.03 0.03 0.03  0 0 0 

20 216 2 0.16 0.08 0.14  0.02 0.01 0.02 

21 24 2 0.03 0.02 0.03  0.02 0.01 0.02 

22 18 2 0.16 0.08 0.09  0.03 0.02 0.03 

23 16 2 4.56 2.28 4.17  0.13 0.06 0.11 

24 40 2 23.56 11.78 21.25  0.14 0.07 0.08 

25 9 1 0 0 0  0 0 0 

26 48 3 1.94 0.65 1.77  0.08 0.03 0.05 

27 56 1 3.48 3.48 3.48  0.11 0.11 0.11 

28 72 3 326.94 108.98 192.14  9.89 3.30 4.72 

29 120 2 0.06 0.03 0.03  0 0 0 

30 24 1 0 0 0  0 0 0 

31 14 2 0.05 0.02 0.03  0.03 0.02 0.03 

32 36 4 3.19 0.80 1.80  0.14 0.04 0.05 

33 42 1 0.63 0.63 0.63  0.03 0.03 0.03 

34 24 2 0.17 0.09 0.09  0.03 0.02 0.02 

35 61 2 6.16 3.08 5.67  3.53 1.77 2.97 

Notes: 1numbers in parentheses is the number of non-dominated solutions that remain 
unsolved in two hours. 
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Table 3 Model II and improved model II performances, T = 7, SetR (continued) 

Instance D 
Number of 
non-dom. 
vectors 

Model II  Improved model II 

Total 
CPU time 

Avg. 
CPU time 

Max. 
CPU time 

 Total 
CPU time 

Avg. CPU 
time 

Max. 
CPU time 

36 23 2 1.23 0.62 1.11  0.02 0.01 0.02 

37 51 2 0.05 0.02 0.03  0.02 0.01 0.02 

38 66 3 1.58 0.53 1.44  0.11 0.04 0.09 

39 186 4 15,105.20 3,776.30 7,200 (2)  118 29.5 96.59 

40 252 2 176.02 88.01 162.69  2.25 1.125 1.47 

Average  2 947 237 550  54 12 52 

Notes: 1numbers in parentheses is the number of non-dominated solutions that remain 
unsolved in two hours. 

Table 4 Model II and improved model II performances, T = 14, SetR 

Instance D 
Number of 
non-dom. 
vectors 

Model II  Improved model II 

Total 
CPU time 

Avg. 
CPU time 

Max. 
CPU time  

Total 
CPU time 

Avg. CPU 
time 

Max. 
CPU time 

1 60 5 18.28 3.66 7.03  0.77 0.15 0.34 

2 22 3 4.94 1.65 2.75  0.13 0.04 0.08 

3 44 2 0.28 0.14 0.16  0.02 0.01 0.02 

4 45 1 0.03 0.03 0.03  0.09 0.09 0.09 

5 238 2 25.64 12.82 23.77  0.98 0.49 0.92 

6 288 3 2.38 0.79 2.17  0.08 0.03 0.06 

7 42 4 4.25 1.06 2.28  0.48 0.12 0.44 

8 56 3 450.30 150.10 282.14  1.86 0.62 0.78 

9 57 4 6.16 1.54 3.17  0.14 0.04 0.06 

10 128 3 5,506.23 1,835.41 4,111.95  34.09 11.36 14.92 

11 144 3 2.03 0.68 1.88  0.06 0.02 0.06 

12 50 6 40.16 6.69 13.48  1.50 0.25 0.66 

13 66 3 37.06 12.35 19.30  0.48 0.16 0.30 

14 84 3 7,253.53 2,417.84 7,200 (1)1  26.13 8.71 24.66 

15 117 5 43.56 8.71 20.88  1.53 0.31 1.02 

16 438 6 38,354.44 6,392.41 7,200 (5)  16,436.77 2,739.46 7,200 (2) 

Average  4 3,234 678 1,181  1,032 173 453 

Notes: 1numbers in parentheses is the number of non-dominated solutions that could not 
be found in two hours. 

5.2.2 Results for the instances from the literature, SetL 

We continue our experiments using the data from the literature. We solve the instances 
with improved model II, attributing to its superiority over models I and II. Tables 5 and 6 
report the results of the experiments with T = 7 and 14, respectively. For each T, we use 
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two different values of n (3 and 5 item types). We observe that the D values increase as n 
increases. 

As n (thereby D) or T increases, the minimum and the maximum number of panel 
values in the non-dominated objective vectors set increase; however, the range of the 
minimum and the maximum number of panel values, thereby the number of  
non-dominated objective vectors, may not be affected. So we do not expect any 
remarkable increase in the number of non-dominated objective vectors with increases in n 
or T. The results in Tables 5 and 6 are in line with our expectations. The number of  
non-dominated objective vectors increases slightly as T increases. Note that the 
respective average number of non-dominated objective vectors are 4 and 5 for n = 3 and 5 
when T = 7 and the respective average number of non-dominated objective vectors are 9 
and 8 for n = 3 and 5 when T = 14. We also observe that there is no relation between D 
and the number of the non-dominated objective vectors. For example for instances 2s, 3s 
and there are seven periods (Table 5), the number of non-dominated objective vectors 
increases from 2 to 4 as D increases from 45 to 55 when n = 3 and decreases from 4 to 10 
as D increases from 89 to 112 when n = 5. 

Table 5 Improved model II performance, T = 7, SetL 

Instance 

n = 3  n = 5 

D 

Number 
of  

non-dom. 
vectors 

Total 
CPU 
time 

Avg. 
CPU 
time 

Max. 
CPU 
time 

 D 

Number 
of  

non-dom. 
vectors 

Total 
CPU  
time 

Avg. 
CPU 
time 

Max. 
CPU  
time 

A1 59 5 13.64 2.73 6.13  113 5 230.67 46.13 99.34 

A2 62 4 35.77 8.94 25.64  116 5 12,736.02 2,547.2 7,200 (1)1 

A3 42 3 0.81 0.27 0.44  104 6 251.94 41.99 78.03 

A4 65 5 28.73 5.75 9  99 5 74.28 14.86 40.95 

A5 60 4 10.44 2.61 5.88  109 5 158.33 31.67 74.31 

CHL2 52 5 8.86 1.77 3.55  106 5 167.72 33.54 119.34 

CHL5 55 5 3.16 0.63 1.02  90 5 20.47 4.09 6.22 

Hchl3s 52 3 13.56 4.52 12.94  120 4 79.42 19.86 62.23 

Hchl4s 50 4 13.7 3.43 7.34  107 5 183.64 36.73 94.31 

Hchl6s 53 4 3.41 0.85 1.58  110 4 34.28 8.57 21.11 

Hchl8s 65 7 4.64 0.66 1.56  107 4 2.64 0.66 1.13 

HH 55 3 3.42 1.14 1.81  103 5 229.95 45.99 170.81 

Of1 49 3 7.92 2.64 3.77  116 7 108 15.43 36.36 

Of2 41 5 3.17 0.63 1.39  101 6 179.61 29.93 100.09 

Sts4 44 5 11 2.2 6.34  120 4 59.92 14.98 38.78 

W 65 5 36.66 7.33 13.31  121 6 258.28 43.05 78.17 

2s 45 2 6.38 3.19 5.91  112 4 183.13 45.78 117.75 

3s 55 4 16.36 4.09 10.34  89 10 242.58 24.26 97.28 

Average  4 12 3 7   5 844 167 469 

Notes: 1numbers in parentheses is the number of non-dominated solutions that could not 
be found in two hours. 
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We first observe the effect of the total item demand on the complexity of the solutions. 
For fixed n and T, an increase in the total demand increases the CPU times. Note from 
Table 6 that when n = 3 and T = 14, A2 and Of2 instances have a total demand value of 
103 and 76, respectively and their respective average CPU times are 455.62 and 6.57 
seconds. When n = 5 those instances have total demand values of 191 and 148 leaving six 
instances and a single instance unsolved in two hours. 

Table 6 Improved model II performance, T = 14, SetL 

Instance 

n = 3  n = 5 

D 

Number 
of non-
dom. 

vectors 

Total 
CPU time 

Avg. 
CPU 
time 

Max. 
CPU 
time 

 D 

Number 
of non-
dom. 

vectors 

Total 
CPU time 

Avg. 
CPU 
time 

Max. 
CPU 
time 

A1 101 12 10,658.95 888.25 7,200 
(1) 

 173 11 38,566.27 3,506.02 7,200 
(5)1 

A2 103 11 5,011.80 455.62 1,116.56  191 9 44,942.13 4,993.57 7,200 
(6) 

A3 82 8 219.25 27.41 81.66  190 5 1,510.39 302.08 1,040.80 

A4 95 9 160.67 17.85 48.08  175 9 18,345.39 2,038.38 7,200 
(2) 

A5 98 6 741.17 123.53 611.86  172 7 6,299.38 899.91 5,320.84 

CHL2 89 8 1,762.98 220.37 656.50  192 7 10,109.05 1,444.15 3,933.86 

CHL5 85 9 48.53 5.39 12.09  151 11 26,229.19 2,384.47 7,200 
(1) 

Hchl3s 91 9 371.14 41.24 135.19  182 9 12,255.89 1,361.77 6,195.52 

Hchl4s 91 8 109.28 13.66 68.09  182 12 40,627.78 3,385.65 7,200 
(4) 

Hchl6s 89 8 93.33 11.67 21.66  179 7 6,187.81 883.97 5,175.73 

Hchl8s 98 8 33.81 4.23 10.47  174 7 6,69.61 95.66 142.89 

HH 93 6 45.52 7.59 13.42  176 11 47,924.64 4,356.79 7,200 
(5) 

Of1 78 9 407.42 45.27 153.73  183 8 31,202.17 3,900.27 7,200 
(4) 

Of2 76 6 39.44 6.57 14.22  148 9 15,035.69 1,670.63 7,200 
(1) 

Sts4 83 10 107.59 10.76 34.31  192 9 13,493.09 1,499.23 7,200 
(1) 

W 88 9 2,727.08 303.01 1,197.28  193 14 32,849.84 2,346.42 7,200 
(4) 

2s 79 10 234.06 23.41 87.45  176 10 41,454.72 4,145.47 7,200 
(5) 

3s 96 11 418.70 38.06 72.44  155 11 32,449.22 2,949.93 7,200 
(2) 

Average  9 1,288 125 641   8 23,342 2,342 6,012 

Notes: 1numbers in parentheses is the number of non-dominated solutions that remain 
unsolved in two hours. 
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Recall that D values increase as n increases. Tables 5 and 6 show that as n, thereby D, 
increases, the CPU times increase significantly. When T = 7, the respective average CPU 
times are 3 and 167 seconds for n = 3 and 5 and when T = 14, the respective average CPU 
times are 125 and 2,342 seconds for n = 3 and 5. This is because as n and D increase the 
number of binary variables, thereby the complexity of the mixed integer programs, 
increases exponentially. Note from Table 5 that for the problem with n = 3 and T = 7, all 
76 non-dominated objective vectors are solved very quickly with an average maximum 
CPU time of seven seconds. When n becomes 5, in only 1 out of 95 non-dominated 
objective vectors, the optimal solution cannot be found in two hours. Once the unsolved 
instance is excluded, the average CPU time decreases from 167 to 102 seconds. 

5.2.3 Comparison of SetR and SetL instances 

We next discuss the performances of SetR and SetL for T = 7 when n = 3 and 5 and  
T = 14 when n = 3. When T = 7, SetR resides three instances with n = 3, having an 
average of seven non-dominated objective vectors and four instances with n = 5 having 
an average of 11 non-dominated objective vectors. SetL has 4 and 5 non-dominated 
objective vectors when n = 3 and n = 5, respectively. The total demand of SetR (71 and 
136 for n = 3 and 5, respectively) is higher than the total demand of SetL (54 and 90 for  
n = 3 and 5, respectively) hence SetL has fewer average non-dominated objective vectors. 

The results for T = 7 show that SetL has higher CPU times than SetR which is due to 
the distribution of the total demand over the planning horizon. The total demand of SetR 
(71 and 136 for n = 3 and 5, respectively) is associated with a couple of periods while the 
total demand of SetL (54 and 90 for n = 3 and 5, respectively) is distributed evenly over 
all periods. When improved model II is used, the average CPU times are 0.02 and  
3 seconds for SetR and SetL, respectively for n = 3, while the respective average CPU 
times are 12 and 167 seconds for SetR and SetL, for n = 5. A similar observation can be 
done for n = 3 and T = 14 combination. There are five instances with 11 non-dominated 
objective vectors with an average total demand of 127 in SetR. In SetL, the average total 
demand over 18 instances is 108. The average CPU times are 0.13 and 125 seconds for 
SetR and SetL, respectively. 

We observe the number of non-dominated solutions for both sets is almost below 10. 
Both in the real life and literature instances the total demand is not low however the units 
come from few item types, thereby serving to the same purpose. This keeps similar 
inventory carrying amounts among different solutions, thereby producing no so high  
non-dominated objective vectors. 

To summarise, we obtain exact non-dominated objective vectors for the instances 
with up to five items and up to 200 units of total demand when there are seven periods 
and three items having up to 100 units of total demand when there are 14 periods. For the 
problems of bigger sizes, approximate non-dominated objective vectors might be of great 
help. To get such vectors, decomposition-based heuristic approaches that benefit from 
our models can be developed. The decomposition might use from item decomposition or 
period decomposition ideas. 
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6 Conclusions 

In this study, we consider an integrated cutting stock and lot sizing problem where two 
dimensional items are to be cut from two dimensional blocks of identical size to satisfy 
all demands over a specified planning horizon. We study two objectives: minimising the 
number of panels (cutting-stock related) and total inventory carrying cost (lot sizing 
related) and aim to generate all non-dominated objective vectors. We show that the 
objectives are conflicting and there is a non-dominated objective vector corresponding to 
each number of panels in a specified range. To generate each objective vector, we use a 
MILP model that minimises the total inventory cost subject to a specified number of 
panels. We enhance the efficiency of the model by incorporating optimality properties 
and bounding mechanisms. 

Our interest in the problem is from an aircraft manufacturing plant in Turkey whose 
production planners want to reduce the total purchasing and keeping costs of the big steel 
panels while carrying small amounts of fragile steel items. Our approaches might also be 
used to help the managers of other industries like furniture manufacturing having a high 
demand for small wooden items that form final furniture products over long periods. To 
the best of our knowledge, we propose the first multi-criteria approach for the integrated 
two dimensional cutting stock and lot sizing problem. Future research may consider some 
extensions like allowing backorders (lot sizing problem) and non-guillotine cuts (cutting 
stock problem). Another promising extension might be to analyse the preferences of the 
company managers and find a representative set of non-dominated objective vectors that 
favour those preferences. 
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Appendix 

Table A1 Features of the problem instances, T = 7, SetR 

Instance n D wmax wmin lmax lmin W L 

1 3 45 60 55 2,785 1,930 1,220 3,900 

2 4 50 165 56 3,048 66 1,220 3,660 

3 5 32 508 102 3,048 152 1,220 3,660 

4 5 54 170 75 230 75 1,220 2,500 

5 5 300 400 85 1,200 110 1,250 2,500 

6 7 61 279 89 2,438 140 1,220 3,660 

7 11 264 146 76 965 117 1,220 3,660 

8 14 24 914 70 2,235 152 1,220 3,660 

Note: *split instances. 
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Table A1 Features of the problem instances, T = 7, SetR (continued) 

Instance n D wmax wmin lmax lmin W L 

9* 2 24 125 64 215 175 1,220 3,660 

10* 2 36 125 64 215 175 1,220 3,660 

11* 1 10 102 102 3,048 3,048 1,220 3,660 

12* 2 12 1,016 508 2,540 1,092 1,220 3,660 

13* 2 29 76 51 432 114 1,220 3,660 

14* 1 15 254 254 254 254 1,220 3,660 

15* 1 15 55 55 2,300 2,300 1,220 3,900 

16* 2 30 60 55 2,325 2,300 1,220 3,900 

17* 1 94 64 64 175 175 1,250 2,500 

18* 2 144 125 125 215 200 1,250 2,500 

19* 1 72 110 110 120 120 1,220 3,660 

20* 2 216 90 45 150 110 1,220 3,660 

21* 2 24 191 114 241 114 1,220 3,660 

22* 2 18 216 51 330 211 1,220 3,660 

23* 2 16 590 590 810 810 1,250 2,500 

24* 4 40 620 590 810 670 1,250 2,500 

25* 1 9 64 64 89 89 1,220 3,660 

26* 3 48 76 33 279 84 1,220 3,660 

27* 4 56 620 590 810 670 1,250 2,500 

28* 4 72 620 590 810 670 1,250 2,500 

29* 3 120 89 70 311 127 1,220 3,660 

30* 1 24 95 95 622 622 1,220 3,660 

31* 2 14 89 53 1,046 104 1,220 3,660 

32* 4 36 254 53 2,515 104 1,220 3,660 

33* 5 42 610 89 711 191 1,220 3,660 

34* 2 24 140 89 140 102 1,220 3,660 

35* 7 61 1,016 61 3,048 2,540 1,220 3,660 

36* 2 23 229 97 3,048 838 1,220 3,660 

37* 2 51 152 89 330 216 1,220 3,660 

38* 7 66 152 51 229 89 1,220 3,660 

39* 6 186 585 45 2,485 60 1,250 2,500 

40* 5 252 410 40 1,810 45 1,250 2,500 

Note: *split instances. 
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Table A2 Features of the problem instances, T = 14, SetR 

Instance n D wmax wmin lmax lmin W L 

1 2 60 125 64 215 175 1,220 3,660 
2 3 22 1,016 102 3,048 1,092 1,220 3,660 

3 3 44 254 51 432 114 1,220 3,660 

4 3 45 60 55 2,325 2,300 1,220 3,900 

5 3 238 125 64 215 175 1,250 2,500 

6 3 288 110 45 150 110 1,220 3,660 

7 4 42 216 51 330 114 1,220 3,660 

8 4 56 620 590 810 670 1,250 2,500 

9 4 57 76 53 279 84 1,220 3,660 

10 4 128 620 590 810 670 1,250 2,500 

11 4 144 95 70 622 127 1,220 3,660 

12 6 50 254 53 2,515 104 1,220 3,660 

13 7 66 610 89 711 102 1,220 3,660 

14 9 84 1,016 61 3,048 838 1,220 3,660 

15 9 117 152 51 330 89 1,220 3,660 

16 10 438 585 40 2,485 45 1,250 2,500 

Table A3 Features of the problem instances taken from the literature, SetL 

Instance wmax wmin lmax lmin W L 

T = 7  T = 14 

n = 3 n = 5  n = 3 n = 5 

D D  D D 

A1 43 11 33 9 54 60 59 113  101 173 
A2 42 14 33 12 54 72 62 116  103 191 

A3 43 14 35 15 72 84 42 104  82 190 

A4 43 11 33 9 63 108 65 99  95 175 

A5 63 12 69 13 90 158 60 109  98 172 

CHL2 31 9 31 11 49 74 52 106  89 192 

CHL5 14 2 20 1 18 24 55 90  85 151 

Hchl3s 65 13 54 15 88 152 52 120  91 182 

Hchl4s 65 13 54 15 88 152 50 107  91 182 

Hchl6s 101 38 109 35 219 303 53 110  89 179 

Hchl8s 14 2 20 1 18 58 65 107  98 174 

HH 65 13 54 18 88 152 55 103  93 176 

Of1 36 4 55 9 36 84 49 116  78 183 

Of2 27 4 47 13 36 84 41 101  76 148 

Sts4 49 16 44 14 89 118 44 120  83 192 

W 33 9 43 11 36 84 65 121  88 193 

2s 35 7 31 9 63 48 45 112  79 176 

3s 43 11 33 9 63 48 55 89  96 155 

 


