Inventory model for the growing items with price dependent demand, mortality and deterioration
by Amit Kumar Saraswat; Ashish Sharma
International Journal of Operational Research (IJOR), Vol. 47, No. 4, 2023

Abstract: Growing items like livestock, chicks, etc. gain weight in the growing phase but some of them are lost due to mortality. In the selling phase, some inventory is lost due to deterioration. Such aspects make procurement decisions quite difficult for these items. In the light of such aspects, we developed an inventory model for the growing items with price dependent demand, mortality and deterioration. Shortages are partially backlogged. Our aim is to optimise the total cost by determining the optimal ordered quantity and total cycle length. Convexity of the cost function with respect to the decision variables has been discussed analytically. Solution procedure along with numerical example at different percentage of backlogged quantity is provided to show the applicability and validity of our model. Sensitivity analysis shows that total cycle length is the most sensitive among all the decision variables and parameters.

Online publication date: Thu, 10-Aug-2023

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Operational Research (IJOR):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com