

International Journal of Mobile Communications

ISSN online: 1741-5217 - ISSN print: 1470-949X
https://www.inderscience.com/ijmc

HyDroid: android malware detection using network flow
combined with permissions and intent filter

Akram Zine Eddine Boukhamla, Abhishek Verma

DOI: 10.1504/IJMC.2023.10040480

Article History:
Received: 09 April 2021
Accepted: 11 July 2021
Published online: 04 July 2023

Powered by TCPDF (www.tcpdf.org)

Copyright © 2023 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijmc
https://dx.doi.org/10.1504/IJMC.2023.10040480
http://www.tcpdf.org

 70 Int. J. Mobile Communications, Vol. 22, No. 1, 2023

 Copyright © 2023 Inderscience Enterprises Ltd.

HyDroid: android malware detection using network
flow combined with permissions and intent filter

Akram Zine Eddine Boukhamla*
LINATI Laboratory,
Department of Computer Science and Information Technologies,
Kasdi Merbah University,
Ouargla BP.511,30000, Algeria
Email: boukhamla.akram@univ-ouargla.dz
*Corresponding author

Abhishek Verma
Department of Computer Science and Engineering,
School of Engineering,
BBD University, Lucknow,
Uttar Pradesh, India
Email: abhishekverma@ieee.org

Abstract: Android has become one of the most widely used operating systems
for mobile platforms in the recent years. With its widespread adoption, it has
also became the target of malicious applications’ developers and cyber threats.
This in turn has stimulated research on android malware analysis and detection.
Several android malware detection techniques have been proposed in the
literature. In this paper, we propose a novel hybrid android malware detection
method which is named as HydDroid. A hybrid dataset based on the existing
CICInvesAndMal2019 dataset by selecting most relevant static features is
created. HydDroid is represented by the form of a combination of binary
vectors and numerical vectors. The proposed approach is evaluated using three
well-known machine learning classification algorithms. The experiment results
indicate that HydDroid achieves the accuracy of up to 96.3%. To show the
effectiveness of our proposed approach, the performance results are compared
with existing solutions.

Keywords: Android malware detection; static analysis; network flow; hybrid
analysis; machine learning.

Reference to this paper should be made as follows: Boukhamla, A.Z.E. and
Verma, A. (2023) ‘HyDroid: android malware detection using network flow
combined with permissions and intent filter’, Int. J. Mobile Communications,
Vol. 22, No. 1, pp.70–91.

Biographical notes: Akram Zine Eddine Boukhamla is an Associate Professor
at the Department of Computer Science, University of Kasdi Merbah
Ouargla/Algeria. He received PhD in Image Processing and Artificial Vision
from Badji Mokhtar University, Annaba, Algeria in (2016). He worked as a
reviewer for many academic journals Springer, Elsevier, and Wiley. His
research focuses on cyber security, security analysis, internet traffic analysis
and the detection of malware and attacks.

 HyDroid: android malware detection using network flow combined 71

Abhishek Verma is an Assistant Professor in the Department of Computer
Science & Engineering at BBD University, Lucknow, India. He received PhD
(2020) in The Internet of Things Security from the National Institute of
Technology Kurukshetra, Haryana, India. He completed his BTech in
Computer Science and Engineering from Uttar Pradesh Technical University,
India in (2014), and MTech in Computer Engineering from the National
Institute of Technology Kurukshetra, India in (2016). He has more than five
years of experience in research and teaching. He has published more than 15
research articles in international journals and conferences of high repute. He is
an editorial board member of Research Reports on Computer Science (RRCS)
and active review board member of various reputed journals, including IEEE,
Springer, Wiley, and Elsevier. His current areas of interest include information
security, intrusion detection, and the internet of things.

1 Introduction

In our daily lives, mobile applications become ubiquitous (Eveleth and Stone, 2020).
According to International Data Corporation (IDC) (https://www.idc.com/promo/
smartphone-market-share), android operating system remained the number 1 mobile
operating system since 2017, occupying 85% of market share in second quarter of 2020
with smartphone shipments hitting approximately 1.37 billion units in 2019
(https://www.statista.com/statistics/263441/global-smartphone-shipments-forecast/). In
mobile security field, it is believed that the commonly used operating system or
application is, the more likely it is to be exposed to attacks (https://www.kaspersky.com/
resource-center/threats/malware-popularity). This is main reason why android remains
the favourite target of cyber-attacks and malware in present scenario. Unlike other
platforms, android allows installing apps from various sources, such as Google Play Store
and other third-party marketplaces. This in turn, has led to an increase in its potential as a
target for malicious activity. As mobile devices have gained popularity, computing
platforms and data storage units, mobile computing privacy, and security concerns also
increase. In recent years, malware developers have used sophisticated techniques to
evade traditional and modern malware protection mechanisms. As a result, malware
analysis and detection has been an active area of research lately, and a multitude of
techniques have been proposed in this area using concepts from a wide range of scientific
disciplines such as graph theory, machine learning (Mateless et al., 2020) and
information visualisation to name a few.

The existing approaches for android malware detection can be categorised into two
main classes that are static and dynamic analysis. Static analysis is a malware detection
approach that examines the malware without running it (Nath and Mehtre, 2014), which
means that only the source code and the binaries are inspected. In contrast, the dynamic
analysis uses behaviour and actions when running in a controlled environment like a
sandbox to determine whether the application is a malware or not (Shijo and Salim,
2015). While the static analysis is straightforward and quick, it is ineffective against
unknown malware with code obfuscation and encryption (Gascon et al., 2013). On the
other hand, dynamic malware detection typically provides better accuracy than static
methods (Wong and Lie, 2016). However, the major disadvantages are that it can detect
malicious behaviour only if it is performed during analysis. Starting from exploiting both

 72 A.Z.E. Boukhamla and A. Verma

advantages of static and dynamic analysis, and that detection approaches based on
permission and API usage are susceptible to instruction-level obfuscation techniques
(Gascon et al., 2013), we employ a hybrid approach to detect android malwares. Our
approach combines static detection and dynamic detection (Amin et al., 2020). The
hybrid approach analyses the files of static applications and monitors the behaviours of
the applications through execution (Mahmood et al., 2014).

This work has been motivated by the obtained results of (Lashkari et al., 2018) who
created a dataset named CICInvesAndMal2017 and built an android malware detection
model based on it. They have started that the extracted network-flow features were good
for malware binary classifications, however they did not give their best results in the
malware category and family classifications. Hence, it comes the idea of combining these
network-flow features (which represent the dynamic features) with the extracted static
features (Intend Filters and permissions) from android applications. Our solution
increased considerably the detection accuracy of binary classification and, furthermore, it
gave a highest accuracy in the malware category detection.

Table 1 List of abbreviations

Abbreviation Stands for

IDC International Data Corporation

APK Android Package Kit

RF Random Forest

k-NN K Nearest Neighbour

API Application Programming Interface

SVM Support Vector Machine

GS Genetic Search

FPR False Positive Rate

LSI Latent Semantic Indexing

IoT Internet of Things

IP Internet Protocol

AUC Area Under Curve

DNN Deep Neural Network

MKL Multiple Kernel Learning

HADM Hybrid Analysis for Detection of Malware

TAM Tree Augmented naïve Bayes

SMS Short Message Service

CSV Comma Separated Values

DT Decision Tree

TPR True Positive Rate

In our proposed approach, both Intent Filters and Permissions characteristics (static
features) from APK (android package kit) files are extracted. The resulted features are
then combined with network flow (dynamic features) as a unique dataset. Then the most
relevant features are selected by applying the CfsSubsetEval (Correlation-based Feature
Subset Evaluation) method to reduce the dimension and the complexity of the dataset. To
evaluate our proposed approach, various machine learning algorithms are used. To the

 HyDroid: android malware detection using network flow combined 73

best of our knowledge, this framework is the first one that combines apps network flow
features with static ones. Furthermore, it proposes a multiclass classification to detect
malware category. Table 1 shows the list of abbreviations used throughout the paper.

The contributions of this paper are as follows:

1 A new hybrid dataset that combines both static (permissions, Intent filters) and
dynamic features (Network flow) is developed.

2 A feature selection selected method is used to reduce the dimensionality of the
developed dataset.

3 A novel hybrid android malware detection approach is proposed.

4 The study proposes multiclass classification method to detect the malware category.

The remainder of this paper is organised as follows. In Section 2, we discuss relevant
background information, including related work. Section 3 contains a background of
android application file and its components. Section 4 discusses the proposed android
malware detection approach. In Section 5, the developed dataset is presented with a
detailed discussion on experimental results. The results and discussions are presented in
Section 6. The paper is concluded with some future directions in Section 7.

2 Related works

Android malware analysis can be classified into three classes: static analysis, dynamic
analysis, and hybrid analysis. In this section, we focus on the works that are based on
usage of machine learning for android malware analysis.

2.1 Static analysis

The droidDet framework (Zhu et al., 2018) was proposed to detect android malware. The
study employed Rotation Forest (RF) to build the model evaluated on multiple types of
features (permissions, sensitive APIs, monitoring system events, and permission-rate). In
the same context, a static analysis technique is also used by extracting permissions from
android manifest files (Varna and Visalakshi, 2020). The main contribution lies in the k-
NN based Relief algorithm to select relevant features from permissions. Then an
optimised SVM algorithm was used to evaluate the model’s performances. Feature’s
selection techniques were likewise addressed (Firdaus et al., 2018) by proposing a genetic
search (GS) algorithm to select the best features that give a higher score to some features
in permissions and directory path. However, the results suffer from high false positive
rate. Latent semantic indexing (LSI) was proposed (Singh et al., 2020) as a
dimensionality reduction technique to build a lightweight detection system. Opcode
features were integrated with permissions and intent in a single vector. End-to-end deep
learning architectures using Bidirectional long short-term memory (BiLSTMs) neural
networks that detect and attribute android malware using opcodes obtained from
bytecode was proposed in Amin et al. (2020). They decomposed their system into four
layers (input, pre-processing, decision and output). The proposed system gave an
accuracy up to 99.9% tested on large dataset of more than 1,8 million apps. Although the
promising results, the use of a large dataset could bring to an intense time consuming. In

 74 A.Z.E. Boukhamla and A. Verma

Song et al. (2016), a malware detection framework based on permissions was proposed
that combines four layers of filtering mechanisms that is, the message digest (MD5)
values, the combination of malicious permissions, the dangerous permissions, and the
dangerous intention applied on hash, permissions and action as detection objects. A
threshold of threat-degree was defined specially to detect dangerous permissions. The
drawback of their suggestion lies in the size of the dataset that contains only
1,000 malicious apps and 100 non-malicious apps used to build the framework.

2.2 Dynamic analysis

Despite the most state-of-the-art contributions which satisfy by binary classification
(benign, malware), EnDroid (Feng et al., 2018) proposes a semi-supervised malware
family classification by predicting the family of the malware. It employs a two-fold
dynamic analysis approach to detect android malware and applies Ensemble learning
classifiers to verify the effectiveness of EnDroid. This approach's main limitation is that
it detects only the executed malicious behaviour and considers only the IP address and
the port number as a feature for network flow. Burguera et al. (2011) proposed a method
named CrowDroid to detect android malware. The proposed method is based on the
dynamic analysis of app behaviour for anomalies. CrowDroid uses k-means clustering for
classifying attack and normal instances. The authors showed that the proposed method
could isolate the malware and alert the users at the same time. Another dynamic approach
named AntiMalDroid is proposed by Zhao et al. (2011). AntiMalDroid performs
monitoring of apps behaviors to find malware. It is capable of detecting unknown
malware. The results shown by the authors indicated that AntiMalDroid achieved
acceptable detection rates. Enck et al. (2010) proposed TaintDroid, a real-time analysis
tool to detect android malware. TaintDroid performs real-time analysis of sensitive data
sources and tries to find data leakage points in the android system. The authors carried
out the performance evaluation in an android emulation environment and showed that the
proposed method achieves high efficiency with no false positives. However, it fails to
track the information that goes and comes back to the network. An emulation-based
technique for malware detection in android is proposed by Yan et al. (2012). The
proposed approach is known as the DroidScope that monitors the activities of the android
operating system. It is capable of detecting privilege-based attacks. DroidScope achieves
high accuracy of malware detection if input features are significant. However, the major
limitation of this technique is that it has limited code coverage. Taheri et al. (2019)
generated a second part of their android malware dataset CICAndMal2017 which
includes permissions and intents as static features, and API calls as dynamic features. By
introducing these features with their two-layer android malware analyser they assumed
that their precision achieved 95.3% in static-based malware binary classification at the
first layer, 83.3% precision in dynamic-based malware category classification and 59.7%
precision in dynamic-based malware family classification at the second layer.

2.3 Hybrid analysis

Roy et al. (2020) presented a feature engineering method for the detection of android
malware. The authors emphasised on employing a hybrid of static technique and machine
learning for improving the detection rate. The static analysis is used to map each API call
to certain features, which are further aggregated. Then, machine learning classifiers,

 HyDroid: android malware detection using network flow combined 75

including Logistic Regression, K-Nearest Neighbor, Support Vector Machine, Random
Forest, are utilised to classify instances into malware and benign classes. The proposed
hybrid method achieves an AUC score of 98.87%. Deep learning techniques are widely
used in the hybrid approaches for android malware analysis due to its high accuracy for
predicting android applications' nature. One such deep learning-based malware detection
technique is Droid-Sec (Yuan et al., 2014). It uses a hybrid analysis by combining both
static features (permissions, sensitive API) and dynamic feature (Dynamic behaviour)
extracted by running APK files in the DroidBox, which permits to obtain 18 dynamic
behaviours. However, the number of training samples should be increased despite their
highest accuracy of 96%, since authors used only 250 apps for both normal and malware
apps. Xu et al. proposed a deep learning-based android malware detection model named
as HADM (Xu et al., 2018). HADM is based on the idea that a combination of advanced
features that are extracted using Deep Neural Network (DNN) with the original features
can improve detection performance. In this regard, both original dynamic features and
static features are fed as input to deep learning classifiers to get new features that are
further combined with original features to create DNN vector sets. Also, the dynamic
information is transformed into graph-based representations. A hybrid classifier is then
built by combining the learning results from vectors and graph features with hierarchical
Multiple Kernel Learning (MKL). HADM achieved a classification accuracy of 94.7%.
Surendran et al. (2020) proposed a tree augmented naïve bayes (TAM) based hybrid
method for detecting android malware. The authors argued that the interdependency of
static and dynamic features must be considered in machine learning-based detection
models to avoid multicollinearity problems. Therefore, the proposed method employs
conditional dependencies among useful static and dynamic features like API calls,
permissions, and system calls. TAM achieved the detection accuracy of up to 97%.
BRIDEMAID framework (Martinelli et al., 2017) combines static and dynamic analysis
to detect android malware. For android malware detection, it employs three consecutive
steps: static analysis, meta-data analysis and dynamic analysis. In the static analysis
(which occurs just after the download phase), n-grams classification is applied on the
decompiled file. The meta-data analysis (which occurs during the installing phase)
includes features such as permissions, developer’s reputation, rating, etc. as metrics to
detect the suspicious apps. Finally, during the runtime phase, the dynamic analysis
exploits both classifiers and security policies to control suspicious activities related to
text messages, system call invocations and administrator privilege abuses. Authors
evaluated their framework’s performances using energy consumption and performance
overhead. The proposed framework achieves an accuracy in android malware detection
equal to 99.7%. Despite the high accuracy detection, the proposed framework is expected
to consume more time in the detection phases, which is not discussed in this work.

3 Background

In this section, we briefly introduce the APK file components and give an overview of
two APK components used in our experiments, i.e., permissions and intent filters.
Besides, a brief description of android malwares used in our approach.

 76 A.Z.E. Boukhamla and A. Verma

3.1 Android application structure

Android package kit (APK) is a zip-compressed file containing all components of the
android application. It includes four directories (META-INF, res, libs, and assets) and
three files (AndroidManifest.xml, classes.dex, resource.asc). Table 2 lists the APK
components.

Table 2 The APK file components

File Description

META-INF APK signatures and certificates directory

Res/ Resources directory

Libs/ Libraries directory

Assets/ Application assets directory

AndroidManifest.xml APK configuration file

Classes.dex The classes compiled in the dex file format understandable by the Dalvik
virtual machine

Resource.asc Precompiled resources file

3.1.1 Permissions

The main goal behind the permissions is to ensure the android user’s privacy. For that
purpose, each application must demand permission to access the user’s data (contacts,
SMS, etc.) or device components like camera, WIFI, etc. Permissions might be grant
either by the system automatically or by request of the user (Dong et al., 2018). It can be
retrieved from the AndroidManifest.xml file under the <uses-permissions> tag.
Depending on the nature of each request of the application, we can reveal if that
application is malicious or not.

3.1.2 Intent filter

The intent filter is an expression in the manifest file of the application that defines the
form of intent that the component would like to obtain. For example, by creating an intent
filter for activity (https://developer.android.com/guide/components/intents-filters), you
make it possible for other applications to start your activity with some kind of intent
explicitly. Furthermore, if there is no announcement of any intent filters for an activity, it
can only be initiated with explicit intent.

3.2 Android malwares

This part contains a brief description of android malwares categories used in our
approach.

Adware is unwanted software designed to display pop-up ads on the user's screen,
most commonly in a web browser and which transmits information to its publisher,
allowing these advertisements to be adapted to the user's profile. Although not harmful to
the device, adware is considered malicious software (malware) because of its aggressive
and disruptive operation.

 HyDroid: android malware detection using network flow combined 77

Ransomware is malicious software that infects a computer, typically when the user
clicks on a link or file received as an email attachment. The criminals can then remotely
block the device and encrypt the files. Users lose control of all information stored on the
device, and the malware displays a screen asking for a ransom, often in virtual currency
(e.g., bitcoins).

Scareware is a particularly insidious technique that uses the user’s fear to attack him.
It simulates the warning messages sent by the Windows Security Centre to trick you into
scanning your hard drive and downloading protection software.

SMS In this kind of malware, the app introduces itself as a normal application for
SMS messaging and uses its permissions to send or receive SMS. Since several mobile
service providers offer services that allow users to transfer credits/units via SMS, this
service is exploited by the application to illegally transfer credits from users (Chehab
et al., 2012).

4 Proposed HyDroid system for android malware detection

This paper presents an android malware detection approach named HyDroid. By using
this approach, users can identify if the android application is normal or malware. We
have extended out approach by providing the category of the detected malware, which
helps users or professionals to plan the countermeasures. The workflow of our proposed
approach (Figure 1) is as follows:

First, we collect APK files from CICInvesAndMal2019 (https://www.unb.ca/cic/
datasets/invesandmal2019.html) public dataset, and then apply the reverse engineering
technique to extract the static features in the APK file. For this reason, Apktool is used in
order to unzip the compressed APK file and obtain its components which includes four
directories (META-INF, res, libs, and assets) and three files (AndroidManifest.xml,
classes.dex, resource.asc). In experiments, permissions and intent filters are extracted
from the AndroidManifest.xml file because they represent as critical features that can be
manipulated by malicious persons, using feature engineering techniques. We created a
python script that: interprets the AndroidManifest.xml files to extract all existing
permissions in benign and malware applications of the dataset, places it in a table, then
performs another analysis by comparing the features in the table with each sample
(Application) and generating for each of them a vector filled with zeros and ones, the
same for the Intent filter attributes.

Using a feature selection technique, the permissions with a high impact on the class,
and the intent filters are selected. This considerably reduces the number of training
features and makes the detection model less complex.

We applied the CfsSubsetEval method with the Best First search method located in
the Weka tool. It was applied to the static dataset to select the static features (Permission,
Intent Filter) to get the most relevant features that will be used to train our model. It is an
attribute evaluator in Weka for the CfsSubsetEval method. Its principle of operating is to
evaluate the value of a subset's attributes, considering the individual predictive ability of
each one. By applying this method, the number of features remained 59 after 2,054
features, among which 36 features were intent filters, and 23 features were Permissions.
Table 3 shows the static features obtained after the application of CfsSubsetEval.

 78 A.Z.E. Boukhamla and A. Verma

Table 3 List of selected features (intend filters and permissions)

N
°.

In

te
nt

 F
ilt

er
s

N
°.

P

er
m

is
si

on
s

1
10

06
T

V

37

A
C

C
E

SS
_C

H
E

C
K

IN
_P

R
O

P
E

R
T

IE
S

2
A

C
T

IO
N

_0
68

A
22

E
3

38

A
C

C
E

SS
_M

T
K

_M
M

H
W

3
A

C
T

IO
N

_0
82

50
28

2
39

B

IL
L

IN
G

4
A

C
T

IO
N

_0
C

1E
F8

40

40

B
R

O
A

D
C

A
S

T
_P

A
C

K
A

G
E

_R
E

M
O

V
E

D

5
A

C
T

IO
N

_0
C

29
61

E
6

41

B
R

O
A

D
C

A
ST

_S
M

S

6
A

C
T

IO
N

_C
O

L
L

E
C

T
_P

O
P

U
P

_A
D

S

42

D
E

L
E

T
E

_P
A

C
K

A
G

E
S

7
A

C
T

IO
N

_D
E

V
IC

E
_A

D
M

IN
_D

IS
A

B
L

E
D

43

FU

L
L

_S
C

R
E

E
N

8
A

C
T

IO
N

_D
E

V
IC

E
_A

D
M

IN
_D

IS
A

B
L

E
_R

E
Q

U
E

ST
E

D

44

IN
S

T
A

L
L

_P
A

C
K

A
G

E
S

9
A

C
T

IO
N

_E
X

T
E

R
N

A
L

_A
PP

L
IC

A
T

IO
N

S_
A

V
A

IL
A

B
L

E

45

M
O

U
N

T
_U

N
M

O
U

N
T

_F
IL

E
SY

ST
E

M
S

10

A
C

T
IO

N
_L

A
U

N
C

H
_H

O
M

E

46

PR
O

V
ID

E
R

_A
C

C
E

SS
_M

O
D

IF
Y

_C
O

N
FI

G
U

R
A

T
IO

N

11

A
C

T
IO

N
_P

U
S

H
A

D

47

R
E

A
D

_G
SE

R
V

IC
E

S

12

A
C

T
IO

N
_R

O
U

S
E

48

R

E
A

D
_H

IS
T

O
R

Y
_B

O
O

K
M

A
R

K
S

13

A
PP

W
ID

G
E

T
_U

P
D

A
T

E

49

R
E

A
D

_P
H

O
N

E
_S

T
A

T
E

14

A
U

D
IO

_B
E

C
O

M
IN

G
_N

O
IS

Y

50

R
E

A
L

_G
E

T
_T

A
SK

S

15

B
S

51

R
E

C
E

IV
E

16

C
B

O
O

T
_C

O
M

P
L

E
T

E
D

52

SE

N
D

_S
M

S

17

D
E

T
E

C
T

53

SE

T
_A

N
IM

A
T

IO
N

_S
C

A
L

E

18

D
E

V
IC

E
_A

D
M

IN
_E

N
A

B
L

E
D

54

SE

T
_P

R
O

C
E

SS
_F

O
R

E
G

R
O

U
N

D

19

E
U

L
A

_R
E

C
E

IV
E

R

55

S
T

A
T

U
S_

B
A

R
_S

E
R

V
IC

E

20

E
U

L
A

_R
E

SP
O

N
SE

_R
E

C
E

IV
E

R

56

SY
ST

E
M

_A
L

E
R

T
_W

IN
D

O
W

21

IN
N

E
R

_B
R

O
A

D
C

A
S

T

57

W
R

IT
E

_P
U

SH
IN

FO
P

R
O

V
ID

E
R

22

L
A

U
N

C
H

E
R

_S
E

R
V

IC
E

58

W

R
IT

E
_S

E
C

U
R

E
_S

E
T

T
IN

G
S

23

M
A

IN

59

W
R

IT
E

_S
M

S

 HyDroid: android malware detection using network flow combined 79

Table 3 List of selected features (intend filters and permissions) (continued)

N
°.

In

te
nt

 F
il

te
rs

N

°.

P
er

m
is

si
on

s

24

M
E

S
SA

G
E

_A
R

R
IV

E
D

25

N
S

26

PU
SH

_A
D

_C
L

IC
K

27

P
_S

T
A

R
T

28

R
SS

I_
C

H
A

N
G

E
D

29

SE
R

V
IC

E
_R

E
SC

H
E

D
U

L
E

30

SM
S

_R
E

C
E

IV
E

D
2

31

SP
R

IN
G

B
O

A
R

D

32

T
IM

E
_S

E
T

33

U
M

S_
D

IS
C

O
N

N
E

C
T

E
D

34

U
S

E
R

_P
R

E
SE

N
T

35

V
IE

W

36

Z
S

 80 A.Z.E. Boukhamla and A. Verma

On the other hand, the network flow of each android application located in a separate
folder in the CICInvesAndMal2019 dataset as dynamic features are employed. The
selected static features from permissions and intent filters are then combined with
network flow as dynamic features for creating a hybrid dataset.

The hybrid features are normalised then fed to machine learning models to evaluate
the effectiveness of HyDroid. This step serves to normalise the quantitative data by
putting them all in the same scale, this considerably facilitates the learning of machine
learning models which are based on gradient descent, distance calculation or the variance
calculation. For this, there are several normalisation methods and the one we used to be
MINMAX, this method consists of transforming each variable so that these values will be
all between 0 and 1, for that we subtract each value of a variable at the minimum of this
variable then we divide by the difference between the max of the variable and the min of
that variable, this is what the mathematical formula of minimax looks like:

min

max _ min
scaler

X X
X

X X






Hence, we use three machine learning classifiers (k-NN, SVM and DT). The model can
predict the nature of the android application (benign, malware). Furthermore, it can even
predict the category of malware (Adware, Ransomware, Scareware, and SMS) with high
accuracy.

Figure 1 Architecture of the proposed approach (see online version for colours)

 HyDroid: android malware detection using network flow combined 81

5 Experiment

5.1 APK dataset

Our work is based on the CICInvesAndMal2019 (https://www.unb.ca/cic/datasets/
invesandmal2019.html) dataset, which contains 1594 APK samples in total, in which 426
malware applications and 1168 benign. Table 4 shows the distribution of captured
characteristics between static and dynamic features. We notice the existence of
permissions and intent characteristics as static features and API calls, network flow as
dynamic features in three steps (During installation, before restarting, and after restarting
the phone).

Table 4 List of captured characteristics in CICInvesAndMal2019 dataset

Captured static samples Captured dynamic samples

S
tats

P
erm

issions

Intent

C
om

ponent

C
ertificate

Source code

 A
P

I calls

N
etw

ork
flow

s

S
ystem

 call

Inform
ation

flow

L
ogs

Yes Yes Yes No No No Yes Yes No No No

The dataset is completely labelled and includes network flows, logs, API/SYS calls,
phone statistics, and memory. Next, authors in their dataset extract over 80 network flow
features for all benign and malware applications using Cicflow meter software, which is
publicly available on the Canadian Institute for Cyber Security website (https://www.unb.
ca/cic/datasets/invesandmal2019.html). The samples come from 42 families of malware
applications and 1,168 benign applications. The category and the numbers of the samples
captured (Table 5).

Table 5 Distribution of android applications based on category

Malware category Captured samples

Adware 104

Ransomware 101

Scareware 112

SMS Malware 109

500

600

Benign

68

Total 1,594

5.2 Preprocessing phase

The data pre-processing phase is essential (Azzaoui et al., 2021), and it has a significant
impact on the quality of learning. In this step, the data is prepared and processed to be in
an acceptable format to generate models that describe applications' behaviour better.
First, in the static analysis, the application's source code is analysed without being

 82 A.Z.E. Boukhamla and A. Verma

executed in an emulator or a real device. For this, we used the Apktool
(https://ibotpeaches.github.io/Apktool) to obtain the AndoidManifest.xml files by
unzipping the APK archives. Second, in the dynamic analysis, the results of network
stream captures were retrieved as csv files from the Canadian Institute website.

5.3 Features extraction phase

After the pre-processing phase, the dataset becomes easy to handle at this stage. The
appropriate features are extracted to build models that are used to classify the apps and
detect any malicious behaviour. Our proposal created two datasets; the first consists of
static features only, and the second consists of hybrid features (static and dynamic).

5.4 Permissions and intent filters inspection

In general, this type of features depends on the analysis of applications (APK files) after
decompression. There are several classes in which static features can be extracted from,
for example, manifest files, source code, semantic characteristics, application metadata,
etc. As far as our work is concerned, we have chosen only the features that identify the
applications, which are the filter intent and the device permissions in the manifest file.
We extract these features to convert the APK apps to the csv file that characterises these
features' existence or absence. We created a python script that: interprets the
AndroidManifest.xml files to extract all existing permissions in benign and malware
applications of the dataset, places it in a table, then performs another analysis by
comparing the features in the table with each sample (application) and generating for
each of them a vector filled with zeros and ones, the same for the Intent filter attributes.

We opted to represent the vector of each of the applications as follows: 1,725
attributes of an intent filter and 329 attributes of permission, the whole equal to 2,054
numerical attributes with one and/or zero values, respectively representing the presence
or absence of each of the permissions and intent filter in the AndroidManifest.xml file, in
a specific order, ended by two attributes. The first class contains two labels, malware or
benign, to indicate whether the software is malicious or not, the second to show the
category of malware.

Let R be a vector that contains 329 permissions (1N725 Intent filter). For each ith
application, we generate a binary sequence:

 1 2 3
1, ()

, , , ...,
0,

i j
if permission Intent Filter exists

R r r r r with rj
else


  



The identified permissions and Intent Filters are stored as a binary sequence of 0 or 1 in a
comma separated form. This sequence usually contains permission /intent filters bits
separated by commas which indicates 1 if the corresponding permission/ Intent Filters is
present or 0 if it is absent, here is an example:

0;0;0;0;0;0;0;0;0;0;0;1;0;0;0;0;0;0;0;0;0;0;0;0;1;0;0;0;0;0;0;0;0;1;0;0;0;0;0;0;0;0;0;0;
0;1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;
0;1;0;1;0;1;1;1;1;1;1;1;0;
0;0;0;0;…………0;
0;

 HyDroid: android malware detection using network flow combined 83

0;;0;0;0;0;0
;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;Malware; RANSOMWARE

Table 6 List of the extracted network flow features

Features’ name

Source Port, Destination Port, Protocol, Flow Duration, Total Fwd Packets, Total Backward
Packets,Total Length of Fwd Packets, Total Length of Bwd Packets, Fwd Packet Length Max,
Fwd Packet Length Min, Fwd Packet Length Mean, Fwd Packet Length Std,Bwd Packet Length
Max, Bwd Packet Length Min, Bwd Packet Length Mean, Bwd Packet Length Std,Flow
Bytes/s, Flow Packets/s, Flow IAT Mean, Flow IAT Std, Flow IAT Max, Flow IAT Min,Fwd
IAT Total, Fwd IAT Mean, Fwd IAT Std, Fwd IAT Max, Fwd IAT Min,Bwd IAT Total, Bwd
IAT Mean, Bwd IAT Std, Bwd IAT Max, Bwd IAT Min,Fwd PSH Flags, Bwd PSH Flags, Fwd
URG Flags, Bwd URG Flags, Fwd Header Length1, Bwd Header Length,Fwd Packets/s, Bwd
Packets/s, Min Packet Length, Max Packet Length, Packet Length Mean, Packet Length Std,
Packet Length Variance,FIN Flag Count, SYN Flag Count, RST Flag Count, PSH Flag Count,
ACK Flag Count, URG Flag Count, CWE Flag Count, ECE Flag Count, Down/Up Ratio,
Average Packet Size, Avg Fwd Segment Size, Avg Bwd Segment Size, Fwd Header
Length,Fwd Avg Bytes/Bulk, Fwd Avg Packets/Bulk, Fwd Avg Bulk Rate, Bwd Avg
Bytes/Bulk, Bwd Avg Packets/Bulk,Bwd Avg Bulk Rate,Subflow Fwd Packets, Subflow Fwd
Bytes, Subflow Bwd Packets, Subflow Bwd Bytes,Init_Win_bytes_forward,
Init_Win_bytes_backward, act_data_pkt_fwd, min_seg_size_forward,Active Mean, Active Std,
Active Max, Active Min,Idle Mean, Idle Std, Idle Max, Idle Min.

5.5 Hybrid features

First, the network flow files collected from each application belonging to dataset were
processed, grouped and organised by the name of the application and then listed in
folders identified by the type of application (e.g. Benign 2015, Benign 2016, Benign
2017), in the case of malware applications, the files are named by category then by
family (in our case we consider only category), e.g., the Scareware category, the fake Job
Offer family, then categorised which make it easily to be combined with their
corresponding static dataset vectors, so that we take each network flow.csv file from the
application and associate it with the equivalent static dataset vector in a redundant
manner. Therefore, we have established a dataset that represents a combination of the
static features (permissions and Intent Filter) and dynamic features (network flow). Due
to the large volume of the obtained hybrid dataset, we randomly sampled 30 % of each
application.

5.6 Features selection phase

This phase consists of selecting the most relevant features among the existing features in
the dataset in order to build an efficient model. Thus, it represents a critical task since it
affects classifier performance by limiting the number of irrelevant features. First, we
applied the CfsSubsetEval method with the Best First search method located in the Weka
tool. It was applied to the static dataset to select the static features (permission, intent
filter) to get the most relevant features that will be used to train our model. It is an
attribute evaluator in Weka for the CfsSubsetEval method. Its principle of operating is to
evaluate the value of a subset's attributes, considering the individual predictive ability of
each one. By applying this method, the number of features remained 59 after 2,054

 84 A.Z.E. Boukhamla and A. Verma

features, among which 36 features were intent filters, and 23 features were permissions.
Table 6 shows the static features obtained after the application of CfsSubsetEval.

Figure 2 The process of feature vector generation (see online version for colours)

To evaluate the performances of our approach, we use three machine learning algorithms
K-nearest neighbours (k-NN), support vector machine (SVM), and decision tree (DT).
The previous step's selected features are fed into the commonly used machine learning
classifiers like k-NN, SVM, and DT by 10-fold cross-validation technique to measure the
performance of HyDroid. Machine learning algorithms are performed in python scripts
through the sklearn library (https://scikit-learn.org/stable/).

5.7 Evaluation metrics

In our experiments, we train our models on a classification problem with five classes. A
confusion matrix is used in our method to evaluate the effectiveness of different models.
We can calculate the TPR, FPR, and Accuracy of each model based on the resulted
confusion matrix.

True positive rate (TPR) is defined as TP divided by the total count of malicious
applications.

TP
TPR

TP FN




False positive rate (FPR) is defined as FP divided by the total count of benign
applications.

FP
FPR

FP TN




 HyDroid: android malware detection using network flow combined 85

Accuracy is defined as the sum of TN and TP divided by all applications' total count.

TP TN
Accurancy

TP FP TN FN




  

6 Results and discussion

Tables 7–9 summarise the performance metrics of the k-NN, SVM, and DT. Table 7
shows the evaluation metrics of HyDroid with a highest TPR (93.8%) and accuracy
(96.3%) for k-NN classifier.

Table 7 Evaluation results of HyDroid

Algorithm TPR FPR Accuracy

k-NN 93.8 % 6.1% 96.3 %

SVM 91.1 % 3.01 % 95.7 %

DT 93.4 % 5.3 % 95.6 %

Table 8 Android detection accuracy in static analysis

Accuracy
Apps category

k-NN SVM DT

Benign 89.3% 89.8% 89.3%

Adware 96% 96% 96%

Ransomware 97.6% 96.6% 96%

Scareware 95% 93.2% 94.2%

SMS 96.3% 96.6% 95.3%

Overall accuracy 92.7% 92.7% 92.3%

Tables 8–9 present the results of malware category classification for static and hybrid
analysis respectively by considering four well-known malware categories namely
Adware, Ransomware, Scareware and SMS malware described in Section 3.2.

From Table 8, we notice that the accuracy of benign class in static analysis is roughly
equal in all classifiers, with a slight difference in favour of SVM classifier with an
accuracy of 89.8 %. The obtained results can be justified because the models cannot learn
only from the static patterns of benign applications due to its high variance. In contrast,
we see that the three models perform well on malware category classification with more
than 94% for all malware categories except the SVM model that gives an accuracy of
93.2 % for the scareware category. The overall accuracy for the three models is almost
similar in all classifiers, with 92%. Table 9, however, shows a high accuracy as compared
with Table 7 results. We notice a significant improvement in the class being’s accuracy in
the three classification models, especially the SVM classifier that gives the highest
accuracy achieving 96.4%. We interpret the notable increase of the benign class accuracy
by adding more informative data related to the network flow as dynamic features. The
static features described by permissions and intent filters help the model predict well the
benign class. As for the category classification with HyDroid, the model shows a slight

 86 A.Z.E. Boukhamla and A. Verma

improvement in the four malware categories with the highest accuracy of 95.9%, 97.3%,
94.2%, and 97.1%, respectively, for adware, ransomware, scareware, and SMS.

Table 9 Android detection accuracy with HyDroid

Accuracy
Apps category

k-NN SVM DT

Benign 91.8% 96.4% 89.8%

Adware 95.3% 95.9% 95.4%

Ransomware 97.1% 97.2% 97.3%

Scareware 94% 94.2% 93.2%

SMS 97.1% 96.8% 96.8%

Overall accuracy 95% 96.1% 94.5%

This experiment approves our initial assumption that, by combining network flow as
dynamic features with permissions and intent filter as static features, we can considerably
improve benign prediction accuracy, thus improving the overall android application
model accuracy.

Figure 3 Accuracy of multi-class static analysis classification (see online version for colours)

Table 10 compares the proposed method with the state-of-art android malware analysis in
terms of accuracy. It can be seen that HyDroid approach proposed by us achieve a
detection accuracy of 96.3% which outperforms most methods in terms of performance.
We notice from the summary table that most of the proposed works are based on
classifying the android apps as benign or malware which is not the case of HyDroid that
predicts also the category of the detected malware with a highest accuracy with k-NN
classifier as mentioned in Table 9.

 HyDroid: android malware detection using network flow combined 87

Table 10 Summary of related work

 R
ef

A

na
ly

si
s

te
ch

ni
qu

e
F

ea
tu

re
s

C
la

ss
if

ie
rs

C

la
ss

es

D
at

as
et

A

cc
ur

ac
y

Z
hu

 e
t a

l.
(2

01
8)

St

at
ic

Pe

rm
is

si
on

s,
 s

en
si

ti
ve

 A
PI

s,
 m

on
it

or
in

g
sy

st
em

 e
ve

nt
s,

 p
er

m
is

si
on

-r
at

e
R

ot
at

io
n

Fo
re

st

bi
na

ry

C
us

to
m

is
ed

88

.2
6%

V
.P

.D
 a

nd
 V

.P

(2
02

0)

St
at

ic

M
an

if
es

t
O

pt
im

is
ed

 S
V

M

bi
na

ry

A
A

G
M

 g
oo

gl
e

pl
ay

 s
to

re

–

Fi
rd

au
s

et
 a

l.
(2

01
8)

St

at
ic

Pe

rm
is

si
on

s,
 c

od
e-

ba
se

d,
 d

ir
ec

to
ry

 p
at

h,

N
aï

ve
 b

ay
es

, f
un

ct
io

na
l

tr
ee

s,
 J

48
, R

F,
 M

L
P

bi

na
ry

D

re
bi

n
go

og
le

 p
la

y
st

or
e

95
%

X
u

et
 a

l.
(2

01
6)

H

yb
ri

d

D
N

N

bi
na

ry

G
oo

gl
e

pl
ay

 s
to

re
 v

ir
us

 s
ha

re

94
.7

%

Si
ng

h
et

 a
l.

(2
02

0)

St
at

ic

Pe
rm

is
si

on
s,

 I
nt

en
ts

, o
pc

od
es

R

an
do

m
 F

or
es

t
bi

na
ry

C

IC
In

ve
sA

nd
M

al
20

19

93
.9

2%

R
oy

 e
t a

l.
(2

02
0)

D

yn
am

ic

A
PI

 c
al

ls

SV
M

bi

na
ry

D

re
bi

n
C

IC
In

ve
sA

nd
M

al
20

19

88
.7

2%

Sh
yo

ng
 e

t a
l.

(2
02

0)

H
yb

ri
d

Pe
rm

is
si

on
s,

 tc
p,

 h
tt

p,
 d

ns

R
an

do
m

 f
or

es
t

m
ul

ti
-c

la
ss

D

re
bi

n,
 g

oo
gl

e
pl

ay
 s

to
re

96

%

Y
ua

n
et

 a
l.

(2
01

4)

H
yb

ri
d

R
eq

ui
re

d
pe

rm
is

si
on

, S
en

si
tiv

e
A

PI
,

dy
na

m
ic

 b
eh

av
io

r
D

ee
p

le
ar

ni
ng

bi

na
ry

C

on
ta

gi
o

go
og

le
 p

la
y

st
or

e
96

%

O
ur

 s
tu

dy

H
yb

ri
d

Pe
rm

is
si

on
s,

 in
te

nt
 f

il
te

rs
, n

et
w

or
k

fl
ow

s
k-

N
N

, S
V

M
, D

T

m
ul

ti
-c

la
ss

C

IC
In

ve
sA

nd
M

al
20

19

96
.3

%

 88 A.Z.E. Boukhamla and A. Verma

Figure 4 Accuracy of multi-class hybrid analysis classification (see online version for colours)

7 Conclusions

Over the last years, android has occupied a high market share, making it the preferred
target of malicious applications. This paper proposes a hybrid android security approach
that detects android malware and provides the malware category. The approach aims at
combining both static (permissions, Intent filters) and dynamic features (network flow) to
perform an android hybrid analysis. The experimental results showed that the proposed
approach improves android category classification accuracy compared with only static
analysis. Thus, it can be concluded that by combining network flow as dynamic features
with permissions and intent filter as static features, we can considerably improve benign
prediction accuracy. This consequently improves the overall detection model’s accuracy.
In practice, this methodology is used to improve the mobile apps security by
incorporating the network aspect into the static method when scanning an apps. Some
android malware attacks (Adware, Scareware, Ransomware, and so on) execute their
commands over the network, allows attacker to send requests and receive personal
information, as well as alter the victim's system. The idea of exploiting network flow
features and reinforcing them with static analysis of the apps increases the detection
accuracy of android malware, because this method does not satisfy with static analysis
results but also allows to involve network parameters, which can be decisive in the phase
of the scan. Moreover, the concept of this framework permits not only the detection of
potential malware in the installed apps that are not running but also the infected running
apps which tries to run a malicious action. In future, we will try to add other patterns
from both static and dynamic behaviours of android applications to have an in-depth
vision of the malware behaviour. Also, we will consider improving the effectiveness of
the framework by combining several machine learning algorithms to give an additional
layer that represents the android malware family class.

 HyDroid: android malware detection using network flow combined 89

Acknowledgements

This work is a part of PRFU project N° C00L07UN300120210001 supported by Ouargla
University https://www.univ-ouargla.dz/.

References

Amin, M., Tanveer, T.A., Tehseen, M., Khan, M., Khan, F.A. and Anwar, S. (2020) ‘Static
malware detection and attribution in android byte-code through an end-to-end deep system’,
Future Generation Computer Systems, January, Vol. 102, pp.112–126, https://DOI:
10.1016/j.future.2019.07.070.

Azzaoui, H., Boukhamla, A.Z.E., Arroyo, D. and Bensayah, A. (2021) ‘Developing new deep-
learning model to enhance network intrusion classification’, Evolving Systems, January,
https://DOI: 10.1007/s12530-020-09364-z.

Burguera, I., Zurutuza, U. and Nadjm-Tehrani, S. (2011) ‘Crowdroid: behavior-based malware
detection system for android’, in Proceedings of the 1st ACM Workshop on Security and
Privacy in Smartphones and Mobile Devices, New York, NY, USA, October, pp.15–26,
https://DOI: 10.1145/2046614.2046619.

Chehab, A., Elhajj, I.H., Hamandi, K., Chehab, A., Elhajj, I.H. and Kayssi, A. (2013) Android SMS
malware: Vulnerability and Mitigation.

Dong, S. et al. (2018) ‘Understanding android obfuscation techniques: a large-scale investigation in
the wild’, in Security and Privacy in Communication Networks, Cham, pp.172–192,
https://DOI: 10.1007/978-3-030-01701-9_10.

Enck, W. et al. (2010) ‘TaintDroid: an information-flow tracking system for realtime privacy
monitoring on smartphones’, in Proceedings of the 9th USENIX Conference on Operating
Systems Design and Implementation, USA, October, pp.393–407.

Eveleth, L.B. and Stone, R.W. (2020) ‘User’s perceptions of perceived usefulness, satisfaction, and
intentions of mobile application’, IJMC, Vol. 18, No. 1, p.1, https://DOI:
10.1504/IJMC.2020.104431.

Feng, P., Ma, J., Sun, C., Xu, X. and Ma, Y. (2018) ‘A novel dynamic android malware detection
system with ensemble learning’, IEEE Access, Vol. 6, pp.30996–31011, https://DOI:
10.1109/ACCESS.2018.2844349.

Firdaus, A., Anuar, N.B. Karim, A. and Razak, M.F.A. (2018) ‘Discovering optimal features using
static analysis and a genetic search-based method for android malware detection’, Frontiers
Inf Technol Electronic Eng., June, Vol. 19, No. 6, pp.712–736, https://DOI:
10.1631/FITEE.1601491.

Gascon, H., Yamaguchi, F., Arp, D. and Rieck, K. (2013) ‘Structural detection of android malware
using embedded call graphs’, in Proceedings of the ACM Workshop on Artificial Intelligence
and Security, New York, NY, USA, November, pp.45–54, https://DOI:
10.1145/2517312.2517315.

Hamandi, K., Chehab, A., Elhajj, I.Hand Kayssi, A. (2013) ‘Android SMS Malware: vulnerability
and mitigation’, 2013 27th International Conference on Advanced Information Networking
and Applications Workshops, March, pp.1004–1009, doi: 10.1109/WAINA.2013.134.

Lashkari, A.H., Kadir, A.F.A., Taheri, L. and Ghorbani, A.A. (2018) ‘Toward developing a
systematic approach to generate benchmark android malware datasets and classification’, in
2018 International Carnahan Conference on Security Technology (ICCST), Montreal, QC,
October, pp. 1–7, https://DOI: 10.1109/CCST.2018.8585560.

Mahmood, R., Mirzaei, N. and Malek, S. (2014) ‘EvoDroid: segmented evolutionary testing of
Android apps’, in Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, New York, NY, USA, November, pp.599–609,
https://DOI: 10.1145/2635868.2635896.

 90 A.Z.E. Boukhamla and A. Verma

Martinelli, F., Mercaldo, F. and Saracino, A. (2017) ‘BRIDEMAID: A hybrid tool for accurate
detection of android malware’, in Proceedings of the 2017 ACM on Asia Conference on
Computer and Communications Security, Abu Dhabi United Arab Emirates, April, pp.899–
901, https://DOI: 10.1145/3052973.3055156.

Mateless, R., Rejabek, D., Margalit, O. and Moskovitch, R. (2020) ‘Decompiled APK based
malicious code classification’, Future Generation Computer Systems, September, Vol. 110,
pp.135–147, https://DOI: 10.1016/j.future.2020.03.052.

Nath, H.V. and Mehtre, B.M. (2014) ‘Static Malware Analysis Using Machine Learning Methods’,
in Recent Trends in Computer Networks and Distributed Systems Security, Berlin, Heidelberg,
pp. 440–450, https://DOI: 10.1007/978-3-642-54525-2_39.

Roy, A., Jas, D.S., Jaggi, G. and Sharma, K. (2020) ‘Android malware detection based on
vulnerable feature aggregation’, Procedia Computer Science, Vol. 173, pp.345–353,
https://DOI: 10.1016/j.procs.2020.06.040.

Shijo, P.V. and Salim, A. (2015) ‘Integrated static and dynamic analysis for malware detection’,
Procedia Computer Science, January, Vol. 46, pp. 804–811, https://DOI:
10.1016/j.procs.2015.02.149.

Shyong, Y-C., Jeng, T-H. and Chen, Y-M. (2020) ‘Combining static permissions and dynamic
packet analysis to improve android malware detection’, in 2nd International Conference on
Computer Communication and the Internet (ICCCI), Nagoya, Japan, June, pp. 75–81,
https://DOI: 10.1109/ICCCI49374.2020.9145994.

Singh, A.K., Wadhwa, G., Ahuja, M., Soni, K. and Sharma, K. (2020) ‘Android malware detection
using lsi-based reduced opcode feature vector’, Procedia Computer Science, Vol. 173,
pp.291–298, 2020, https://DOI: 10.1016/j.procs.2020.06.034.

Song, J., Han, C., Wang, K., Zhao, J., Ranjan, R. and Wang, L. (2016) ‘An integrated static
detection and analysis framework for android’, Pervasive and Mobile Computing, October,
Vol. 32, pp. 15–25, https://DOI: 10.1016/j.pmcj.2016.03.003.

Surendran, R. Thomas, T. and Emmanuel, S. (2020) ‘A TAN based hybrid model for android
malware detection’, Journal of Information Security and Applications, Vol. 54, p.102483,
October, https://DOI: 10.1016/j.jisa.2020.102483.

Taheri, L., Kadir, A.F.A. and Lashkari, A.H. (2019) ‘Extensible android malware detection and
family classification using network-flows and API-calls’, in International Carnahan
Conference on Security Technology (ICCST), October, pp.1–8, https://DOI:
10.1109/CCST.2019.8888430.

Varna, P.D. and Visalakshi, P. (2020) ‘Detecting android malware using an improved filter-based
technique in embedded software’, Microprocessors and Microsystems, July, Vol. 76,
p.103115, https://DOI: 10.1016/j.micpro.2020.103115.

Wong, M.Y. and Lie, D. (2016) ‘IntelliDroid: a Targeted input generator for the dynamic analysis
of android malware’, Presented at the Network and Distributed System Security Symposium,
San Diego, CA, https://DOI: 10.14722/ndss.2016.23118.

Xu, L., Zhang, D., Jayasena, N. and Cavazos, J. (2018) ‘HADM: hybrid analysis for detection of
malware’, in Proceedings of SAI Intelligent Systems Conference (IntelliSys), Vol. 16, Bi, Y.,
Kapoor, S. and Bhatia, R. (Eds.): Springer International Publishing, Cham, pp. 702–724,
https://DOI: 10.1007/978-3-319-56991-8_51.

Yan, L.K. and Yin, H. (2012) ‘DroidScope: seamlessly reconstructing the OS and Dalvik semantic
views for dynamic Android malware analysis’, in Proceedings of the 21st USENIX
Conference on Security Symposium, USA, August, p.29.

Yuan, Z., Lu, Y., Wang, Z. and Xue, Y. (2014) ‘Droid-Sec: deep learning in android malware
detection’, in Proceedings of the ACM Cconference on SIGCOMM, New York, NY, USA,
August, pp.371–372, https://DOI: 10.1145/2619239.2631434.

Zhao, M., Ge, F., Zhang, T. and Yuan, Z. (2011) ‘AntiMalDroid: An Efficient SVM-Based
Malware Detection Framework for Android’, in Information Computing and Applications,
Berlin, Heidelberg, pp.158–166, https://DOI: 10.1007/978-3-642-27503-6_22.

 HyDroid: android malware detection using network flow combined 91

Zhu, H-J., You, Z-H., Zhu, Z-X., Shi, W-L., Chen, X. and Cheng, L. (2018) ‘DroidDet: Effective
and robust detection of android malware using static analysis along with rotation forest
model’, Neurocomputing, January, Vol. 272, pp. 638–646, https://DOI:
10.1016/j.neucom.2017.07.030.

Websites

Adoption Rate and Popularity [online] www.kaspersky.com (accessed 11 September 2017) [online]
https://www.kaspersky.com/resource-center/threats/malware-popularity (accessed 13
September 2020).

Apktool – A Tool for Reverse Engineering 3rd Party, Closed, Binary Android Apps [online]
https://ibotpeaches.github.io/Apktool/ (accessed 13 September 2020).

Global smartphone shipments 2010–2022’, Statista [online] https://www.statista.com/statistics/
263441/global-smartphone-shipments-forecast/ (accessed 8 October 2020).

IDC – smartphone market share – OS, Idc: The Premier Global Market Intelligence Company
[online] https://www.idc.com/promo/smartphone-market-share (accessed 8 October 2020).

Intents and intent filters, Android Developers [online] https://developer.android.com/guide/
components/intents-filters (accessed 16 September 2020).

Investigation on Android Malware 2019 | Datasets | Research | Canadian Institute for Cybersecurity
| UNB [online] https://www.unb.ca/cic/datasets/invesandmal2019.html (accessed 19
September 2020).

Scikit-Learn: Machine Learning in Python — Scikit-Learn 0.23.2 Documentation [online]
https://scikit-learn.org/stable/ (accessed 29 September 2020).

