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Abstract: The mathematical modelling of the branched automotive drivetrain 
is mainly based on various configurations of differential mechanisms (DM). 
This paper proposes variant math approaches for modelling DM’s dynamics. 
The symmetric (open) DM is considered first. Two mathematical methods 
based on ordinary differential equation (ODE) and differential-algebraic 
equation (DEA) problems are applied. The asymmetric self-locking inter-axle 
differential with proportional friction moments is then considered. Three 
variants of the mathematical models for this DM type are represented. The 
linearised model uses the shortest description based on a previous step solution. 
Two other nonlinear models are formed by mixing with ODE and DAE 
approaches. The Simulink blocks for implementing developments were 
composed. The models were validated by comparing the results under the same 
conditions to prove their math coherence. The analysis of the proposed variants 
was carried out regarding structural complexity, usability, computational speed, 
and relative accuracy. Conclusions about their usability in drivetrain dynamics 
and active control were made. 

Keywords: symmetric differential; self-locking differential; friction clutch; 
differential efficiency; differential simulink-model. 
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1 Introduction 

The DM is an integral part of the vehicle transmission, providing, in general, the 
redistribution of power between output shafts. The primary need for using differentials is 
caused by abolishing the power circulation in vehicle transmissions. Various designs and 
schemes of these mechanisms can improve the vehicle’s performance depending on its 
operational purpose. Nevertheless, it is often impossible to simultaneously satisfy several 
contradicting criteria of high-performance properties using the classical mechanism. For 
example, applying the symmetric differential without internal friction ensures good 
steerability, high efficiency and prevents excessive tyre wear. However, it limits the 
vehicle passability owing to directing the primary power flow through a path with lower 
external resistance. Conversely, limited-slip differentials (LSD) ensure better passability 
but negatively affect steerability and increase tyre wear. These points are successfully 
resolved using ABS-based electronic control. Mechatronic DMs have gained importance 
owing to spreading a concept of redistributing torque by all wheels in AWD 
transmissions. Also, the unconditional advantages of a mechatronic differential can be 
referred to the fact that in the case of using single-motor electric traction, there is no 
additional need for controlling angular speeds of the same axle’s wheels, as in the case of 
driving by a separate motor. Also, the torque redistribution can be organised with the 
sport differential technology. 

The need for considering improved mathematical models of vehicle DMs is stipulated 
by several reasons: expansion of task range for 4-wheel and spatial vehicle models with 
dynamic redistribution of vertical reactions; analysis and modelling of complex 
powertrain schemes; actualisation of automatic transmission control issues associated 
with autonomous vehicles; intensification of technologies for intelligent distribution of 
traction forces; studies of transmission control algorithms using SIL/HIL modelling. 

The purpose of this paper is to extend simulation models for basic types of vehicle 
DMs using various mathematical approaches for assessing the applicability and 
effectiveness of proposed models in issues of powertrain dynamics. Within the goals 
above, different methods for describing the DM dynamics are evaluated in terms of 
universality and complexity of models, ability to ensure high calculation speed, accuracy, 
integration into other and larger models of vehicle transmission, suitability for composing 
simulations and creating library components. 
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2 Literature review 

Most studies in automotive differentials can be conditionally divided into issues of the 
modelling mechanisms themselves and studies considering differentials as an electronic 
control system component. Brumercik et al. (2015) evaluated the model of inter-wheel 
differential that engaged into a vehicle drivetrain model. The basic math model is based 
on power balance, including kinematic relations between three shafts. The reduced inertia 
coefficients are determined by comparing the unit’s reduced kinetic energy with the 
kinetic energy of all the components. The system of three differential equations was 
composed for describing the mechanism state. The model does not consider efficiencies 
and other losses inside of the mechanism or changes of power flows. 

Virlez et al. (2011) developed detailed models of TORSEN differentials using a 
flexible multibody simulation approach based on the nonlinear FEM. The prototype 
model was composed of several rigid and flexible bodies mainly constrained by flexible 
gear pair joints and contact conditions. Math equations formed a nonlinear differential-
algebraic system solved using a Newton-Raphson method. The proposed model was 
engaged into an all-wheel-drive model, including shafts and tyres, to estimate torque 
redistribution by axles. The authors stated that the results were obtained with good 
accuracy. 

Chen et al. (2017a) considered a new torque vectoring differential (TVD) based on a 
Ravigneaux gear set. This design was chosen for using the option of generating two 
different speed ratios with only one pair of the gear set. The equation system of 
mechanism dynamics consists of two parts, including Ravigneaux equations and 
symmetric differential equations combined in one DAE problem. Further, the model was 
engaged into the vehicle dynamics model composed using SimulationX software. Virtual 
tests were conducted to determine the effect of the proposed differential on vehicle 
manoeuvrability and steerability. 

Chen et al. (2017b) considered a differential mechanism’s original design for 
realising the torque vectoring concept. The new TVD system consists of gear sets, 
actuator, and control. The technique combines the inner gears that drive output shafts and 
outer gears connected to brakes. The math model is represented by dynamic equations of 
elements complemented by equations of kinematic constraints that compose the DAE 
problem. Any losses and efficiencies are neglected, and the power flow direction 
correspondingly. The sensitivity of design parameters was analysed, including the 
braking torques’ adjustment and dimensions of gear sets. 

Forstinger et al. (2015) developed a model of asymmetric differential. Two variants 
of differential design were considered, namely composed with conic and planetary gear 
sets. Math models are based on both dynamics and constraint equations. The model 
includes static friction for describing losses and limited-slip functionality. A method 
based on force-balancing for overcoming the simulation problems of discontinuity at zero 
angular speed was presented. Simulation studies showed high similarities with 
measurement data from a differential gear testbed. 

Russo et al. (2016) proposed a new controllable differential based on the 
magnetorheological fluid to generate the locking torque. The differential state system is 
composed of the torque, power balance, and kinematic constraint equations. The double-
controller, including the extended Kalman filter scheme, was designed to correct the  
 
 



   

 

   

   
 

   

   

 

   

    Improved models of vehicle differential mechanisms 115    
 

    
 
 

   

   
 

   

   

 

   

       
 

yaw moment. Modelling of the software and hardware in the loop was conducted with an 
experimental prototype. 

Two models of differential mechanisms are represented in the Simulink library of 
Mathworks (2021a, 2021b). The Open Differential and Limited Slip Differential blocks 
are based on simplified differential equations of components’ equilibrium supplemented 
by algebraic equations of kinematic constraints. The models consider the mechanical 
efficiencies (constant and load/speed-dependency), viscous losses, working temperature 
and are fully configurable. The main difference between the models is constant friction 
moment depending on the relative angular speed. 

As noted, the research field of DM models is vast and can be conditionally divided 
into the following sectors: modelling and studying specific properties of a DM (Gadola 
and Chindamo, 2018; Morselli et al., 2006; Deur et al., 2010), vehicle dynamics with 
active differentials (Annicchiarico et al., 2014; Ji et al., 2011), torque redistribution 
systems (Jaafari and Shirazi, 2018), and development of control algorithms for improving 
vehicle steerability and passability (Assadian et al., 2008). Nevertheless, simplifications 
and assumptions are accepted in many studies, and the differential efficiency and 
operational modes are not considered. We also note that the authors rarely present 
simulation models, their validation, performance and model quality assessments, and 
comparison of different approaches, which somewhat reduces the reliability of the 
proposed models. 

3 Symmetric differential mechanism 

3.1 Schemes 
The same axle wheels are often driven using a symmetric (open) differential, ensuring 
approximately equal redistributions of the carrier torque via the side gears on output 
shafts 1 and 2. This differential provides good steerability for a front-wheel-drive (FWD) 
vehicle due to the absence of internal friction. Still, it reduces vehicle passability since 
the power flow runs over the wheel with worse tyre-road adhesion. It can be compensated 
by activating a brake on such a wheel to augment the moment of internal resistance. 

The symmetric DM shown in Figure 1 is combined with the final drive. Shaft 3 is 
accepted as the input because the torque goes straight from a gearbox to the wheels most 
operating time. The ring gear of the radius 0R  joined with the differential carrier 
composes a final drive conic pair with the shaft pinion of radius 3r , the quotient of which 
gives the algebraic (module) ratio /F F Fg R r=  unlike the quotient of their angular 
speeds F Fi g= ±  due to the clockwise/counterclockwise rotation of the ring and pinion 
gear, respectively. As this DM divides the torque between the same axle wheels, the side 
gear radii 1R  and 2R  are equal. The satellite with a radius sr  works like a parasite gear. 
Nevertheless, it affects the internal inertial losses depending on the radii ratio of the 
satellite and side gear. Thus, the ratio from 1, 2k =  side gear to the satellite yields 

/ks s kg r R= . 
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Figure 1 Schemes of symmetric differential mechanism: (a) kinematic; (b) side gears and 
satellites and (c) final drive (see online version for colours) 

                   (a)                                                         (b)                                          (c)  

3.2 Differential kinematics 

Introducing the designations following the mechanism scheme in Figure 1(a), it can be 
written 

( )0 1 2 3
T

sω ω ω ω ω=ω , 1

2
D

ω
ω
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

ω , 1

2

D
D

d
d

ε
ε
⎛ ⎞

= = ⎜ ⎟
⎝ ⎠

ω
ε

t
 (1) 

where 0ω , 1ω , 2ω , 3ω , sω  – angular velocities of the carrier, left-side gear, right-side 
gear, final drive pinion, and satellite, respectively; ω  – vector of absolute angular speeds 
of differential mechanism; Dω , Dε  – vectors of driving axles’ angular speeds and 
accelerations, correspondingly. 

The basic kinematic relations between the components of a vehicle DM may be 
represented with the well-known Willis formula 

( )
( )

( )

( )

( )

00
0 1 0 1 11 2 2

12 120 0
2 0 1 1 22 2

s s s

s ss

z i gz zi g
z z z gi

ω ω ω
ω ω ω

− −
= = = − = = − = − =

−
 (2) 

where ( )0
12i , 12g  – kinematic ratio and its module between the input shaft 1 and the output 

shaft 2 at the stopped carrier, respectively; 1z , 2z , sz  – teeth number for the left and right 
side gears, and satellite, respectively; ( )0

1si , 1sg , ( )0
2si , 2sg  – kinematic ratios (and their 

modules) between the input shaft 1, input shaft 2, and the satellite at the stopped carrier, 
respectively. 

Axle 1 positive rotation causes the negative satellite rotation, and conversely, the 
same signs for the side gear and satellite are kept in the case of the driving axle 2. Thus 

( )0
1 1

1

s
s s

z
i g

z
= − = − , ( )0

2 2
2

s
s s

z
i g

z
= =  (3) 

After determining the kinematic ratio ( )0
12i , the carrier angular speed may be derived by 

angular speeds 1ω , 2ω  of axles 1, 2, respectively. 
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( )

( )

0
1 12 2 1 12 2

0 0
1212 11

i g
gi

ω ω ω ωω − +
= =

+−
 (4) 

For the inter-wheel DM depicted in Figure 1, the kinematic ratio ( )0
12 1i = − , and thus, the 

carrier and satellite angular speeds may be derived using equations (3) and (4) 

( )0 1 2 / 2ω ω ω= + , ( ) ( )2 1 2/ 2s sgω ω ω= −  (5) 

Thus, all the angular speeds of Dω  vector may be found by the customary kinematic 
conditions equations (3) and (5) and a couple of angular speeds of ω . Denote the 
auxiliary matrices 

2 2

1 1
2 0

1 0 2
2

1/ 1/

D

F F

s s

g g
g g

⎛ ⎞
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⎜ ⎟−⎝ ⎠
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2
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H

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
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⎜ ⎟
⎜ ⎟
⎝ ⎠

g , 0

0
1
1
0
0

H ω

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

ω  (6) 

where Dg  – matrix of kinematic ratios of the differential links relative to shafts 1 and 2, 
Hg  – matrix of gear ratios relative to supports of rotating links, Hω  – vector of rotational 

speeds of support details. 
Almost all the differential components have stationary supports with no rotation 

except for the side gears that are usually connected via a sleeve bearing with the carrier 
body. Thus, the vector Hω  specifies the angular velocities of supports of corresponding 
details. Then, the absolute and relative angular speeds are given by 

D D=ω g ω , H H D=ω g ω , ( )r H D H D= − = −ω ω ω g g ω  (7) 

The angular accelerations corresponding to the mechanism details may be obtained by 
differentiating equations (1) and (5), which gives two basic and additional important 
relations 

3 0 3 0 3i gε ε ε= = ± , 1 2
0 2

ε εε +
= , 2 1

22s
sg

ε εε −
=  (8) 

3.3 Variant 1: absolute and relative balance of DM 

3.3.1 Differential dynamics 
To model the DM dynamics, consider the case of direct power flow from the final drive’s 
pinion shaft to wheel axles. For each side gear ( 1, 2)k =  

k k s k k k k kI n P R G L Tε = − − +  (9) 

where kI  – side gear inertia, kP  – driving force in the gearing contact between side gear 
and satellites, kG  – moment of gearing losses, kL  – moment of viscous losses, kT  – 
external axle torque, sn  – number of satellites. 
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The gearing losses may be considered with efficiency coefficient kGη  relative to the 
internal interaction torque k kP R  

k k s k k kG k kI n P R L Tε η= − +  (10) 

Thus, the driving torque on a side gear may be derived as 

k k k
s k k k

kG kG kG

I L T
n P R ε

η η η
− = − − +  (11) 

The carrier dynamics equation 

0 0 0 0F F F s k k k
k k

I P R G B L n P R Lε = − − − − +∑ ∑  (12) 

where 0I  – carrier inertia, FP  – driving contact force between the final drive’s ring and 
pinion gears, FG  – moment of final drive gearing losses, 0B  – moment of bearing losses 
in carrier supports, 0L  – moment of viscous carrier losses. 

Note that usually, a side gear does not have its bearing (Figure 1(a)), using a carrier’s 
internal surface for sliding. Consequently, the viscous losses kL  between these counter-
bodies appear when there is a difference in their angular speeds. Thus, the influence from 
the side gear slip also spreads on a carrier. Introducing gearing and bearing efficiencies 

FGη , 0Bη , respectively, and substituting equation (11), based on the previous expression 
obtain 

0 0 0 0 0
1 1k k

B k F F FG B k
k k kkG kG kG

I T
I P R L Lε η ε η η

η η η
⎛ ⎞

+ = − + − −⎜ ⎟
⎝ ⎠

∑ ∑ ∑  (13) 

The sum of viscous components kL  in equation (13) expresses the losses caused by a 
specific power circulation between the carrier and side gears and reduced to the sliding 
moments. On the one hand, the carrier drives a side gear; on the other hand, a side gear 
may rotate faster than the carrier, returning some power through the liquid friction. 
Denote 

11 1 kG
kL

kG kG

ηη
η η
⎛ ⎞ −

= − =⎜ ⎟
⎝ ⎠

 (14) 

Then, considering the sum mentioned and kinematic relation of equation (7) 

( ) ( )( )0 1 1 2 2 1 2
1 11

2k kL k k L L
k kkG

L l l lη ω ω η η ω ω
η
⎛ ⎞

− = − = − −⎜ ⎟
⎝ ⎠

∑ ∑  (15) 

where kl  – linear coefficient of the side gear’s viscous resistance. 
Analysing equation (15), it can be observed first that in the case of equal efficiencies 

1 2G Gη η=  and at the same time, the specific viscosities 1 2l l= , the equation (15) gives 
zero, as well as for the case of equal angular speeds 1 2ω ω= . If, for instance, 

1 1 2 2L Ll lη η> , meaning the increased resistance on the side gear 1, the positive difference 
1 2 0ω ω− >  gives the positive loss to be subtracted from the carrier torque. If at the same 
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condition 1 2 0ω ω− < , the loss becomes negative but, considering its deduction in 
equation (13), implies redistributing the power over the side gear 2. The same reasoning 
is for the case of the opposite side gear. 

According to the coordinate system accepted for the DM with the final drive, the ring 
gear may be located left- or rightward relative to the pinion. The design solution affects 
the ratio sign, whether the pinion shaft would rotate clockwise or counterclockwise. Any 
variant uses the same equation of the pinion balance 

3 3 3 3 3 F FI T B L P rε = − − −  (16) 

where 3I  – inertia of the final drive pinion with its shaft; 3B , 3L  – moments of pinion 
shaft bearing and viscous losses, respectively, Fr  – conditional pinion radius  
(Figure 1(a)). 

Introducing bearing effectiveness 3Bη , multiplying the equation (16) on Fg , 
substituting F F FR r g= , replacing the angular acceleration 3ε  of the pinion shaft with 
relation from equation (8), derive the carrier drive torque 

2
23 3

3 3 3 3 1 3 22 2
F

F F F B F B F B
I g IP R T g L g gη η ε η ε= − − −  (17) 

Note that the issue of the carrier ring location can be easily solved by a sign of Fg , thus, 
for the case depicted in Figure 1(a), Fg  must be negative. 

The first equation of the differential state may be derived by combining equations (8), 
(13), and (17) that after simplifying is reduced to the form 

1 1 2 2I I T Lε εΣ Σ Σ Σ+ = −  (18) 

where the total moments of inertias 1I Σ , 2I Σ , torque TΣ , and viscous resistance LΣ , 
respectively are 

2
0 31

1 3
0 12 2

F
B

FG FG B G

I I gII η
η η η ηΣ = + + , 20 32

2 3
0 22 2 F B

FG FG B G

I III g η
η η η ηΣ = + +  (19) 

1 2
3 3

0 1 2

1
F B

FG B G G

T TT T g η
η η η ηΣ

⎛ ⎞
= + +⎜ ⎟

⎝ ⎠
,  ( )0 1 1 2 2 3

0

1
L L F

FG B

L L L L L gη η
η ηΣ = + + +  (20) 

Thereby, the torque 3T  and loss 3L  in the last expressions for TΣ  and LΣ  change their 
signs automatically according to the driving speed 3ω  sign. In this way, equation (18) 
fully reflect the power balance of the mechanism. 

Unlike the adopted principle at considering the symmetric differential’s power 
balance, assume that satellite contact forces 1P  and 2P  maybe different, which allows 
taking the satellite inertia into account. Thus, the force equation of a satellite equilibrium 
yields 

( )1 2s s s sI P P r Lε = − −  (21) 

where sI  – satellite inertia, sL  – moment of viscous satellite losses. 
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The second equation of the differential state may be derived by multiplying  
equation (21) on sn , combining equations (8), (10), and (21), and substituting 

2 2 1 2s s sr R g R g= = , which after simplifying gets the form 

2 2 1 1S S S SI I T Lε ε− = −  (22) 

where the subtractive moments of inertias 1SI , 2SI , torque ST , and viscous resistance SL  
(large index), are, respectively 

1
1 2

1 22
s s

s
G s

n III
gη

= + , 2
2 2

2 22
s s

s
G s

n III
gη

= +  , 2 1

2 1
S

G G

T TT
η η

= − , 2 1

2 1 2

s s
S

G G s

n LL LL
gη η

= − +  (23) 

Note that equations (22) and (23) do not contain parameters and efficiencies from the 
carrier and final drive and, in this way, describe the relative power balance between side 
gear shafts. Consequently, there are two equations (18) and (22) for the mechanism with 
two degrees of freedom, enough for linking the kinematic and dynamic parameters. 
Consider the parts of these equations separately to perform in the vector-matrix form 

1 2 1

1 2 2S S S S

I I T L
I I T L

ε
ε

Σ Σ Σ Σ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞
= −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (24) 

3.3.2 Matrix of inertia 

The matrix DI  of the inertia coefficients is nonsingular, therefore invertible at any 
combinations of rotating components inertias except for the case they equal zero. 

1 2

1 2
D

S S S

I I
I I
Σ Σ Σ⎛ ⎞ ⎛ ⎞

= =⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

I
I

I
 (25) 

where ΣI , SI  – row-vectors of total and subtractive inertias, respectively. 
Introducing the vector I  of the differential mechanism inertias and matrices Ση , Sη  

of combined kinematic and efficiency influences, it can be expressed as 
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Then 
T

Σ Σ=I I η , T
S S=I I η  (27) 
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3.3.3 Torques 
Introducing designations for influences of external torques, then 
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Fg

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

g , ( )T diag=g g  (28) 

where T  – vector of external torques on corresponding shafts, Tη  – efficiency matrix of 
power losses, g  – vector of ratios by corresponding axles. Then, the vector of torques 
may be expressed as 

T T
S

T
T

Σ⎛ ⎞
=⎜ ⎟

⎝ ⎠
η g T  (29) 

3.3.4 Viscous losses 
Viscous losses may be represented by a linear dependency, where the moment is 
proportional to the relative angular speed of rotating detail and being weighed by a 
coefficient kl . Combining all the viscous losses from equation (24), it can be expressed 
in matrix form as 
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g g , 
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0 0 1 0 2

1 2

1 1 0

1 10 0 1

L L

FG B FG B G FG B G
L

G G

η η
η η η η η η η η

η η

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟

−⎜ ⎟
⎝ ⎠

η  (30) 

where L  – vector of moments of viscous losses over all the differential’s components,  
l  – diagonal matrix of viscous moments’ coefficients, Lg  – ratio matrix for reducing the 
viscous resistances, Lη  – efficiency matrix of viscous influence. 

Thus, the viscous losses in all the elements of the differential mechanism 

( )r D H= = −L lω l ω ω  (31) 

Then, the viscous part of equation (24), considering equations (7) and (31), is given by 

( )L L D H D
S

L
L

Σ⎛ ⎞
= −⎜ ⎟

⎝ ⎠
η g l g g ω  (32) 

Finally, the system of dynamic balance for the symmetric differential mechanism may be 
represented in the vector-matrix form as follows 
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( )( )1  D D T T L L D H D
−= − −ε I η g T η g l g g ω  (33) 

Equation (33) may be rewritten in a state-space form as 

D D= +ω Aω Bu  (34) 

where 

( )1  D L L D H
−= − −A I η g l g g , 1

D T T
−=B I η g , =u  T  

3.3.5 Direct and reverse power flows 
Note that the power flow may be considered as direct when the power at the mechanism 
entrance exceeds the total output power. Thus 

3 3 1 1 2 2   T T Tω ω ω> +  (35) 

Here the output power flows 1 1T ω , 2 2T ω  are algebraically taken since they can only 
redistribute the power between each other and may not affect the driving flow 3 3T ω . 
Assuming that the mechanism’s direct and reverse efficiencies are approximately equal, 
the condition of detecting the reverse power flow is 

1 1 2 2 3 3  T T Tω ω ω+ ≥  (36) 

There is a particular power gap inside these specified statements meaning a lack of power 
to overcome the internal resistance stipulated by the total losses. Thus, when the external 
driving and resisting power are almost equal and no motion of details, the mechanism 
turns out to be insensitive. 

The mechanism mechanical efficiency may be estimated as follows 

1 1
3 0 2

G G
D B FG B

η ηη η η η +
=  (37) 

These coefficients do not depend on angular speed and represent the minimum internal 
losses overlapped by the driving torque at the start. 

In the case of driving the mechanism from side gears, the system of equations may be 
derived in the same style with minor differences stipulated by shifting the order of 
internal losses. The structure and components match equations (26), (28), and (30). The 
basic formulas are represented to avoid excessive derivations, as follows 
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η  (39) 

where 0 1kL B kGη η η= − , for 1, 2k = . 

3.4 Variant 2: model with kinematic constraints 

In this variant, the dynamics equations of all the DM components are considered 
separately combined with imposed kinematic constraints. 

3.4.1 Direct power flow 
Collecting equations (10), (13), (17), and (21) and rewriting them as a system, then 
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⎩

 (40) 

The variables of equation (40) may be represented using vector-matrix decomposition. 
Thus, denote 
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where M  – vector of unknown internal moments. 
The efficiency matrices corresponding to internal mechanical Mη  and viscous Lη  

moments are 
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Then, equation (42) in the vector-matrix form 

 M L= − −Igε gT η M η gL  (43) 

The vector L  of viscous loss may be expressed as 

( )H ω= − =L l ω ω le ω  (44) 

where 

1 0 0 0 0
1 1 0 0 0
1 0 1 0 0

0 0 0 1 0
0 0 0 0 1

ω

⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟= −
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

e  

Since the vector M  contains three unknown variables and considering equations (44), 
(43) may be represented as 

M L ω+ = −Igε η M gT η gle ω  (45) 

Thus, equation (45) consists of five equations with eight unknowns ( )T Tε M . Such a 

discrepancy may be compensated with algebraic constraint equations. The kinematic 
links are based on relations of equation (8) 
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s s
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 (46) 

Differentiating the last system and denoting ωg , the system of additional algebraic 
constraints takes the form 

2

2 1 1 0 0
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− −⎛ ⎞
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⎜ ⎟−⎝ ⎠

g , 3,1ω =g ε Z  (47) 

where 3,1Z  – zero vector of 3x1 dimension. Designate new vectors as 



   

 

   

   
 

   

   

 

   

    Improved models of vehicle differential mechanisms 125    
 

    
 
 

   

   
 

   

   

 

   

       
 

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

ε
x

M
, 

3,1
D

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

T
T

Z
, ⎛ ⎞

= ⎜ ⎟
⎝ ⎠

ω
x

K
 (48) 

where K  – vector of internal moments’ integral. 
And block matrices as 

5,3

3,5 3,3
T

⎛ ⎞
= ⎜ ⎟
⎝ ⎠
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Z Z
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g Z
, 5,3

3,5 3,3

L
L

ω⎛ ⎞
= ⎜ ⎟
⎝ ⎠

η gle Z
g

Z Z
 (49) 

where ,m nZ  – zero matrix of m×n dimension. Consequently, the system combining 
equations (48) and (49) becomes 

D T D L= −I x g T g x  (50) 

which can be represented in the state-space form 

= +x Ax Bu  (51) 

where 
1

D L
−= −A I g , 1

D T
−=B I g , D=u T  

3.4.2 Reverse power flow 

The system of equation (40) can be slightly changed if consider the torques 1 2, T T  as 
driving and 3T  as resisting. The general structure of equation (49) is unchangeable with 
only difference in Mη  

1 2
0
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0 1 0
0 0 1
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0 1 1

G G
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η η
η

η

⎛ ⎞− −⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟−
⎜ ⎟⎜ ⎟−⎝ ⎠

η  (52) 

Note that Lη  in this variant does not depend on power direction, unlike variant 1. 

3.5 Simulation and testing 

3.5.1 Simulink model 
The model depicted in Figure 2 conditionally consists of data blocks, a state-space model, 
and integration. All the information (Table 1) about the mechanism physical parameters 
is preliminary set to the structure variable SDms. All the matrices ,A  B  derived above 
are stored numerically to reduce excessive computations. The Torques block generates 
external moments according to the numbered shafts in the icon. These values compose a 
column vector by the block Vector Concatenate. The mechanism data and the torque 
vector are sent to the Bus block, where the dynamic variables are updated in the 
corresponding fields of SDms structure. The block System of Differential Equations reads 
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the bus data and computes three bus signals to be sent as field values of the output bus 
structure. The signal <AngularSpeeds> contains the vector of all the rotational velocities 
as by equation (1). The signal <PowerDirection> shows a strategy of choosing the 
inertial and efficiency matrices. Thus, the value "1 means direct power flow, -1 – the 
reverse one. The signal <Derivatives> of the Bus Selector delivers two angular 
accelerations of side gears to be integrated into the Integrator block with the initial 
condition W0. The integrated values are the new angular speed values to be sent back to 
the input bus to update the SDms structure’s corresponding fields. 

As an example, consider the mechanism operating under the action of external 
torques 1T , 2T , 3T  in such a way that the carrier torque 0T  is opposite to the sum of the 
side gear torques 1T , 2T  but does not equal it exactly (Figure 3). The torques 1T  and 2T  
work in the same phases with some difference in the modules to reveal the redistribution 
of power flows for the most general case. Since the final drive ratio is negative, the signs 
of three input torques coincide. Thus, each shaft may be leading and driven during the 
simulation time, which is demonstrated in the bottom graphic of the power flow index. 

Figure 2 Simulink model of functioning the symmetric DM (see online version for colours) 

 

Table 1 Input data for simulating the symmetric differential 

Name Value Name Value Name Value Name Value Name Value Name Value 

Fg  3.517 0I , 
2kg m⎡ ⎤⎣ ⎦  

0.1 3I , 
2kg m⎡ ⎤⎣ ⎦

1.56×10–4
1Gη  0.99 0Bη  0.995 2l , 

Nms
rad

⎡ ⎤
⎢ ⎥⎣ ⎦

 

1×10–3 

2sg  0.5 1I , 
2kg m⎡ ⎤⎣ ⎦  

1.8×10–4 sI , 
2kg m⎡ ⎤⎣ ⎦

4.0×10–5 2Gη  0.99 0l , 

Nms
rad

⎡ ⎤
⎢ ⎥⎣ ⎦

 

5×10–3
3l , 

Nms
rad

⎡ ⎤
⎢ ⎥⎣ ⎦

 

1×10–3 

sn  2 2I , 
2kg m⎡ ⎤⎣ ⎦  

1.8×10–4 3Bη  0.995 FGη  0.975 1l , 

Nms
rad

⎡ ⎤
⎢ ⎥⎣ ⎦

 

1×10–3
sl , 

Nms
rad

⎡ ⎤
⎢ ⎥⎣ ⎦

 

1×10–3 

The main result implies redistributing the angular speeds of components. As seen, the 
side gear shafts’ angular speeds are opposite since 1T  has larger module values than 2T  
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and thus 2ω  becomes counter-rotating owing to an insignificant difference in the carrier’s 
and side gears’ torques. Nevertheless, the carrier angular speed also changes phases 
according to the direction of power flow, with some delays caused by inertial and viscous 
resistance. 

3.5.2 Validation of model variants 
The proposed model variants are expected to ensure close computations at the same input 
dataset. The two model variants (Figure 4) receive the same torque vector signal. The 
output V of each block is the vector of angular speeds combined with the power direction 
index. The relative errors across rows of the column-vector signal are determined as 
quotients of differences relative to the outputs of variant 1. The block RMS computes the 
root mean square for estimating an average tendency of difference between model 
variants. Simulations show that signals from these models are almost identical, with a 
slight alternating delay in switching the power flow. 

Figure 3 Results of simulating the symmetric DM: (a) external load; (b) angular speeds of 
elements and (c) power flow direction (see online version for colours) 

 

Thus, these two modelling variants can be marked as equivalent by results. On the other 
hand, variant 1 requires only matrix dimensions 2×2, whereas variant 2 is based on the 
array with 8×8 dimensions. Consequently, variant 1 ensures a bit better tolerance and 
stability since some imprecision is accumulated owing to the matrix DI  inversion. 
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Nevertheless, variant 2 provides a universal technique in deriving state-space equations 
for mechanical systems and simultaneously determines internal loadings. 

Figure 4 Comparison of two model variants by R-square of the relative error  

 

The simulation model proposed was also compared with an Open Differential block from 
the Simulink library. Despite the different approaches in the mechanism modelling, they 
reflect the close operating tendencies and may fit upon results after being preliminarily 
adjusted. The main discrepancy is stipulated by neglecting the satellites in the block from 
the Simulink standard library. The model proposed considers the number of satellites and 
their gear ratio influencing the moment of inertia reduced to a side gear. Thus, the 
viscous losses across all the mechanism components affect each other. This model will be 
considered the basis for evaluating more complex differential mechanisms with 
asymmetric and controllable torque redistribution. 

4 Inter-axle self-locking asymmetric (limited slip) differential 

4.1 Differential description 
This type belongs to LSDs. The primary asymmetry is organised by the different contact 
radii of the output shafts’ crown gears (Figure 5), which provides an initial torque 
distribution as 40/60 by the gearing only, Audi technology portal (2021), Audi Quattro 
(2021). Thus, when a load on the rear axle driveshaft is 60% of the carrier torque and on 
the front axle drive shaft 40%, both output shafts rotate with the same angular speed. 
Each crown gear has a set of clutches, the counter-bodies connected to the differential 
housing (carrier). With the relative rotation of the carrier and crown gears, the friction 
pairs of the clutches generate forces that reduce or increase the moments on output shafts. 
The clutch pack can be installed with pre-compression, setting the static friction torque 
due to the pressing washers. With a decrease of resistance on one of the shafts, its angular 
speed becomes greater than the carrier angular speed. The excessive power flow from an 
outrunning shaft returns to the carrier by friction forces, increasing the torque on a 
lagging shaft. A feature of this design is the dynamic redistribution of friction moments 
due to the axial component of the gearing reaction. The greater the satellite’s force, the 
greater the compression, and in turn, the greater moment can be passed by friction 
clutches. 
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Figure 5 Asymmetric self-locking inter-axle DM with proportional friction moments: (a) design; 
(b) scheme and (c) proportional action between satellites and crown gears (see online 
version for colours) 

    
                        (a)                                                     (b)                                                              (c)  

4.2 Differential’s kinematics 

Using expressions represented in equations (3) and (4), the general kinematic relations 
for the asymmetric differential depicted in Figure 5(b), may be reflected as follows 

1 12 2
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ω ωω +
=

+
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ω ω ω ωω ωω − −
= = − = = , 
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2 121s
sg g
ω ωω −

=
+

 (53) 

where ( ) ( ) ( )0 0 0
12 12 1 2/i g ω ω= − =  – kinematic ratio and 12 2 1/ 60 / 40 3 / 2g R R= = =  – 

algebraic ratio from axle 1 to axle 2, considering the fact of changing output rotational 
direction through the mediation of satellites; 2 10 / 24sg =  – teeth quotient of the satellite 
and gear of shaft 2. 

Denote Dω  as the vector of the differential elements’ angular speeds and Hω  as the 
vector of the counter bodies angular speeds. The matrix Dg  represents equation (53) for 
expressing all the angular speeds through Dω  
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D D=ω ω g  (54) 

4.3 Friction moment 

In this design, the friction forces appeared due to the relative sliding in the clutches 
between the friction discs, some of which are tied with an output gear and others with the 
carrier body. As shown in Figure 5(c), the radial (axial) compressive force NP  is 
proportional to the tangential force TP  based on the gearing contact angle. The gears of 
shafts 1 and 2 are a bit movable along slot junctions, which is enough for compensating 
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the clutches’ compliances and increasing mechanical pressure between friction couples. 
The friction moment must be limited in order, on the one hand, to ensure the 
redistribution of moments, avoiding excessive clutch locking, and on the other hand, to 
prevent the reduction of DM efficiency, additional loads on the driving shafts, and 
increase of tyres’ slip as well. Suppose that the static frictional moment is preset by the 
preliminary adjusted tightening of the carrier body’s washers in this design. For each 

1, 2k =  shaft’s clutch, the friction moment is modelled by 

Fk
k s Nk Fk Fk Fk s Nk k Fk Fk s Nk k k

k

R
F n P n R n P R n n P R f

R
μ μ= = =  (55) 

where sn  – number of satellites, NkP  – axial gearing force, Fkn  – number of friction 
couples, FkR  – average friction radius, Fkμ  – friction coefficient, /k Fk Fk Fk kf n R Rμ=  – 
friction factor. 

The friction moments may be expressed directly through side gear moments if the 
friction is split into static and dynamic components 

( )tank kd ks s k k k s k k kF F F n P R f n N R fα= + = +  (56) 

where kdF , ksF  – dynamic and static friction moments, correspondingly, α  – gearing 
angle, kN  – preliminary established axial compression. 

The axial component NP  of the gearing contact reaction P  does not depend on the 
direction of the shaft rotation nor the direction of the tangential component TP  ( kP ). 
Thus, the friction moment’s dynamic part is written as 

( ) ( )sgn tankd s k k s k k kF n P R n P R fα=  (57) 

where ( )sgn ⋅  – sign function. 
The last circumstance imposes nonlinearity on the system of equations. A hyperbolic 

function can be chosen as a friction model, which ensures the change of slipping sign and 
rapidly asymptotically approaches one. This prevents the sticking effect leading to a stiff 
system of equations and, consequently, to the increase in the solution time, and avoids 
abrupt jerks when the friction moment changes its sign. For 1, 2k =  

( )( )0tanhFk k fk kcμ μ ω ω= −  (58) 

where kμ  – module value of friction coefficient, fkc  – intensity coefficient. 

4.4 Differential’s dynamics 

Depending on the relation of external power flows on the differential’s shafts, two 
systems of equations can describe the dynamics of such a mechanism configuration 
(Figure 5). In the case of direct power flow (the carrier is driving) 
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⎩

 (59) 

where k s k kM n P R=  – moment of contact forces between satellites and crown gear; other 
symbols correspond to designations made above, 1, 2k = . 

In the case of reverse power flow (output shafts are driving) 

0 01 2 1 2
0 0 1 1 2 2

0 0 0 0 0 0

1 1 1 1 1 1

2 2 2 2 2 2

2 2 1 1 12
2 2

G G
B B B B B B

s s s s
s G s G

s s

L TL L F FI M M

I T L F M
I T L F M
n I n L

M n M g
g g

ε η η
η η η η η η

ε
ε

ε η η

⎧ = + − + + + + +⎪
⎪
⎪ = − − −⎪
⎨ = − − −⎪
⎪

= − −⎪
⎪⎩

 (60) 

The number of equations is less than the quantity of unknown variables, including kM  
and nonlinearity due to sign function in friction moments. Thus, three variants of solving 
this problem are proposed. Variant 1 is based on the technique described in variant 1 of 
symmetric differential. Variant 2 is based on an extension of variant 1 and a method that 
allows the gearing moments into the system of equations as unknown parameters to be 
determined simultaneously with angular accelerations. Nevertheless, this variant requires 
solving a nonlinear system of equations due to the uncertainty of the vector M  signs. 
Variant 3 combines variant 2 for symmetric differential and variant 2 for the differential 
with proportional friction moments. It uses the systems of equations (59) and (60) 
without changes, requiring two additional equations of kinematic constraints. 

4.5 Proposed variant 1 

4.5.1 Direct power flow 

The second and third equations of equations (59) and (60) are to be substituted into the 
upper and lower equations, eliminating unknown kM . Thus, the components for 
equations of the carrier and satellite equilibriums in the case of direct power flow are 

0 1
1

12 1 01 G B

I II
g η ηΣ = +

+
, 0 12 2

2
12 2 01 G B

I g II
g η ηΣ = +

+
 , 1 2

1 2
0 0

L L

B B

F F Fη η
η ηΣ = + , (61) 

1 2
0

1 0 2 0G B G B

T TT T
η η η ηΣ = + + , 0 1 2

1 2
0 0 0

L L

B B B

L
L L Lη η

η η ηΣ = + +  
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( )
1 12

1 2
1 2 121

s s
s

G s

n II gI
g gη

= +
+

 , 
( )

2
2 2

2 2 121
s s

s
G s

n III
g gη

= +
+

 , (62) 

1 12 2

1 2
S

G G

T g TT
η η

= − + , 2 1 12

2 1
S

G G

F F gF
η η

= − , 2 12
1

2 1 2

s
S s

G G s

nL gL L L
gη η

= − +  

where 1/ 1kL kGη η= −  for 1, 2k = . 
Denote the vectors and matrices as 

1 2

1 2
D

S S

I I
I I
Σ Σ⎛ ⎞

= ⎜ ⎟−⎝ ⎠
I , D

S

T
T

Σ⎛ ⎞
= ⎜ ⎟
⎝ ⎠

T , D
S

F
F

Σ⎛ ⎞
= ⎜ ⎟
⎝ ⎠

F , D
S

L
L

Σ⎛ ⎞
= ⎜ ⎟
⎝ ⎠

L , 1

2

F
F

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

F , 1

2

M
M
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

M , 

1

2

0
0G

I
I

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

I  

0

1

2

T
T
T

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

T , 
0

1

2

s

L
L
L
L

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

L , 1

2

f
f

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

f , 1

2

G
G

G

η
η
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

η , 1

2
G

T
T
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

T , 1

2

R
R

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

R , 1

2

N
N

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

N ,(63) 

1 0 2 0

12

1 2

1 11

10

G B G B
T

G G

g
η η η η

η η

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟

−⎜ ⎟
⎝ ⎠

η , 

1 2

0 0 0

12

1 2 2

1 0

10

L L

B B B
L

s

G G s

ng
g

η η
η η η

η η

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟

−⎜ ⎟
⎝ ⎠

η , 

1 2

0 0

12

1 2

1

L L

B B
F

G G

g

η η
η η

η η

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟

−⎜ ⎟
⎝ ⎠

η  

Then, the major relations between the vectors can be written as 

D T=T η T , D L=L η L , D F=F η F  (64) 

The vector L  of viscous loss may be expressed using equations (31) and (54) 

( )H= −L l ω ω  (65) 

The vector of friction moment and its components are calculated as 

( ) ( )( ) ( ) ( ) ( )tand s sdiag diag sgn diag diag nα= + = +F F F f M M f R N  (66) 

Accepting the form of the system derived in equation (33), obtain the matrix equation 

( )1
D D D D D

−= − −ε I T F L  (67) 

The vector M  of gearing moments remains undetermined at the current solution step. 
Consequently, it can be obtained from the preceding step, assuming insignificant changes 
during a time increment. 

( )( ) ( )1
G G D Gdiag

−
= + + −M η I ε L F T  (68) 
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4.5.2 Reverse power flow 
Keeping the same structure for basic equations from the case of direct flow, only those 
components that change values depending on power direction are reflected below: 

0
1 1 1

121 G
I

I I
g

ηΣ = +
+

, 0 12
2 2 2

121 G
I g

I I
g

ηΣ = +
+

, (69) 

( )1 1 1 12 2
2 121

s s
s G

s

n I
I I g

g g
η= +

+
 , 

( )2 2 2 2
2 121

s s
s G

s

n I
I I

g g
η= +

+
 , 

1 2
0

12 1 2

1

0

G G
BT

G Gg

η η
η

η η

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟−⎝ ⎠

η , 

1 2

0 0 0

12 1 2
2

1 0

0

L L

B B B
L

s
G G

s

n
g

g

η η
η η η

η η

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟

−⎜ ⎟
⎝ ⎠

η , 

1 2

0 0

12 1 2

L L

B BF

G Gg

η η
η η

η η

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟−⎝ ⎠

η  

where 0 1kL kG Bη η η= −  for 1, 2k = . 
The matrix equation for determining the vector M  becomes more simple 

G G D= − − −M T I ε L F  (70) 

Thus, this variant is based on a slight delay in vector M  values but ensures quick 
computations and linearity of the equation system. 

4.6 Proposed variant 2 

4.6.1 Direct power flow 
The structure of system equation (24) may be completed with two equations for shafts 1 
and 2 from equation (59), preventing linear combinations. The needed vectors are as 
follows 

1

2

1

2

D

M
M

ε
ε

⎛ ⎞
⎜ ⎟ ⎛ ⎞⎜ ⎟= = ⎜ ⎟⎜ ⎟ ⎝ ⎠⎜ ⎟
⎝ ⎠

ε
x

M
, 

1

2

d

Sd
Dd

d

d

F
F
F
F

Σ⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

F , 
1

2

s

Ss
Ds

s

s

F
F
F
F

Σ⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

F , 
1

2

S
D

T
T
T
T

Σ⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

T , 
1

2

S
D

L
L
L
L

Σ⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

L , 

2,1
Z

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

Z
f

f
 (71) 

where x  – vector of integrated variables, DdF , DsF  – vectors of dynamic and static 
friction components, 2,1Z  – zero vector with two rows. 
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These vectors may be decomposed, by introducing matrices, as 

1 0 2 0

12 1 2

1 11

0 / 1/
0 1 0
0 0 1

G B G B

G GT g
η η η η

η η

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟−=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

η , 

1 2

0 0 0

12

1 2 2

1 0

1
0
0 1 0 0
0 0 1 0

L L

B B B

s
L

G G s

ng
g

η η
η η η

η η

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟−

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

η , 

1 2

0 0

12

1 2

1

1 0
0 1

L L

B B

F
G G

g

η η
η η

η η

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

−= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

η  (72) 

where 1/ 1kL kGη η= −  for 1, 2k = . 
The new block matrices representing influences of all the variables are formed using 

equations (63) and (72) as 

( )
2,2D

D
G Gdiag

⎛ ⎞
= ⎜ ⎟−⎝ ⎠

I Z
G

I η
, ( )4,2F F=H Z η  (73) 

where 2,2Z  and 4,2Z  – zero matrices with 2×2 and 4×2 dimensions, respectively; other 
components correspond to those represented in equation (63). Then, the components of 
the equation system may be compactly rewritten in matrix form as 

D T=T η T , D L=L η L , ( ) ( )Ds F sdiag diag n=F η f R N , (74) 

( ) ( )( ) ( ) ( )tanDd F Z Dddiag diag sgn α= =F H f x x F x  

where the vector L  of viscous losses is calculated in the same way as in equation (65). 
Finally, the matrix equation of equilibrium may be written in the form of a nonlinear 

objective as 

( ) 4,1D Dd Ds D D+ + + − =G x F x F L T Z  (75) 

where 4,1Z  – zero column-vector with 4 elements. 

4.6.2 Reverse power flow 

The inertial matrix DI  is entirely identical to the reverse case of variant 1. The minor 
difference in math model compared to the case of direct flow consists of matrices given 
by 
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1 2
0

12 1 2

1

0
0 1 0
0 0 1

G G
B

G GT g

η η
η

η η

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟−=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

η , 

1 2

0 0 0

12 1 2
2

1
0
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0 1 0

0
0 0 1
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B B B
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L G G
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n
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η η η

η η

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

= −⎜ ⎟
⎜ ⎟
⎜ ⎟
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⎝ ⎠

η , 

1 2

0 0

12 1 2

1 0
0 1

L L

B B

F G Gg

η η
η η

η η

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟= −
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

η  (76) 

where 0 1kL kG Bη η η= −  for 1, 2k = . The matrix of variables’ influence also changes one 
block element 

2,2

2,2

D
D

G

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

I Z
G

I E
 (77) 

where 2,2E  – diagonal identity matrix with 2×2 dimension. 

4.7 Proposed variant 3 

4.7.1 Direct power flow 
The system of equations (59) and (60) may be reorganised with matrix form. The vectors 
representing kinematic, physical, and force parameters are: 

0
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s

ε
ε
ε
ε
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⎜ ⎟
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s
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⎝ ⎠
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M
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⎝ ⎠

M , 1

2

f
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⎛ ⎞
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⎝ ⎠

f , 4,1
Z

⎛ ⎞
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⎝ ⎠

Z
f

f
, 1

2

R
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⎛ ⎞
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⎝ ⎠

R , 
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N
N

⎛ ⎞
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N  (78) 

where 4,1Z  – zero vector with 4 rows. 
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The following matrices reflect the impact of efficiencies and gear ratios 

0 0

1

2

12

1 1

0
0

1

B B

M G

G

g

η η
η

η

⎛ ⎞
⎜ ⎟
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⎜ ⎟−⎝ ⎠

η , 
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1 1

1 0
0 1
0 0

B B

F

η η
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⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

η , 
0 0 0

2

1 1 1 0

0 1 0 0
0

0 0 1
0 0 0

B B B

L

s

s

n
g

η η η

⎛ ⎞
⎜ ⎟− −⎜ ⎟
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

η  (79) 

The kinematic restrictions are expressed with the matrix ωg  reflecting dependencies 
from equation (53) 

( )
( )

1212

2 12

011
11 10 s

gg
g gω

− −⎛ ⎞+
= ⎜ ⎟+−⎝ ⎠

g  and 2,1ω =g ε Z  (80) 

where 2,1Z  – zero vector with two rows. 
The block matrix of inertias and kinematic constraint influence can be composed as 

( ) ( )
2,2

M
D

diag diag

ω

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠

I g η
G

g Z
 (81) 

The static component of friction moment is 

( ) ( )s sdiag diag n=F f R N  (82) 

Reducing the matrix Fη  to the new dimension, considering rows of kinematic equations 
equation (80), and determining DsF , obtain 

2,2

F
Fs

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

η
g

Z
, ( ) ( )

2,2

F
Ds Fs s sdiag diag n

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠

η
F g F f R N

Z
 (83) 

Combining vectors of unknowns, states, and external load, get 

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

ε
x

M
, ⎛ ⎞

= ⎜ ⎟
⎝ ⎠

ω
x

K
, 

2,1
D

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

T
T

Z
 (84) 

where K  – vector of internal moments’ integral. 
The dynamic component of friction moment can be expressed using x . Denote, 

( ) ( )( )4,4

2,4 2,2

tan F
Fd Z diag sgnα

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

Z η
g f x

Z Z
, then Dd Fd=F g x  (85) 

where ,m nZ  – zero matrix of m×n dimension. 
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Introducing vectors and matrices for computing viscous losses, they can be derived as 

0

1

2

s

l
l
l
l

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

l , 
1 0 0 0
1 1 0 0

0 0 1 0
0 0 0 1

ω

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟= −
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

e , ( )diag ω=L l e ω , 

2,4

L
L

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

η
g

Z
, ( ) ( )4,2D diag ω=l l e Z , 

2,1

L
D L D

⎛ ⎞
= =⎜ ⎟
⎝ ⎠

η L
L g l x

Z
 (86) 

where l  – vector of viscous resistance coefficients, ωe  – matrix of angular speeds’ 
relativity. 

Finally, the matrix system of equations is written as a nonlinear problem as 

6,1D Dd Ds D D+ + + − =G x F F L T Z  (87) 

or 

( ) 6,1D Fd L D Fs s D+ + + − =G g x g l x g F T Z  

4.7.2 Reverse power flow 
Only one matrix requires to be replaced if shafts 1 and 2 are driving, namely 

1 2

12 1 2

1 0
0 1

G G

M

G Gg

η η

η η

⎛ ⎞
⎜ ⎟− −⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟−⎝ ⎠

η  (88) 

4.8 Simulation of asymmetric self-Locking DM 

All three variants were simulated using the same structure pattern depicted in Figure 2. 
The main difference with the Simulink-model of self-locking differential (Table 2)  
in Figure 6 consists of the block Delay One Step. In variant 1, this block is connected 
with the bus output <InternalMoments> unlike that shown in Figure 6 for variants 2 and 
3. Since variant 1 uses values of internal moments determined on a preceding step, this 
vector must be looped. For variants 2 and 3, the output vector <Derivatives> is looped to 
deliver the initial solution for iterating the system of nonlinear equations. As at a small-
time increment, the answers do not differ significantly, the previous derivatives are stored 
into the memory for use as an initial approximation for the next step of solving the 
nonlinear problem. The block Delay One Step also has the lower port for passing the 
initial vector of its state, which is assigned in the structure of the DM data. 
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Figure 6 Simulink model of functioning the asymmetric self-locking DM with proportional 
friction moments (see online version for colours) 

 

Table 2 Input data for simulating the differential with proportional friction moments 

Name Value Name Value Name Value Name Value Name Value Name Value 

12g  60/40 0I , 
2 kg m⎡ ⎤⎣ ⎦  

2.9×10–2 sI , 
2kg m⎡ ⎤⎣ ⎦  

6.0×10–

5 
1Gη  0.99 1μ , 2μ  0.15 1l , 

Nms
rad

⎡ ⎤
⎢ ⎥⎣ ⎦

 

1×10–3 

2sg  10/24 1I , 
2 kg m⎡ ⎤⎣ ⎦  

4.8×10–3 1Fn , 2Fn 1, 9 2Gη  0.99 1fc , 2fc 4 2l , 

Nms
rad

⎡ ⎤
⎢ ⎥⎣ ⎦

 

1×10–3 

sn  4 2I , 
2 kg m⎡ ⎤⎣ ⎦  

5.8×10–3 α , ° 20 0Bη  0.995 0l , 

Nms
rad

⎡ ⎤
⎢ ⎥⎣ ⎦

 

5×10–3
sl , 

Nms
rad

⎡ ⎤
⎢ ⎥⎣ ⎦

 

1×10–3 

4.8.1 Validation of model variants 

Figure 7 shows the modelling results of operating the differential based on variant 2 and 
comparing absolute differences in angular speeds with variants 1 and 3. Thus, the 
deviations of the solutions between variants 2 and 1 are estimated using the absolute 
difference 21ωΔ , and between variants 2 and 3 – 23ωΔ : parts (f) and (g), respectively. In 
this case, variant 2 was chosen as the fundamental compromise, which includes both 
elements of the 1st and 2nd variants. Note that, in general, all variants provide solutions 
that are the closest in form and values. The fewer changes of the power flow direction 
occur in the given conditions. Thus, for example, comparing the graphs of positions (d) 
and (g), the power flow from the beginning to 3.5 s remained practically direct, which 
was reflected by the minimal values of the absolute error 23ωΔ . A critical error at a 
specific offset in the transition phases determines a further increase in deviations when 
the power flow direction changes sign. Nevertheless, variants 2 and 3 provide minimal 
deviation values of internal forces – frictional moments and driving torques on the crown 
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gears. In contrast, the corresponding data of variant 1 may lag behind in phase the more 
intensive changes in the load mode on the differential shafts. Nevertheless, the kinematic 
accuracy of variant 1 is relatively high (Figure 7(f)). 

Figure 7 Results of simulating the model of the DM with proportional friction moments: (a) 
angular speeds; (b) friction and gear moments; (c) load; (d) power flow; (f) absolute 
errors of angular speeds between variants 2 and 1 and (g) absolute errors of angular 
speeds between variants 2 and 3 (see online version for colours) 

 

4.8.2 Analysis of mechanism modelling 

In contrast to the symmetric DM results, in Figure 7(a), the sections where the curves of 
carrier’s and output shafts’ angular speeds coincide are traced, which is caused by the 
impossibility to overcome the internal friction by external torques. At the same time, the 
change of external torques’ directions (Figure 7(c)) is visibly accompanied by a shift in 
output shafts’ roles, namely outrunning or lagging. Figure 7(b) shows the curves of 
internal moments on the crown gears 1M , 2M  and in the friction clutches 1F , 2F . Note 
that the crown gear torques maintain the proportionality preset in equation (53), i.e. the 
approximate ratio of 40/60. It is also apparent that the friction moment on an outrunning 
shaft is opposite in sign to its rotational direction. Thus, for example, in the time interval 
0 to 2.5 s, the driving torque of shaft 2 crown gear is added with the frictional moment in 
its friction clutch, and of the shaft 1 – is subtracted, which leads to transmitting more 
torque through shaft 2. And vice versa, in the range 3.5...4.5 s, the driving torque of shaft 
1 crown gear is added up with the friction moment of its friction clutch, and of the shaft 2 
– decreases since shaft 1 becomes lagging. Also, note that quasi-periodic curves of 
angular velocities and internal loads correspond to the quasi-periodic form of external 
loads on the mechanism shafts, indicating the stable nature of the solutions for all the 
proposed variants. 

Another virtual test may be conducted for estimating the influence of proportional 
friction by omitting this component in the math model, remaining all the other conditions 
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accepted for the test in Figure 7. Thus, if 0α = , 0kdF =  equation (56), assuming the 
results in Figure 7(a) and (b) as basic, the simulation results of operating the model 
deprived of the proportional friction moments may be expressed by the absolute 
differences, which are depicted in Figure 8. 

Consequently, the absolute curves of simulation without dynamic friction may be 
obtained by deducting results in Figure 7(a)–(b) from corresponding results in Figure 8. 
Thus, the lines 1F , 2F  in Figure 7(b) and the lines 1FΔ , 2FΔ  in Figure 8(b) almost 
compensate each other, which means no dynamic friction. On the contrary, curves 1M , 

2M , and 1MΔ , 2MΔ  give the increase in the module values, implying passing output 
torques exclusively through the crown gears. This leads to essential growing the angular 
speeds of DM elements. 

Figure 8 Results of comparing the model operating with and without proportional friction 
influence: (a) for angular speeds and (b) for internal torques (see online version  
for colours) 

 

5 Conclusions 

The preliminary conclusion of this study indicates that the proposed models fully reflect 
both the functional purpose and the operating principles of all the considered 
mechanisms’ components. Furthermore, all variants considered within the models of 
presented mechanism designs are configurable, providing synchronous and very close 
results estimated with relative and absolute errors. 

The choice of model variant depends on the use priorities. Thus, if the main task is 
obtaining kinematic characteristics at given torque loads on a differential’s shafts, then, 
for symmetric and central differentials, variant 1 can be optimal. In this case, the 
maximum compactness of the mathematical model and the highest speed of calculations 
are ensured. Still, it is necessary to recalculate the internal forces if they are needed 
separately. For example, suppose the differential model is included in the general 
nonlinear transmission model or is necessary to simultaneously compute the kinematic 
and dynamic indicators. In that case, it is recommended to use variant 2 for the 
symmetric differential and variants 2 and 3 for the central differential. In this case, the 
relative speed of computations decreases, but at the same time, all unknowns are 
determined. 

The Audi Quattro self-locking centre differential model considered in the study has 
the advantage of versatility owing to simultaneously combining such design features as 
asymmetry, limited constant friction and proportional dynamic friction depending on 
resistance moment on a drive crown gear. Other configurations based on this design may 
be obtained by tuning this model. Comparing the proposed models with the models from 
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the basic Simulink libraries shows their high relevance. Nevertheless, the elaborated 
variants have fewer accepted constraints and consider more factors such as the inertia of 
all elements, efficiency of the mechanical conjunctions, viscous losses, and a change of 
power flow directions. 

Note that despite the clear and adequate results of the virtual validation and 
simulation of the variants, it is expedient to carry out more comprehensive tests on the 
functional capabilities, combining the adjustment of a differential’s model configuration 
with a complete simulation of the vehicle transmission and vehicle dynamics models. 
Such models of differential mechanisms and the modelling approaches, addressing issues 
of torque vectoring control, including autonomous modes, will be explored in future 
research. 
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