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Abstract: Autonomous navigation of a robot is a promising research domain due to its extensive 
applications in which planning and motion control are the most important and interesting parts. 
The proposed techniques are classified into two main categories: the first group focuses on the 
improvement of model free adaptive control (MFAC) to meet the extreme performances of the 
control system, and the second concentrates on the classic artificial potential field (APF) 
algorithm to deal with the limitations like falling into local minima and a non-reachable goal 
problem. This paper proposes a novel exponential feedforward-feedback control strategy based 
on iterative learning control (ILC) MFAC to the reference trajectory tracking, and then 
introduces a virtual target with exponential coordinated form to realise local risk collision 
avoidance for path planning. Compared to some traditional models, our proposed methods have a 
faster trajectory convergence rate, lower avoidable error, and higher safe performance. The 
simulation results verify that our work would bring meaningful insights to future intelligent 
navigation research. 

Keywords: trajectory tracking; path planning; model-free adaptive control; artificial potential 
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1 Introduction 
Path planning and trajectory tracking are the core 
technologies in the decision-making and control of mobile 
robots. When an autonomous robot moves from a point to a 
target point in its given environment, it is essential to plan a 
collision free path in its way, and answer to some criterion 
of autonomy requirements, such as energy, time, and safety. 
Many debugging techniques are proposed by scholars, and 
related enterprises attached great significance to increase 
investment in security control field, but accidents still occur. 
The trend for automatic machines is to operate at higher 
speed, but it may hinder the accuracy and repeatability of 
the robot motion, since extreme performances are required 
from the control system. At the same time, the route should 
be harmless. Therefore, our framework mainly consists of 
two parts: IMFAC-based control strategy of trajectory 
tracking and IAPF-based path planning for obstacle 
avoidance. 

Precision control is desirable in high performance 
robotics and automation systems. Many techniques, as well 
as proportional-integral-derivative (PID) (Patra and 
Mohapatra, 2022), optimisation algorithm, and neural 

network (Naik et al., 2012), have been utilised to deal with 
this problem. For example, Patra and Mohapatra (2022) 
presented the coordinated control of PI type PSS and MISO 
damping controller by using SSSC-based PI type lead lag 
controller for transient stability analysis. By considering the 
possible limitations of network communication, Wu and Liu 
(2019) proposed a networked predictive control algorithm 
based on model free adaptive control to compensate the 
delay caused by network. The MFAC has been used to 
reject the sensor noise measuring the control output to deal 
with control problems such as strongly nonlinear and  
time-varying systems. Its basic idea is to use a newly 
introduced concept of pseudo gradient vector or pseudo 
Jacobi matrix and pseudo order, using a series of dynamic 
linear time-varying models to replace the general  
discrete-time nonlinear system near the trajectory of the 
controlled system, and the pseudo gradient vector is 
estimated online with the I/O data of the controlled system 
to realise model-free adaptive control. Iterative learning 
control (ILC) is mainly aimed at repeatable systems in finite 
time, which is divided into open-loop ILC and closed-loop 
ILC (Noueili et al., 2017). The learning process of  
open-loop ILC may produce large errors and slow 
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convergence speed, while the closed-loop ILC needs high 
gain feedback, which may produce too large control signals 
and affect the convergence speed of the system. In Mateo 
and Sugimoto (2015), a feedback feedforward controller is 
designed to improve the control quality of the existing 
MFAC control system. However, the treatment of MFAC is 
still a matter of controversy. In this paper, the exponential 
adjustment factor is used to further modify the  
feedforward-feedback control law for improving the 
convergence speed of the system and reducing the error. 

Classical path planning methods include artificial 
potential field method (Xueqiang, 2014), A* algorithm 
(Song et al., 2019), dynamic window method (Eduardo  
et al., 2019), etc. Most of the approaches for path planning 
focus on minimising path length. However, the drawbacks 
associated with these approaches are as follows: it takes 
more computational time in large problem space and more 
likely to close to the obstacles. In this paper, we refer to the 
APF to develop a path planning algorithm. The artificial 
potential field method was proposed by Khatib, it is widely 
used in real-time obstacle avoidance and smooth trajectory 
control due to its simple principle, less calculation and fast 
processing speed, but the traditional artificial potential field 
method has the problems of target unreachable and local 
minimum. The potential field can be improved by using a 
mixture of potential and positioning risk fields that 
generates a hybrid directional flow to produce a safe and 
efficient path (Shin and Kim, 2021) or setting virtual targets 
to guide a robot out of the dead zone (Jinchao and Yu, 
2013). The traditional artificial potential field method 
regards the obstacle as a particle, and the planned path may 
pass through the interior of the obstacle, what more, in the 
real environment, the shape of the obstacles themselves can 
not be ignored. If the external geometry of the obstacle is a 
concave polygon, it is difficult to get out of the area only by 
relying on the artificial potential field. Even if the ideal 
‘walk around the wall’ strategy (Luo et al., 2011) is 
adopted, it will take a long time to produce a long path. If 
the number of the path turning points planned by the 
algorithm is too large, it will inevitably increase the 
difficulty of trajectory tracking control. Based on the 
existing improvement of repulsion field function (Xueqiang, 
2014), this paper takes points from classical continuous 
obstacles such as U-type and L-type instead of the potential 
field when the obstacles are regarded as particles, and them 
sets temporary virtual targets according to the 
environmental judgment conditions in Zhao and Li (2017). 
The exponential factor is introduced to adjust the virtual 
target position to eliminate singular values, reduce the 
number of turns and enhance the path security. 

Inspired by the background described above and using 
previous research conducted by the scholars for the obstacle 
avoidance and trajectory tracking cases based on APF and  
I-MFAC, this work presents an extension of the proposed 
method to solve the problem of collision avoidance. The 
contributions of this paper are mainly as follows: 

 

1 Novel application of ICL-MFAC algorithm for power 
system controls which achieves high tracking precision, 
and the satisfied result indicates the good application of 
MFAC on industrial production. 

2 Development of a virtual target point-based obstacle 
avoidance scheme. The designed local path planning 
method can adapt to a cluttered environment and apply 
to real delivery tasks in automotive assembly process. 

3 The proposed control algorithms are easy to implement 
and reduces the amount of computation, which is 
beneficial for engineering popularisation. 

The rest of this paper is organised as follows. Section 2 
gives the basic principle of the dynamic characteristic of 
ICL-MFAC in brief, and presents the design procedure of 
the proposed exponential feedforward-feedback MFAC, 
then simulation experiments are given to illustrate the 
effectiveness of our scheme, Section 3 discusses the 
fundamental of APF for mobile robot path planning, then 
the reasons of the defects are analysed and the 
corresponding resolutions are established to modified the 
virtual sub-target position, then comparative simulation 
certificates are carry out. Section 4 analyses the limitations 
of the schemes. Section 5 concludes the paper. 

2 Feedback-feedforward ILC system based on 
MFAC 

2.1 System description 
The nonlinear system with m-dimensional input and  
q-dimensional output is given as follows (Ren and Hou, 
2020): 

( )( 1) ( ), ( ), ( ), ( )n n ny k f u k y k ξ k k+ =  (2.1.1) 

where k ∈ {0, 1, …, K}, k ∈ [0, K] is the time indicator, n is 
the number of iterations, yn(k) is the system output at time k 
of the nth iteration, un(k) is the corresponding control input, 
ξ(k) is the repeated bounded external interference. 

Suppose f(un(k), yn(k), ξ(k), k) satisfies the uniform 
global Lipschitz condition. If yd(k) is the preset desired 
trajectory, there exists a unique bounded control ud(k) such 
that: 

( )( 1) ( ), ( ), ( ), ( )d d dy k f u k y k ξ k k+ =  (2.1.2) 

A feedback-feedforward ILC system based on MFAC, 
where the feedback control term stabilises the system and 
the feedforward control term compensates for repeatable 
nonlinear time-varying dynamics and disturbances, 
enhances the control performance achieved through 
feedback alone (Ren and Hou, 2020). In order to accelerate 
convergence, we add parameters α to the control law as 
follows: 

( ) ( ) ( )f b
n n nu k u k u k= +  (2.1.3) 

11( ) ( ) ( 1)f f
n nnu k u k e k−−= + +β  (2.1.4) 
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ˆ ˆ ˆ( ) (1), if ( ) or ( 1) .b
n n n nk k ε u k ε= ≤ Δ − ≤φ φ φ  

where en(k) = yd(k) – yn(k) denotes the tracking error of the 
nth iteration, f

nu  is feedforward part, and b
nu  is the feedback 

part. μ is the weighting factor that limits the variance of the 
control input, and η is the learning rate. 

Theorem 1 (Ren and Hou, 2020): The system described by 
equation (2.1.1) under the action of control algorithm 
(2.1.3)~(2.1.6), if ||I – βfu(ςn)|| < 1, then we have: 

lim ( ) ( )f
d n λn

u k u k σ
→∞

− ≤  (2.1.7) 

lim ( ) ( )d n
n

y k y k σ
→∞

− ≤  (2.1.8) 

where σ > 0 is an appropriate constant, when ||en(0)|| = 0 and 
(0) 0b

nu =  are satisfied and yd(k) are constants, the 
feedback-feedforward ICL system based on MFAC is 
convergent, that is, the following equations holds: 

lim ( ) ( ) 0f
d n λn

u k u k
→∞

− =  (2.1.9) 

lim ( ) ( ) 0d n
n

y k y k
→∞

− =  (2.1.10) 

2.2 Modified feedforward-feedback control law 
Since the system (2.1.1) is unknown, in a sequel, the system 
time-varying parameter in equations (2.1.3)~(2.1.6) is also 
unknown. To make the control system designing simple and 
easy to be used in practice, the exponential terms are 
introduced to replace the squared term 2( 1)b

nu kΔ −  and 
2ˆ ( )n kφ  to modify the feedforward-feedback model-free 

adaptive control law as follows: 

( )

[ ]
ˆarctan ( )

ˆ ( )( ) ( 1)

( 1) ( )

n
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n n
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d n
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λ e
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 (2.2.2) 

2.3 Simulation experiment 
The initial values of the dynamic system are set as follows: 
η = 1, ρ = 0.2, λ = 1, μ = 2, θ = 2, and the iterative learning 

gain β = 0.4. In order to show the effectiveness of the 
modified MFAC. Two control algorithms: the proposed  
I-MFAC (2.2.1), (2.2.2) and the conventional I-MFAC case 
(Ren and Hou, 2020) are for the comparison with the same 
initial parameters. Consider the following nonlinear discrete 
system which is parametrically time-varying and 
structurally time-varying: 

( ) 3

2

3
2

( ) ( ) ( ) ( )sin ( ) , 250
1 ( )

( 1)
( ) ( ) ( ) , 250 500

1 ( )

y k u k u k a k y k k
y k

y k
y k u k u k k

y k

  + + <  ++ = 
 + ≤ ≤
 +

 

1000.5( 1) , 250
( 1)

0.5sin 0.3cos , 250 500
100 50

kround

d

k
y k kπ kπ k

 
 
 


− <+ =      + ≤ ≤       

 

The experiment result is shown in Figures 2 and 3. 

Figure 1 The block diagram of proposed feedback model-free 
adaptive control law 

 

From Figures 2(a) and 3, it is obvious that although the 
control accuracy of conventional MFAC+ILC is good, the 
performance of tracking curve is not very ideal and prone to 
jitter, and the execution of a reference tracking performance 
by using our proposed scheme is superior when the value of 
α is equal or less than 1. As shown in Figure 2(b) and  
Table 1, the tracking effect of the proposed I-MFAILC 
algorithm is already the best when the number of iterations 
reaches 15, the tracking error plot shows that the tracking 
error of the exponential improved IMFAC is smaller than 
that of the conventional MFAC + ILC algorithm. What 
more, the time cost is reduced about 54.55%, which 
displays the superiority of our method. 

Table 1 Performance indices for the number of n-iteration 

Iteration/nth 10 15 55 85 Convergent 
time/s 

MSE Conventional 
IMFAC 

0.025 0.015 0.008 0.003 1.5 

Our method 0.005 7.999 
× 10–9 

0.004 1.637 
× 10–7 

3.3 
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Figure 2 The adaptability performance comparison of 
conventional IMFAC and our method (α = 1),  
(a) trajectory tracking (b) tracking mean squared error 
(see online version for colours) 

 
(a) 

 
(b) 

Figure 3 Comparative trajectory tracking at several values of α 
(see online version for colours) 

 

3 The APF method 
3.1 Traditional APF model 
In the areas of advanced robotics, the desired trajectory is 
determined at first and the dynamic system of the robot is 
controlled so that it will follow the desired trajectory exactly 
at every time step. However, an autonomous mobile robot 
(AMR) also needs to overcome many other challenges to 
become autonomous. One of the difficulties is to have 
efficient sensing system capable of determining routes while 
avoiding obstacles and building or updating its environment 
map. In this section, the framework of the local motion 
planning to realise obstacle avoidance is designed by 
utilising potential field. The workspace Q is comprehended 
as an environment of two dimensions or three dimensions, 
which contains several obstacles Oj = [O0, O1, …, Om], 
where m denotes the number of obstacles. The mobile robot 
configuration is denoted by X = (x, y, θ) or X = (x, y, z, θ, ψ). 
Here we just talk about the situation of two dimensions. The 
Cartesian coordinates x and y represent the centre point of 
the mobile robot. The term θ denotes the orientation, i.e., θ 
indicates the angular difference between the environment 
and the mobile robot reference frame. The primary path 
planning objective is to generate a viable sequence of 
positions QG = [X0, X1, …, Xf] to drive the mobile robot 
safely from a given start position to a target position. 

The robot is presented as a particle under the effect of an 
artificial potential field, whose local variation returns the 
free space structure. The main idea of the artificial potential 
field method is to build an attractive potential field around 
the goal, as well as to create a repulsive potential field force 
around the obstacles. Therefore, the artificial potential field 
method employs attractive and repulsive components to 
drive the mobile robot to its target while avoiding collisions 
with the obstacles. The total artificial potential field denoted 
by U(X) and described by equation (3.1.1) is composed by 
two potential functions, the attractive potential Uatt(X), and 
the repulsive potential Urep(X). Therefore, the artificial 
potential field U(X) is the superposition of these two 
functions as follows: 

1
( ) ( ) ( )

n
att repi

U X U X U X
=

= +  (3.1.1) 

Assuming that the robot position denotes X and the global 
target position denotes Xg, the gravitational potential field 
function is described by: 

( )20.5 ,att gU κρ X X=  (3.1.2) 

where κ is the gravitational field gain coefficient. Gravity is 
a negative gradient of gravitational potential field: 

( ) ( ),att att gF grad U κρ X X= − = −  (3.1.3) 

It is not difficult to see that the magnitude of gravity is 
directly proportional to the distance between the robot and 
the target point. The further the distance, the greater the 
gravity. The repulsive potential field function is described 
by: 
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21 1( ) 0.5 ,

( ) 0,

rep o
o

rep o

U X ρ P
ρ P

U X ρ P

  = − ≤    
 = >

β
 (3.1.4) 

where β denotes the repulsion field gain coefficient, Po is 
the influence radius of the obstacle, and ρ denotes the 
distance between the robot and the obstacle. The repulsion 
force is a negative gradient of repulsion field function: 

2
1 1 1( ) ,

( ) 0,

rep o
o

rep o

ρF X ρ P
ρ P ρ X

F X ρ P

 ∂ = − ≤   ∂  
 = >

β
 (3.1.5) 

The superposition of repulsion and gravity is the resultant 
force: 

1
( ) ( ) ( )

n
att repi

F X F X F X
=

= +  (3.1.6) 

Figure 4 Moving direction of robot in APF 

 

3.2 Shortcomings of the traditional APF 
Although the traditional APF is one of the most 
representative in local path planning methods, there are still 
some defects. On one hand, if the goal is within the 
effective scope of the obstacles, a mobile robot would fail to 
reach the target position, which is called goal non-reachable 
with obstacle nearby (GNRON). GNRON problem arises 
while the goal is within the influence distance of the 
obstacle, which makes the global minimum of the total 
potential field is not at the goal position. This situation is 
due to the fact that as the robot approaches the goal, on one 
hand the attractive potential decreases, on the other hand the 
repulsive potential increases quickly. One of the ways to 
solve such puzzles is to do some optimisations of the 
repulsive potential field to balance the changes of two kind 
of force, especially the rapid increase of the repulsive force. 
It is found that if the repulsive potential approaches zero as 
a robot approaches the target, the total potential will take the 

global minimum at the goal. This motivates us to construct a 
new repulsive potential function which takes the relative 
distance between the robot and the goal into consideration 
as follows: 

( ) ( )
( )

( ) ( )

, ,

, ,
,

att g g

g
att g

g

F κ X X ρ X X d
dκ X X

F ρ X X d
ρ X X

 = − − ≤
 − − = >


 (3.2.1) 

where d is the action distance threshold of the global target 
point. 

On the other hand, to handle with the problem of target 
unreachable caused by local minima, Zhao and Li (2017) 
added the influence of the distance between robot and target 
point to the repulsion field function of traditional artificial 
potential field method, so that the potential field at the target 
point is the global minimum point, and the repulsion 
potential field function by adding the distance is defined as 
follows: 

( )
21 10.5 ,n

rep g o
o

U X X ρ P
ρ P

 = − − ≤ 
 

β  (3.2.2) 

The corresponding repulsion function can be expressed as: 

( )

( )

2

2
1

1 1 1

1 10.5

n
rep g

o

n
g

o

ρF X X
ρ P ρ X

n X X
ρ P

−

∂ = − −  ∂ 

 + − − 
 

β

β
 (3.2.3) 

3.3 Conditions for judging local minimum 
Zhao and Li (2017) analysed such a problem and put 
forward to the conditions for judging the robot entering the 
local minimum region when the following two Inequalities 
are meet: 

( )1 cos 0

att rep

att

att rep

F F
ε

F
F F

 −
<


− ≤ ∠ − ∠ ≤

 (3.3.1) 

We employ the following judgment conditions according to 
Zhao and Li (2017) to carry out simulation experiments: 

( )

0.5

cos 0.9

att rep

att

att rep

F F
F

F F

 −
<


 ∠ − ∠ ≤ −

 (3.3.2) 

when the robot is in or about to be in the equilibrium state, 
the motion direction is perpendicular to the gravity plane 
and a temporary virtual target would be set to guide the 
robot out of the trap, after that, the virtual target would be 
removed and the real target point leads the robot to continue 
moving to the destination. The coordinates of temporary 
virtual targets G  under the conventional improvement are 
offered as follows: 
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(1) (1) cos
(2) (2) sin

o

o

G X P ω
G X P ω
 = + ⋅


= + ⋅
 (3.3.3) 

where ω denotes the angle between the adjusted gravity and 
the positive direction of X-axis. The position coordinates of 
the robot in the next step are offered as follows: 

1

1

(1) (1) cos
(2) (2) sin

j j

j j

X X l φ
X X l φ

+

+

= + ⋅
 = + ⋅

 (3.3.4) 

where φ denotes the robot position angle and satisfies the 
component of the resultant force Fsumx > 0 on the X-axis, 
otherwise, if the component Fsumx < 0 on the X-axis, then we 
have: 

1

1

(1) (1) cos
(2) (2) sin

j j

j j

X X l φ
X X l φ

+

+

= − ⋅
 = − ⋅

 (3.3.5) 

This paper mainly focuses on studying the path planning 
under the classical grooved continuous obstacle model. As 
shown in Figure 5, assuming that the influence radius of 
obstacle Po = 1.5, if we adjust the gravitational field gain 
and the repulsion coefficient κ = 50, β = 5, an artificial 
potential field prevents the robot from deadlock. In all of the 
following figures, the small circles represent the obstacle, 
and the inverted triangle marks the virtual target position. 
However, the path is disordered inside the concave obstacle 
obviously, leading to a longer and unsmooth path. In order 
to improve the quality of the path, we need to adjust the 
virtual position. Ge and Cui (2000) analyses the causes of 
jitter and adds an exponential term to the gravitational field 
function to eliminate the singular value. In addition, a 
sensitivity parameter is introduced into the repulsive field 
function to control the distance between the robot and the 
obstacle in the process of motion. The jitter phenomenon is 
that the sub-target points are singular points and unstable, 
which makes the robot swing back and forth between 
multiple equilibrium points near the sub target points. Fan  
et al. (2005) uses the method of adding a disturbance to the 
gravitational field so that the target point is no longer a 
singular point. Drawing on these methods, we design a 
newly exponential form sub-target to eliminate singularity 
of the route sequences. The coordinates of virtual sub-target 
are province as follows: 

( )

( )

arctan (1)

arctan (2)

(1) (1) cos

(2) (2) sin

π X
o

π X
o

G X P ω e

G X P ω e

⋅

⋅

 = + ⋅ ⋅ ⋅


= + ⋅ ⋅ ⋅

α

α
 (3.3.6) 

3.4 The elimination of path singularity 
In this section, we analyse the temporary virtual targets 
generated by conventional IAPF and exponential form 
improved methods. 

 

 

 

1 Exponential factor coefficient α should meet the 
following inequality: 

arctan( ( ))1 1π X ie ε⋅< < +  (3.4.1) 

where 0 < ε < 1, i = 1, 2, since 0 < α < 1, 

arctan( ( ))1 2π X ie ⋅< <
α α

 (3.4.2) 

suppose that the robot moves in the first quadrant of the 
XY-plane, the exponential factor earctan(π·X(i)) is 
monotonic increasing: 

arctan( ( )) 2
( )
lim

π
π X i

X i
e e⋅

→+∞
=  (3.4.3) 

Figure 5 Conventional IAPF path planning in concave obstacle, 
(a) motion planning (b) turning angle change  
(see online version for colours) 

 
(a) 

 
(b) 
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Figure 6 Proposed method path planning in concave obstacle, 
(a) motion planning (b) turning angle changes chart 
(see online version for colours) 

 
(a) 

 
(b) 

Inequality (3.4.2) is satisfied only when the value of α 
is equal or less than 0.3. 

2 A robot judges whether it is in the local minimum area 
according to the conditions (3.1.2) in kth iteration. 
Assuming that resultant force Fsum consists of the 
gravitational force by virtual target G  under the 
conventional improved APF and repulsion force of 
obstacles, the coordinates of G  is offered as follows: 

(1) (1) cos
(2) (2) sin

k o

k o

G X P ω
G X P ω
 = + ⋅


= + ⋅
 (3.4.4) 

For convenience, we ignore the influence of the 
repulsion force. The robot position angle in the kth 
iteration φk is expressed as: 
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note that if 0, ,
2
πω  ∈  

 there exists φk = arctan(tanω)  

= ω, so we just need to consider that 0, .
2
πω  ∈  

 

Assuming that during the jth iteration and the subsequent  
j + 1th iteration, the path is disordered, resulting in a 
redundant sequence of path points in the concave region, 
which takes a long time to adjust and walk out without 
losing generality, let j = k + 1: 
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φj is offered as follows: 
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by function continuity, 

2
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→
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When the numerator and denominator of the robot position 
angle expression is 0, just like the singularity in the 
nonlinear control system, it becomes an uncertain value. 
Next, we prove that these uncertain values will be removed 
after introducing the exponential factor and maintain path 
stability. Assuming that the virtual target generated by 
exponential improved APF denotes G, robot position angle 
in the kth iteration is offered as follows: 
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where φj can be expressed as below: 
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Figure 7 Comparison two in 2D situations, (a) conventional IAPF path and turning angle change chart (b) modified path and turning 
angle change (see online version for colours) 

   
(a) 

 
(b) 

 

Since arctan( (2) (1))0 arctan( tan ) ,
2

π X π X πA e ω⋅ − ⋅< = ⋅ <  if 

0<𝐴<1, there exists arctan(A · tanω) < ω, suppose that 
arctan(A · tanω) = ω – δ, δ → 0+, where δ is a small positive 
constant, then we have: 
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by function continuity, 
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as long as the speed of the numerator approaching zero is 
greater than the speed of the denominator approaching 0, φj 

can be zero and become a stable angle, which further 
enhances the path stability. 

3.5 Path evaluation 
We evaluate the advantages and disadvantages of 
optimisation path from two aspects of timeliness and safety 
(Zhang and Ming, 2021; Pateloup et al., 2007), security 
index Qs is defined as follows: 

1
LQ

N
=

+
 (3.5.1) 

where L denotes the minimum distance from the path to the 
obstacle, and N is the cumulative number of turning points. 
The security of a local path is determined by the total 
number of turning points and the minimum distance. The 
less the number of turning points, the better the security. 

For the above concave obstacle, let other parameters 
remain unchanged, we use equation (3.1.5) to set virtual 
targets and take α = 0.3. As shown in Figure 6(a), 
exponential improved algorithm eliminate redundancy. It 
can be seen from the comparison of (a) and (b) in  
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Figures 5(b) and 6(b) that the cumulative number of turns is 
reduced from 27 to 11, and the minimum distance from 
robot to obstacle is changed from 0.32 to 0.55. According to 
equation (3.3.2), security index increases from 0.011 to 
0.046. The improved algorithm further reduces redundancy 
and improves security. 

3.6 Simulation experiments 

3.6.1 Two-dimensional environment 
In order to verify the practicability and effectiveness of our 
method, the conventional improved APF and the 
exponential improved APF are simulated by MATLAB. The 
path planning results and the changes of robot position and 
angle in typical continuous obstacle spaces such as  
I-shaped, L-shaped and U-shaped are compared. See  
Tables 2 and 3 for some main parameter configuration of 
simulation system. 

Table 2 Parameter setting for 2D environment 

Parameter Value 

Gravitational potential field gain coefficient κ 15 
Repulsive potential field gain coefficient β 3 
Influence distance of obstacle Po 2 
Step 0.2 
Maximum number of loop iterations J 600 
Starting position [4, 4] 
Target position [10, 10] 
Exponential coefficient α 0.3 

Table 3 Parameter setting for 3D environment 

Parameter Value 

Gravitational potential field gain 
coefficient κ 

0.04 

Repulsive potential field gain coefficient 
β 

0.1 

Influence distance of obstacle Po 30 
Step 2 
Maximum number of loop iterations J 1,000 
Starting position [10, 10, 0]/[0, 50, 0] 
Target position [180, 120, 20]/ 

[135, 80, 20] 
Exponential coefficient α 0.03 

3.6.2 There-dimensional environment 
In order to further test the application of robots in 
production and life, we developed a complex experiment in  
three-dimensional space. As shown in Figure 8, the obstacle 
is treated as a group of cylinders. We use a small red circle 
to mark the starting point, and the green five-pointed star 
represents the target point. 

3.6.3 Simulation analysis 
We analyse the safety indicators under the above 2D and 3D 
environments, the results are shown in Table 4. 

In Figure 9(a) and 9(b), the improved algorithm makes 
the robot reach the target successfully in the above two 
cases, and the motion trajectory relatively utilised our 
strategy is smoother. It could be seen from Figure 9(c) that 
the agent encounters the local minima and fails to goal 
reachable when there is no modification on model if we 
move one of a cylinder near to target, while Figure 9(d) 
shows the good performance of our algorism which is 
capable of keeping on searching and arriving at goal. 
Figures 9(e) and 9(f) represent the parameter changes 
(initial state and goal state). From Table 4, we can see that 
the path seems to be longer, but it is farther away from 
obstacles compared with the route in Figure 9(e) which 
walks around the surface, and meets the requirement of 
safety standards for robotics. From Table 4, we have 
observed an average search time of 24.5s during the 
experimental study while the existing IAPF needs an 
average search time of 60.5s, resulting in a 59.50%-time 
savings. 

Figure 8 Obstacles distribution map, (a) 3D (b) XY-plane  
(see online version for colours) 

 
(a) 

 
(b) 
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Figure 9 Comparisons of the two strategies in 3D situations (see online version for colours) 

   
(a)       (b) 

  
(c)       (d) 

  
(f)       (g) 

Notes: Left: conventional IAPF and right: our method. 
 

4 Limitations of the research 
In this section, we explain some constraints of the proposed 
technique: 

1 The proposed exponential feedback-feedforward 
MFAC strategy is implemented on a small time-varying 

and structurally time-varying nonlinear discrete system. 
The performance of the control law needs to be 
evaluated for large scale programs to verification for 
real industrial production. 
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2 We considered the security that a robot can escape from 
the dead zone, and the generated waypoints are 
regularly ordered in order to eliminate unnecessary path 
backtracking, however, although the improved virtual 
sub-target position reduces the number of turning 
angles, smoothness should be thoroughly considered, 
especially avoidance of the small turning angles. 

Table 4 Comparison of two strategies 

 Length/m Elapsed time/s Minimum 
distance/m 

2D 

Traditional IAPF 24.2000 0.1200 0.4472 
Our method 20.6000 0.0805 0.6708 
3D-1 

Traditional IAPF 227.5821 70.50 2.3087 
Our method 226.4040 23.50 6.4560 
3D-2 

Traditional IAPF 172.1156 80.50  
Our method 235.7566 22.50 6.1717 
3D-3 

Traditional IAPF 141.6329 30.50 0.0008 
Our method 314.1782 27.50 2.0025 

5 Conclusions and future work 
In conclusion, based on the research background of auto 
mobile robot trajectory planning in complex environmental 
space, to solve the core automobile robotic technologies, 
this paper focuses on the two major sections of motion 
planning and trajectory tracking, firstly, a parametric 
exponential feedback-feedforward control law is 
constructed according to the existing ICL-MFAC system. 
Secondly, the optimisation method introduces an 
exponential form virtual target as a new reference to 
improve the APF algorithm. By analysing the simulation 
experiments results, it can be known that the improved 
algorithm proposed in this paper effectively makes up for 
the shortcomings of traditional algorithms in path planning 
under some various complex and harsh conditions and  
high-precision trajectory tracking. In the future, we will 
validate the proposed method on practical applications. The 
future work can be deeply studied from the aspects of road 
scenarios recognition by image processing (Wu et al., 2020) 
and human-robot interaction dynamic model (Shi et al., 
2021), so as to improve the robustness of the controller. 

Nowadays, mobile robots are widely used in medical, 
education, family and other fields, in order to meet service 
needs and shorten application time, we improve robot 
performance and prolong service life. We explore the best 
path planning scheme, which is of great significance for the 
wide application of mobile robots. Compared with the 
traditional trajectory tracking control and path planning 
algorithms, we have made the following innovations: A 

parametric exponential feedback feedforward control law is 
constructed according to ICL-MFAC system; virtual target 
method with exponential term is used to plan the path. 
Mobile robot can find a short and smooth path. 
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