

International Journal of Web Engineering and Technology

ISSN online: 1741-9212 - ISSN print: 1476-1289
https://www.inderscience.com/ijwet

An architecture-based modelling of fault-tolerant SOA-based
systems

Swati Goel

DOI: 10.1504/IJWET.2023.10056507

Article History:
Received: 15 May 2022
Last revised: 05 November 2022
Accepted: 30 November 2022
Published online: 31 May 2023

Powered by TCPDF (www.tcpdf.org)

Copyright © 2023 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijwet
https://dx.doi.org/10.1504/IJWET.2023.10056507
http://www.tcpdf.org

 4 Int. J. Web Engineering and Technology, Vol. 18, No. 1, 2023

 Copyright © 2023 Inderscience Enterprises Ltd.

An architecture-based modelling of fault-tolerant
SOA-based systems

Swati Goel
School of Computer and Systems Sciences,
Jawaharlal Nehru University,
New Delhi, India
Email: swatigoel96@gmail.com

Abstract: Service-oriented architecture (SOA) may effectively be implemented
in distributed software development like cloud computing, internet of things,
etc. Expectations from these systems, in terms of their reliability and
availability, are increasing day by day. Fault-tolerance is an approach that
ensures the correct functioning of the system even in the presence of faults.
Various fault-tolerance mechanisms may be applied on a system. It is a
cumbersome task to decide which mechanism is more suitable for a specific
situation. Implementation of fault-tolerance involves as an additional cost
factor due to the redundancy of software components. One has to intelligently
decide what level of redundancy needs to be applied in a system. In this paper,
a fault-tolerance policy, at an architectural level, is proposed for an SOA-based
system. The proposed policy is based on the severity analysis of various
software services in an SOA-based system. Architecture analysis and design
language (AADL) is used for the modelling of the system. Fault tree analysis
and functional hazard assessment have been used for severity analysis. A
‘smart home security system (SHSS)’ is used for the demonstration of the
practicality of the proposed model. The proposed policy can be used as a
fault-tolerance solution.

Keywords: fault-tolerance; service-oriented architecture; SOA; architecture
analysis and design language; AADL; error model annex; EMA; functional
hazard assessment; FHA; fault tree analysis; FTA.

Reference to this paper should be made as follows: Goel, S. (2023)
‘An architecture-based modelling of fault-tolerant SOA-based systems’,
Int. J. Web Engineering and Technology, Vol. 18, No. 1, pp.4–28.

Biographical notes: Swati Goel received her PhD in ‘Fault Tolerance
Enhancement in Service Oriented Architecture’ from SC&SS, JNU,
New Delhi. Her research work in the areas of software engineering and fault
tolerance has been published in several journals and conferences.

This paper is a revised and expanded version of a paper entitled ‘Architecture
level fault tolerance modeling for SOA based systems’ presented at SSIC 2021,
Manipal University Jaipur, India, 22–23 January 2021.

 An architecture-based modelling of fault-tolerant SOA-based systems 5

1 Introduction

Service-based systems are distributed in nature. Services may be obtained from multiple
sources and integrated through loose coupling providing flexibility and scalability during
system development. An involvement of various service components in a system causes
new faults sources. Faults may come due to single services and their compositions. For
designing reliable systems, these newer faults have to be considered and the possibility
of system functionality in the presence of faults. Safety-critical systems cannot
underestimate faults because these faults may lead to hazards. Hence, fault-tolerance is
one of the important aspects of a service-oriented architecture (SOA)-based system
development that needs to be handled for delivering quality software.

The basis of fault-tolerance is redundancy, i.e., to have redundant software
components so that in case of failure of one component, control can be switched to
redundant component and failure can be masked. Due to the redundancy cost, it is not
practical to apply fault-tolerance to all the services in a SOA-based system. Different
services may have different failure impacts. For appropriate implementation of
fault-tolerant mechanisms, one must have to identify the components, in the system,
which requires redundancy. Identification of such components is a challenging issue
because components need to be identified based on some criticality criteria. There are
different fault-tolerance mechanisms for software systems. It is also an important
question that what type of fault-tolerance mechanism is required in specific
circumstances.

There is several fault-tolerance approaches observed in the literature for SOA-based
systems. Dobson et al. (2005) have presented a container-based approach for
fault-tolerance in SOA-based systems. “The container is built with an XML fault
tolerance policy model which supports fault tolerance mechanisms to be applied at an
application level.” Bin Zheng et al. (2015) mentioned the design of static and dynamic
fault-tolerance strategies, as well as the major problems while designing fault-tolerance
strategies. Qiu et al. (2014) proposed a component ranking model, named ROCloud.
ROCloud identifies significant components whose failures would have a great impact on
application reliability based on the application structure information and components’
reliability properties. Zheng et al. (2012) have proposed FTCloud, a component-based
ranking framework to design fault-tolerant applications running on the cloud. Although
the above contributions deal with fault-tolerance policies in service-based systems, their
approach is based on the ranking of software services. Furthermore, these approaches
miss the data and control propagations among software services and criticality analysis
based on these propagations. The avoidance of the propagation of erroneous information
within the system is an important concern. We humbly extend the above contributions
further by proposing an architecture-level fault-tolerance implementation policy based on
service criticality.

The propagation of fault has to be avoided in the early phase, otherwise a fault will be
transformed into a failure and in the end there is high probability of overall system
getting collapsed. A system will be called as high degree fault-tolerant system if it is able
to detect errors with the most possible brevity, after its occurrence and also if it is able to
avoid the propagation of erroneous information within the system. Therefore, to
addresses this issue – a fault-tolerance policy at an early stage may help to understand the
system in a better way and one may proceed for reliable design and development of the

 6 S. Goel

system. In this paper, an architecture-level fault-tolerance policy is proposed based on the
criticality analysis. The major contributions of this paper are presented in a three-fold
manner:

• The understanding of the faults in the context of a SOA-based system is very
essential. In the first section, the possible faults that may occur, in a SOA-based
system, are identified and demonstrated with the architecture analysis and design
language (AADL).

• In the second section, functional hazard assessment (FHA) of software services, in a
SOA-based system, is performed by the failure modes and effects analysis (FMEA)
and fault tree analysis (FTA) techniques of AADL.

• A fault-tolerance policy is proposed based on the criticality analysis and FHA.

In this way, the probability of software malfunction due to the occurrence of faults can be
minimised by handling faults at an architectural level. A case study of ‘smart home
security system (SHSS)’ is designed and developed, using AADL and error model annex
(EMA) and behaviour model annex, for the demonstration of the proposed approach.

The rest of the paper is structured as follows. The significant work related to our
approach is briefly summarised in Section 2. In Section 3, the AADL along with EMA
and behaviour model annex is briefly mentioned. The proposed architecture level fault-
tolerance model for SOA-based system is introduced in Section 4 and in the following
subsections. The description of the ‘SHSS’ using AADL is given in Section 5. Finally,
the work is concluded in Section 6.

2 Related work

In literature, many methods and technologies have been proposed to describe, analyse
and tolerate hardware faults at an architecture level. It is difficult to explain software
faults properly as fault propagates at each level, and identifying the root cause of the fault
is a tedious task (Sun et al., 2007). In the literature, we found few works that deals with
tolerating or handling faults at an architecture level in SOA-based systems through
AADL. Mahdian et al. (2009) in their work, have proposed an approach for faults
detection and tolerance in service-based systems at an architecture level. They have used
redundancy-based FT mechanism for adding new components to the presented
architecture. Gabsi et al. (2016) in their work, have proposed a model-driven approach
and firstly, they have generated fault-tolerance code using AADL. Secondly, they have
defined transformation rules from the EMA annex, which is a sublanguage of AADL.
The work of Mahdian et al. (2009) and Gabsi et al. (2016), are similar as both have
implemented fault-tolerance at an architecture level to stop the propagation of faults to
further stages but the difference lies in their FT mechanism implementation. Mahdian
et al. (2009) have used redundancy whereas Gabsi et al. (2016) have handled faults
through AADL code itself without replicating components. The limitations of the above
discussed works are that they directly dealt with the faults tolerance, without identifying
the possible faults. Therefore, the discussed approach may not be an efficient technique
in tolerating faults in service-based systems at an architecture level

Some of the works that we found in the literature deals with model-based approach
and designing algorithm to tolerate faults at an early stage of system development. Feiler

 An architecture-based modelling of fault-tolerant SOA-based systems 7

and Rugina (2007), in their work, have used AADL to show architectural patterns in any
system being analysed to find out all possible issues in the system. To address
fault-tolerance concisely, they have used the modelling capability of AADL which
allowed them to describe the redundancy feature of the system’s architecture. Buys et al.
(2011), in their work, have presented a novel dependability technique which supports
advanced redundancy management, which aims to autonomously tune its internal
configuration because of changing context. Sokolsky and Chernoguzov (2014) have used
AADL to capture the architecture of embedded systems in terms of software and platform
in a component-oriented manner. Fekih et al. (2019) in their work have proposed a sensor
and repair-based algorithm to adjust service-based applications, which is very efficient
whenever a service composition process fails. In addition, this approach can detect faulty
services very rapidly. The discussed approach is capable of handling faults but the
authors have not defined any specific criteria according to which fault-tolerance can be
applied. Therefore, the approaches may not be practically feasible. Hence, a well-defined
fault-tolerance policy is highly required in future.

In the literature, we found that the application of fault-tolerance is not limited to
one field but it is expanding in every domain. One of the work, Zhang et al. (2021), in
their work, has proposed a fault-tolerant model for a fog system’s performance
optimisation. The fault-tolerant methodology proposed in this work is based on
calculating the steady-state probabilities and substituting the faulty fog nodes with the
most appropriate ones. The experimental results have been performed on a real-time
system. Another work, Zhang et al. (2018), have presented an online fault detection
technique on cloud. The proposed online fault detection technique can largely help cloud
managers to take corrective actions on time before fault occurrence in clouds. The work
discussed by Zhang et al. (2021) is little bit similar to our work as it has discussed the
fault-tolerance model for dynamic fog nodes.

The work presented in this paper is different in the aspect that along with fault
modelling at the architecture level, it also considers criticality analysis of software
services. It describes how various fault-tolerance mechanisms may be effectively applied
in a system based on severity analysis of software services.

3 AADL

AADL is an architecture design language, which focuses on system design specification
by using formal semantics that can be used to analyse systems already in use and
integrate new systems (Feiler et al., 2006). AADL is standardised by SAE International,
used for describing system components and their interactions with its operating
environment (i.e., processors, bus, devices) (Delange et al., 2014). “The AADL
framework supports an architecture-centric, model-based development approach
throughout the system lifecycle” (Carnegie Mellon University, no date).

The AADL EMV2 Error Library is a rich, semi-formal embedded system modelling
language which is deeply integrated into AADL (Larson et al., 2013). The errors included
in the library have formalised semantics and the library is designed to be easily extended
by system developers to become domain- or system-specific. Specifically, the EMV2
annex provides an ontology of system errors and formal specifications of the semantics of
the error types in the library (Procter, no date). Specifically, it allows engineers to
formally specify errors, error propagation and error mitigation (Larson et al., 2013).

 8 S. Goel

The AADL behaviour annex [SAE, Annex X Behavior Annex (AS5506-X
Draft-2.13), no date] is an AADL sublanguage that is used to define the behaviour of an
AADL application model. The behaviour annex addresses many challenges which are as
follows:

• First, it requires to parse and analyse several sub-languages.

• Secondly, to complete its analysis requires consistency with the core language.

• Thirdly, the internal representation of the annex needs to be compliant with the core
language-internal representation (Lasnier et al., 2011).

Figure 1 Demonstration of components interactions via bus and processor (see online version
for colours)

System

Subcomponent A

Subcomponent B

Subcomponent C

Subcomponent D

 Bus

Processor

Figure 2 ‘Online banking system’ and its subcomponents (see online version for colours)

A pictorial representation is drawn here in Figure 1 to demonstrate how a system can be
modelled using AADL. The system is modelled in terms of its subcomponents. The
system component and its various subcomponents are organised hierarchically. The ‘bus’

 An architecture-based modelling of fault-tolerant SOA-based systems 9

represents a virtual logical connection among various subcomponents. The component
‘processor’ represents the processing unit. Figure 2 shows modelling of
‘OnlineBankingSystem’ in AADL.

Figure 3 Error path specification between subcomponents (see online version for colours)

Figure 4 A possible summarisation of SOA-specific faults (see online version for colours)

 10 S. Goel

In the ‘online banking system’, a subcomponent like CreateBankAccount is propagating
an error. It can be written in AADL as shown in equation (1).

_ : { , ,
}

BankAcct out out propagation ServiceOmission SequenceOmission
ItemOmission

 (1)

that means CreateBankAccount component is propagating ServiceOmission,
SequenceOmission and ItemOmission errors. Similarly, error flow path form in port to out
port in AADL between two subcomponents is shown in equation (2).

: _ { }
_ { , , }→

ef error pathEditSysAcct in Executionfaults
BankAcct out ServiceOmission SequenceOmission ItemOmission

 (2)

An error path is used to specify how an error propagates into the component of a system,
remains inside the component, and goes out of the component through an outgoing
feature or binding. Error path of the device ApplyLoans is shown in Figure 3. On the
event port, Apply_Loans, DiscoveryFault is occurring, which is inside the ApplyLoans
component and it goes out through an out propagation on out data port Loans_Approved.
Discovery fault was converted to service crashed fault, which is an extension of
execution fault as shown in Figure 4.

4 The proposed architecture level fault-tolerance model for SOA-based
system

SOA provides the mechanism to develop software with the help of web services via a
loose coupling concept. This flexibility makes the architecture feasible for distributed
applications like cloud computing, internet of things, service-based systems, etc. As its
use is vastly increasing day-by-day, consumers start to expect the reliability and
continuous availability of such systems even in the presence of faults. It drives us to think
beyond fault identification and their handling. Fault-tolerance provides a facility that
masks the failure into the system through redundancy. Earlier approaches of
fault-tolerance were based on hardware redundancy and they have the thought in the
mind that hardware components are degraded with time. Most of the approaches were
based on operational faults. This concept is not applicable in the case of software
components as their performance is not degraded with time, but the business and
performance requirements may be changed. In the case of service-based fault-tolerance
approaches, one has to deal with design faults because software services do not have
operational faults. One has to reconsider the approaches keeping software services
features in mind. The proposed approach is presented in a three-fold manner as shown in
Figure 4.

Figure 5 shows the complete proposed methodology adopted to tolerated faults at an
architectural level. First, an understanding needs to be developed regarding the possible
faults in a SOA-based system. SOA-specific faults are identified and modelled using
AADL. The idea is to obtain the criticality of various software services and propose an
appropriate fault-tolerance policy based on their criticality and failure impact. Therefore,
in the second step, criticality analysis of various software services, in an SOA-based
system, is performed through FHA. In the third step, an appropriate fault-tolerance policy

 An architecture-based modelling of fault-tolerant SOA-based systems 11

is proposed based on the information obtained from criticality analysis. The detailed
model is described in the following subsections.

Figure 5 Proposed methodology (see online version for colours)

Stage 3
(Propose Fault

tolerance
policy)

Stage 2
(Perform
service

criticality)

Stage 1
(Faults

identification
and modelling)

4.1 SOA-specific fault modelling through AADL

In this subsection, an effort has been made to find out the possible faults that may occur
in a SOA-based system. A fault can be described as a defect in physical structure,
irregularity, or flaw that occurs in a software service. Hence, it can be said that faults can
cause errors and errors can lead to the failure of a system. To perform fault-tolerance
analysis for a SOA-based system, at the architecture level, a clear understanding of all
possible faults is necessary. For this purpose, SOA-specific faults are identified and
summarised in Figure 5. SOA-specific faults can also be characterised by the phases in
which they are introduced, i.e., design faults and operational faults. Here, only design
faults are discussed.

Conventionally, there are five stages in SOA, which are publishing, discovery,
composition, binding and execution (Niknejad et al., 2020). Faults may occur during all
steps of a SOA-based system. These errors can cause deviation from computational
accuracy, which will result in a failure unless the SOA-based system is capable of
tolerating those errors. In Figure 4, possible faults at each stage are mentioned. An
‘online banking system’ domain is used as an example for demonstrating various faults.

4.1.1 Publishing faults
For the sake of the selection of a service, its description is to be made public. Service
description faults mostly occur because of the incorrect service description. The
description may itself be faulty (incorrect description) or there might be some
functional/performance mismatch during the deployment of the service. Service
deployment fault occurs when there is an error in deploying the service on the target
platform. For example, Figure 6 shows that in ‘online banking system’,
UpdatePersonnalInfo subcomponent is propagating publishing fault throughout data port,
i.e., Update_Info. The component CreateSystemAcc. is propagating incorrect service, i.e.,
service description error. The details entered by the user while creating a system account
that is mismatched with the deployed service by the service provider.In case the user
enters the details while creating a system account that is mismatching with the deployed
service by the service provider. In this case, the CreateSystemAcc is getting
ServiceDescriptionError. Figure 6 shows the AADL modelling of publishing faults.

 12 S. Goel

Figure 6 AADL modelling of PublishingFaults (see online version for colours)

Figure 7 (a) DiscoveryFault functioning (b) AADL modelling of DiscoveryFaults (see online
version for colours)

Fig. 9Discovery Faults Functioning

CreateSystemAcc.

CreateBankAcc.

ApplyLoans

Apply Loans

Loans approved

Web service 1 [assume deleted by service provider]
Discover faults

Web service 3
Web service 2

Depends

Depends

(a)

(b)

4.1.2 Discovery faults
Discovery fault may occur during the search process of suitable services at service
provider locations. It can be of two types – service errors and service timing errors.
Service error is further divided into service omission, sequence omission and item
omission. Service omission error occurs while communicating with an unreachable
service that means now the service which the user is trying to search has been deleted by
the service provider. Similarly, a sequence omission error occurs when the service
provider has deleted interlinked services from the service repository. Item omission error
occurs when some specific functionality has been omitted from the service. In the above

 An architecture-based modelling of fault-tolerant SOA-based systems 13

three service errors, the fault information that will be passed to users is no service/wrong
service found. Service timing error occurs when the service is not available at the
required time it will be either before the time (early service arrival) or after the time
(delayed service) in an unsynchronised manner. For example, Figure 7(b) shows in an
‘online banking system’, the ApplyLoans component may receive DiscoveryFault at in
event port, i.e., Apply_Loans because this component is linked to various other
components like CreateBankAccount and CreateSystemAccount to complete its
functionality. Hence, if web service 1 is deleted by the service provider, the web service 3
while fetching web service 1 will get DiscoveryFaults because it is trying to fetch that
service that has been deleted. Figure 7(a) shows discovery faults functioning whereas
Figure 7(b) shows AADL modelling of discovery faults.

Figure 8 (a) A possible execution fault in a system (b) AADL modelling of a possible
CompositionFault (see online version for colours)

Fig: AADL Modeling of Composition Faults

OnlineBankingSystem

 Composed Service (Faulty)

CreateSystemAcc.

CreateBankAcc.

Composition

TransferMoney

Transfer_Money

Approved_MoneyTransfer

Web service 1 [assume faulty one]

Composed service

Composition
fault

Web service 2
(a)

(b)

4.1.3 Composition faults
The process of composing a new service from existing individual services is called
web service composition. Composition fault occurs mainly when individual services are
not able to integrate properly or after integration, the functionality/performance of the
composed service degrades. There can be many reasons for this like while composing a
new service some faulty services have been used (faulty service composition error) or
usage of redundant services (service duplication error). During the service composition
process asymmetric and symmetric matching between service attributes is performed.

 14 S. Goel

The mismatch between service attributes results in respective asymmetric and symmetric
errors (Kushal et al., 2017). For example, Figure 8(b) shows TransferMoney
subcomponent in ‘online banking system’ may get composition fault at in event port, i.e.,
Transfer_Money because this service has been composed of multiple other services like
CreateSystemAccount, CreateBankAccount, etc. Therefore, if any service in the
composition process is wrong then there will be a possibility of composition fault
occurrence. Figure 8(a) shows composition fault working and Figure 8(b) shows the
AADL modelling of composition fault.

4.1.4 Execution fault
Execution fault occurs during the execution of service or when the output of the service
does not match with the expected output of the executing service (incorrect output) and
there can be many reasons for this like incorrect input, faulty service that is due to
software malfunction. There is also a possibility of service getting crash (service crashed)
the server will notice this and notify the client about the failure. For example, Figure 9(a)
shows Edit_SysAcct out data port of EditSystemAccount subcomponent is receiving
Executionfault in ‘online banking system’ because of CreateSystemAcc. Subcomponent
which is transmitting servicedescriptionerror due to which Edit_SysAcct is receiving
incorrect input and causing execution fault through Edit_SysAcct. Figure 9(b) shows
AADL modelling of execution fault.

Figure 9 Execution fault functioning (b) AADL modelling of ExecutionFault (see online version
for colours)

OnlineBankingSystem

CreatesystemAcc.S

yst_Acct.

EditSystemAcc.

EditSyst_Acct
(incorrect input)

Edit_SysAcct

Execution fault
Service description
error, incorrect
output

IncorrectOutput->IncorrectInput->ExecutionFault

(a)

(b)

 An architecture-based modelling of fault-tolerant SOA-based systems 15

4.2 Criticality analysis through FHA

Understanding various faults, in a SOA-based system, will help in realisation of the effect
of a particular fault. But the proper impact of a fault can only be assessed through a FHA.
In this section, a FHA has been performed to find out the level of criticality of software
services. In addition, the entire system cannot be made redundant. Hence, analysis is
done to find out the critical components from a complex system by applying safety
analysis technique, i.e., FHA. Figure 10 shows a system having three components A, B
and C. To perform FHA, it is required to obtained information about some specific
properties like severity, occurrence distribution, likelihood, etc. While performing FHA,
every component property is scanned and a component having high catastrophic severity
and frequent likelihood is considered to be a critical component.

Figure 10 Hazard analysis of software services (see online version for colours)

System

CompA

Comp B
CompC Comp C

Critical component

Applying FHA
Catastrophic severe, frequent

likelihood

FHA will be performed in OSATE (Download and Installation – OSATE 2.10.0
Documentation, no date) to identify abnormal conditions that may cause an error. The
tool will scan each component and communicate information about all mentioned error
events and error sources and an analysis report is generated that includes the list of all
possible hazards. The severity and likelihood are categorised into five ranges and labels
respectively according to OSATE tool (Download and Installation – OSATE 2.10.0
Documentation, no date) standards as shown in Table 1.
Table 1 Severity and likelihood classification

Severity
classification Ranges Likelihood

classification Labels Components
categorisation

Catastrophic 1 (high) Frequent A (high) Highly critical
Hazardous 2 Probable B Critical
Severe major 3 Remote C Average
Major 4 Extremely remote D Less critical
Minor 5 (low) Extremely improbable E (low) Very less critical

4.3 The proposed fault-tolerance policy at the architecture level

In this step, a fault-tolerance policy is proposed to tolerate faults based on the FHA
technique as discussed above in Section 4.2. FT policy has been proposed at an
architecture level because it will prove to be very beneficial in identifying and
eliminating design issues at an early stage of software development. This FT policy
allows faults and their failure and propagation effects to be identified at the system level.

 16 S. Goel

In our proposed FT policy, the list of used FT models is given in Table 2.
Table 2 List of FT models

FT model Description
Fail-stop model The system goes from operational to failed state on the

occurrence of a failure event. No recovery mechanism.
Fail-and-recover model The system can recover from failed state to an operational state

by a recovery mechanism.
Permanent-transient-failure
model

On the first failure, the system goes to failed transient state and
can be returned to an operational state by applying a recovery
mechanism.

Degraded-fail-stop model On the first failure occurrence, the system goes to a degraded
state but on the second failure, the system goes to a failed state.

4.3.1 Case 1: fail-stop FT model
The fail-stop FT model declares states – operational and failed and one error event
failure. This error event triggers a transition between the two states. This model does not
declare any recovery event. Hence, the component goes into a permanently failed state in
case of failure occurrence event. Graphical representation is shown in Figure 11.

Figure 11 Fail-stop FT model – graphical representation (see online version for colours)

Note: OP: operational state and FS: failstop state.

4.3.2 Case 2: fail-and-recover FT model
Fail-and-recover FT model also declares two states operational and failed and one error
event failure in the same way as fail-stop model has declared. The only difference is
that the model can recover from failure by using a recovery mechanism. Graphical
representation is shown in Figure 12.

4.3.3 Case 3: permanent-transient-failure FT model
In this FT model on the occurrence of the first failure, the system goes to failed transient
state and can return to an operational state by applying a recovery mechanism. The
AADL code for this model is shown in Figure 13(a) and graphical representation is
shown in Figure 13(b).

 An architecture-based modelling of fault-tolerant SOA-based systems 17

Figure 12 Fail-and-recover FT model – graphical representation (see online version for colours)
p

Note: OP: operational state.

Figure 13 (a) Permanent-transient-failure FT model AADL code (b) Permanent-transient-failure
– graphical representation (see online version for colours)

(a)

(b)

Note: OP: operational state and FT: failed transient state.

4.3.4 Case 4: degraded-fail-stop FT model
In this FT model on first failure occurrence, the system goes to a degraded state but on
second failure the system goes to a failed state and cannot return to an operational state as
it was in the permanent transient failure FT model. Graphical representation is shown in
Figure 14.

Figure 14 Degrade-fail-stop FT model – graphical representation (see online version for colours)

Note: OP: operational state and DE: degraded state.

 18 S. Goel

The proposed FT policy is as follows:

1 A fault-tolerance policy is proposed based on criticality analysis and hazard
assessment. The motivation behind performing FHA is to find out all abnormal
conditions, which may cause an error in the future. It is a comprehensive analysis
tool. By using this analysis tool, a report is generated which contains information
about all error sources and error events. For each component, various properties, i.e.,
severity, description, likelihood, etc. have to be defined on the relevant EMV2
artefacts. Figure 15 specifies the severity and likelihood occurrence for error events
or error propagation as per standards given in OSATE 2.2. According to severity and
likelihood, the components range is decided and based on that only, fault in the
component will be handled. For example, catastrophic severe and frequent likelihood
decides that the component is highly critical and faults will be tolerated by designing
FT model and creating backups only of the critical components given in Figure 15.

Figure 15 Classification of components based on severity and likelihood (see online version
for colours)

p y

Severity Range Likelihood Labels Components
range

Tolerating
faults

Catastrophic 1 (high) Frequent A (high) Highly
critical

FT model
+ backup

Hazardous 2 Probable B Critical Ft model

Severe major 3 Remote C Average Ft model

Major 4 Extremely
Remote

D Less critical FT model

Minor 5 (low) Extremely
improbable

E (low) Very less
critical

FT model

FT model can be
FailStop,

FailAndRecover,
PermanentTransient

Failure, and
DegradedFailStop

depending on
application

2 Fault-tolerance is highly required in safety and business-critical applications.
Safety-critical applications are the applications where the loss of life or
environmental disaster has to be eliminated to perform smooth functioning.
Redundancy, one of the fault-tolerance mechanisms, should be employed only for
critical components. In this way, software FT has been implemented to improve the
reliability of the overall system by making use of functionally equivalent critical
backup components to tolerate component failure.

Figure 16 shows the proposed FT mechanism for critical components in our proposed FT
policy. Whenever any error is detected in the primary component and the component fails
due to that error the control is transferred to the backup component directly to ensure the
continuity of the system. The proposed FT mechanism in Figure 16 is very beneficial
while developing safety-critical systems, where software analysis and validation are
major concerns

The summarised SOA-specific faults in Figure 4 are modelled in the EMA sub-clause
of AADL as shown in Figure 17. The EMV2 constructs are similar to the syntax and
styles as defined for AADL. Figure 16 models ‘online banking system’ module errors in
the EMA.

 An architecture-based modelling of fault-tolerant SOA-based systems 19

Figure 16 Proposed FT mechanism for critical components (see online version for colours)

 Primary component failed
Input

Control transfers
Output

Backup
component

Error
detected

Primary
component

Figure 17 ‘Online banking system’ error types (see online version for colours)

5 Case study

A case study of ‘SHSS’ has been taken to demonstrate the practicality of the proposed
fault-tolerance policy at an architecture level depending on criticality analysis.

5.1 Architecture modelling of ‘SHSS’

A ‘SHSS’ is designed through AADL for the demonstration of the proposed model. This
case study has been taken from GitHub (no date) for performing the analysis of the
proposed FT policy. The SHSS is comprised of the major components – MotionDetector,
MagneticAlarmSet, SmokeDetector, IntruderAlarm, fire alarm and Mobile modelled as
devices while controller and securityprotocols are modelled as processes as shown in
Figure 18. All these components are used to design fault-tolerance models and error
behaviour is associated with each system component to tolerate failures.

 20 S. Goel

Figure 18 Architecture level service interaction – ‘SHSS’ (GitHub) (see online version
for colours)

5.1.1 Fault modelling
AADL EMV2 allows one to specify error flows along with points of components
interaction. In ‘SHSS’ service timing response plays an important role because
everything is dependent on the correct timing of service. For example, a FireAlarm
component encounters some service timing error while executing this component. In
this scenario, the ‘SHSS’ will trigger the FireAlarm early, late, or not trigger. The
homeowner or fire department will not be able to receive the notification of fire on time
due to the occurrence of ServiceTimingError on the FireAlarm component. The overall
purpose of designing ‘SHSS’ may diluted. Hence, a fault-tolerant ‘SHSS’ has been
designed to tolerate the service timing error. Figure 19 shows the error flow in ‘SHSS’.

Figure 19 Error flow – ‘SHSS’ (see online version for colours)

5.1.2 Applying fault-tolerance in the ‘SHSS’
In order to incorporate fault-tolerance features in ‘SHSS’, safety analyses techniques
have been used which involves architectural modelling such as FHA, FMEA, FTA and
common-mode assessment (CMA) (Kushal et al., 2017). The architecture is designed and

 An architecture-based modelling of fault-tolerant SOA-based systems 21

its associated fault model is devised in open source AADL tool environment (OSATE)
(Download and Installation – OSATE 2.10.0 Documentation, no date).

1 FHA: The likelihood of occurring ServiceTimingError at F_alarm_on_off port is
taken as frequent, which means that there is a very high probability of this fault
because the possibility of occurring discovery fault is mainly during positioning web
services by service providers and while fetching service descriptions that have been
made public. The severity of arising ServiceTimingError at F_alarm_on_off port is
assumed as catastrophic because if an alarm does not ring or rings late, can cause
loss of life. Similarly, the likelihood and severity of ServiceTimingError of
servicecrashed fault is taken as frequent because of the uncertain nature of this fault.
The generated FHA report from OSATE 2.2 tool is shown in Table 3.

Table 3 Generated FHA report from OSATE

Component Description Failure Severity Likelihood Comment
this_MotionDetector ‘Motion

detector
sensor
failure’

‘Faulty
sensors’

‘Hazardous’ ‘Probable’ ‘Critical’

this_MagneticAlarmSensor ‘Magnetic
alarm sensor

failure’

‘Faulty
sensors’

‘Hazardous’ ‘Probable’ ‘Critical’

this_SmokeDetector ‘Smoke
Alarm

Failure’

‘Faulty
sensors’

‘Catastrophic’ ‘Frequent’ ‘Highly
critical’

this_IntruderAlarm ‘Unlocked or
loose doors

and
windows’

‘Unknown
faults’

‘SevereMajor’ ‘Remote’ ‘Average’

this_FireAlarm ‘false alarms
or unwanted

fire alarm
activations’

‘Fire alarm
fail’

‘Catastrophic’ ‘Frequent’ ‘Highly
critical’

this_Mobile ‘Early or
delayed

notifications’

‘Not
receiving

notifications’

‘Hazardous’ ‘Probable’ ‘Critical’

 From Table 3, it is clear that the components this_SmokeDetector, this_FireAlarm is
a highly critical component because of catastrophic severity and frequent likelihood.
Hence, to tolerate faults occurring in these components, backup of only these
components need to be created and this will be a cost-effective mechanism. Table 4
lists all components in the ‘SHSS’ and based on the FHA report the components are
classified into the five ranges (as given in Table 1), ranging from highly critical to
very less critical. According to the criticality of components, the proposed FT policy
has been applied to tolerate the present faults stated in Table 4.

 22 S. Goel

Table 4 Tolerating faults in ‘SHSS’

 Criticality level FT model applied FTPolicy-redundancy
this_MotionDetector Critical Fail-and-recover model Not applied
this_MagneticAlarmSensor Critical Permanent-transient

failure
Not applied

this_SmokeDetector Highly critical Fail-and-recover model Backup created
this_IntruderAlarm Average Permanent-transient

failure
Not applied

this_FireAlarm Highly critical Permanent-transient
failure

Backup created

this_Mobile Critical Fail-stop model Not applied

5.1.3 Demonstration of FT policy on ‘SHSS’
To tolerate faults of less critical components a fault-tolerance model is generated that can
be associated with AADL components. In our case study of ‘SHSS’, the proposed FT
model has been designed for all the components listed in Table 4. This model has
been used to show various information related to faults present in interconnected
communication networks of components. To draw an FT model following points need to
be taken into account:

1 failure of a component or system

2 component behaviour in the presence of faults in terms of operational and failed
states.

The proposed FT model is used to recover from the failed state and that can be further
associated with any other component to tolerate faults. In this section, the faults in the
components, i.e., ServiceTimingError have been tolerated through various FT models
whereas Section 5.3 explains tolerated faults in critical components through redundancy.
For example, to avoid failure of MotionDetector and SmokeDetector components, the FT
model has been drawn as shown in Figure 20 and Figure 21, respectively. This generic
fail-and-recovery FT model has been modified by taking into account an occurrence of
ServiceTimingError at an out event port – motion_detected and smoke_detected of
MotionDetector and SmokeDetector components, respectively. The fault at an out event
port is tolerated by recovery transition as shown in Figure 20 and Figure 21. Motion
sensors in ‘SHSS’ automatically turn on a light or sound an alarm whenever movement is
detected in the house, and a motion sensor will activate the camera to start recording. In
Figure 20, the OP state is when motion is detected on time. If the motion is not detected
on time ServiceTimingError occurs, the system goes to the failed state. The system can
be back to OP state by rolling back through the recovery mechanism. Similarly,
SmokeDetector in ‘SHSS’ triggers the alarm whenever smoke enters the house and
crosses the path of the light beam, light will be scattered by the smoke particles, pointing
towards the sensor. In Figure 21, the OP state is when smoke is detected on time. If
smoke is detected late, ServiceTimingError is encountered at an out event port. The
system goes to failed state temporarily, the system is rolled back to the OP state through a
recovery mechanism.

 An architecture-based modelling of fault-tolerant SOA-based systems 23

Figure 20 FT model – MotionDetector

g. 21 Fig.

 Recovery
OP Failed

Motion_Detected{ServiceTimingError}

Note: OP: operational state and Failed: failed state.

Figure 21 FT model – SmokeDetector

 Recovery

OP Failed

Smoke_Detected{ServiceTimingError}

Note: OP: operational state and Failed: failed state.

To avoid failure of MagneticAlarmSensor, FireAlarmSensor, and IntruderAlarmSensor
components, the FT model has been drawn as shown in Figure 22. This generic
permanent-transient failure FT model has been modified by taking into account an
occurrence of ServiceTimingError at an out event port alarm_set-off of
MagneticAlarmSensor component and at in event port F_alarm_on_off and
I_alarm_on_off of FireAlarmSensor and IntruderAlarmSensor components, respectively.

Figure 22 FT model – MagneticAlarmSensor

 Recovery

OP FT

Alarm_Sensor_Error{ServiceTimingError}

Note: FT: failed transient state.

Fire alarm systems in ‘SHSS’ automatically detects an event that can cause a fire. This
system receives signals from the fire sensor (smoke, heat or carbon monoxide detector)
and sends them to the fire alarm panel. The panel triggers the alarm. If the fault occurs,
the FT model is applied on the occurrence of the first failure; the system goes to failed
transient state and can return to an operational state by applying a recovery mechanism
shown in Figure 22. The OP state comes when the alarm beeps on time. In the case of
ServiceTimingError occurrence, it can be tolerated through the permanent-transient
failure FT model as discussed. Similarly, the ServiceTimingError can be tolerated in
MagneticAlarmSensor and IntruderAlarmSensor components following the FT model
shown in Figure 22.

To avoid failure of the Mobile component, the FT model has been drawn as shown in
Figure 23. This generic fail-and-stop FT model has been modified by taking into account
an occurrence of ServiceTimingError at in event port notification_in. The Mobile
component in ‘SHSS’ is used to send the notifications to an owner of the house, through
data received from other components in ‘SHSS’.

 24 S. Goel

Figure 23 FT model – Mobile

OP FS
Notification_in{ServiceTim
ingError}

Note: FS: fail stop state.

5.2 Designing fault-tolerant ‘SHSS’ through redundancy management scheme

The purpose of designing fault-tolerant systems is that – it functions correctly even in
presence of faults (Dubrova, 2013). One of the most common ways to achieve FT is by
using redundancy. Redundancy provides functionalities that are not required in a
fault-free environment. The redundancy allows either fault masking or fault detection,
with the techniques such as location, containment, and recovery. For this, two modes, i.e.,
active and inactive mode have been taken as shown in Figure 24. The component’s
duplicate instance lies inside the system and mode parameter will determine which
component is in (active) mode at a specific time. Mode transition occurs whenever there
is a failure of active component. Reactivation through mode transition needs to be
performed then only the failed component can resume its service (Feiler and Rugina,
2007). In this way, the backup will be designed only for critical components whose
failure can affect an overall system or for a life-threatening event. For example –
SmokeDetector and FireAlarm components in ‘SHSS’ are considered to be critical due to
the critical functionalities they provide.

Figure 24 Creating primary and backup of critical components (see online version for colours)

In modelling the FT system, the system is considered to be failure recoverable. Hence, in
Figure 25, when the control transfers from failed state to error-free state, the recovery
mechanism involved in case of failure, is the switching from primary component to
backup component. The system can have multiple operational modes. An operational
mode represents a particular configuration of a fault-tolerant system, such as operating
the primary or backup of a redundant system. Figure 26 depicts an AADL architecture
model (textual AADL) part and its associated error model. A Guard_Event property is
linked with about event port involved.

ModeTransition error model is used in Figure 26 is written in detail in Figure 27;
deactivation and activation of components is performed through mode transitions. The
used error model declares an initial inactive state. It works on the assumption that an
inactive component never fails. Whenever an error-free component is activated through a
mode transition, it goes to an active Error_Free state and it can fail anytime during the
time when the component is active. If the active failed component wants to regain its

 An architecture-based modelling of fault-tolerant SOA-based systems 25

Error_Free (active) state, it can be repaired. If a failed component is deactivated, it goes
to an Error_Free (inactive) state.

Figure 25 Proposed recovery mechanism

In ‘SHSS’, the backups will be created only for critical components, i.e., FireAlarm and
SmokeDetector whose failure can affect the service of the overall system or which are
life-threatening events.

Figure 26 AADL code specification-recovery mechanism (see online version for colours)

 26 S. Goel

Figure 27 ModeTransition error model (see online version for colours)

5.2.1 Limitation of the baseline architecture, without the critical analysis
component

Whenever there is a failure of the primary devices, the control will directly transfer to the
backup of these devices. Hence, there will not be any instance of the overall system
getting crash and finally, the system will be called as ‘fault-tolerant SHSS’. Figure 28
depicts redundant instances of critical components that lie inside ‘SHSS’ whose modes
(primary and backup) decide which instance of component and connection is active. An
event port for each of the redundant components of SmokeDetector and FireAlarm is
used to report that it is in a failed state. At a time, only one component is in an active
mode and only the connections to and from the active component is active in the same
mode. However, if criticality analysis had not been performed in the SHSS – the
complete SHSS cannot be made fault-tolerant because of redundancy management
scheme. And, the crash of one complement can result in the failure of complete system.

Figure 28 Fault--tolerant ‘SHSS’ (see online version for colours)

Fault Tolerant SHSS

 ServiceTimingError

SmokeDetector
(active)

SmokeDetector
(InActive)

Primar Backup

ServiceTimingError

FireAlarm
(active)

FireAlarm
(InActive) ServiceTimingError

ServiceTimingError

6 Conclusions

In designing safety-critical systems, analysis at the architecture level is necessary to
detect the occurrence of faults at the stage to stop the further propagation of faults in the

 An architecture-based modelling of fault-tolerant SOA-based systems 27

system. For this reason, there should be a clear understanding of the phase at which
the fault is occurring. Failures are generally caused by faults in the components
of the systems that may occur in system design or component integration. The
software-supported fault-tolerance is relatively new. In this paper, an architectural level
fault-tolerance policy has been proposed for an SOA-based system. The proposed policy
covers most of the fault-tolerant mechanisms. The application of the proposed policy may
enhance the reliability and availability of a system. It is a cost-effective solution that first
identifies the severity level of services and suggests a suitable policy for that. The policy
may be improved by obtaining feedback.

Acknowledgements

This paper and the research behind it would not have been possible without the
exceptional support of my PhD supervisor, Dr. Ratneshwer. His enthusiasm, knowledge
and exacting attention to detail have been an inspiration and kept my work on track from
my first step to the final draft of this paper.

References
Bin Zheng, Z., Lyu, M.R.T. and Wang, H.M. (2015) ‘Service fault tolerance for highly reliable

service-oriented systems: an overview’, Science China Information Sciences, Vol. 58, No. 5,
pp.1–12, DOI: 10.1007/s11432-015-5313-y.

Buys, J., De Florio, V. and Blondia, C. (2011) ‘Towards context-aware adaptive fault tolerance in
SOA applications’, DEBS’11 – Proceedings of the 5th ACM International Conference on
Distributed Event-Based Systems, pp.63–74, DOI: 10.1145/2002259.2002271.

Carnegie Mellon University (no date) Architecture Analysis and Design Language [online]
https://www.sei.cmu.edu/our-work/projects/display.cfm?customel_datapageid_4050=191439
(accessed 30 December 2020).

Delange, J. et al. (2014) AADL Fault Modeling and Analysis Within an ARP4761 Safety Assessment
(CMU/SEI-2014-TR-020), Software Engineering Institute, Carnegie Mellon University
[online] http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=311884 (accessed
4 January 2023).

Dobson, G., Hall, S. and Sommerville, I. (2005) ‘A container-based approach to fault tolerance
in service-oriented architectures’, International Conference of Software Engineering (ICSE)
[online] http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:A+Container-Base
d+Approach+to+Fault+Tolerance+in+Service-Oriented+Architectures#0
(accessed 20 December 2020).

Download and Installation – OSATE 2.10.0 Documentation (no date) [online] https://osate.org/
download-and-install.html (accessed 14 October 2021).

Dubrova, E. (2013) Fault Tolerant Design: An Introduction, pp.21–26, DOI: 978-1-4614-2112-2
[online] http://www.ece.nus.edu.sg (accessed 15 November 2020).

Feiler, P. and Rugina, A. (2007) Dependability Modeling with the Architecture Analysis & Design
Language (AADL) (CMU/SEI-2007-TN-043), Software Engineering Institute, Carnegie
Mellon University [online] http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=8277
(accessed 4 January 2023).

Feiler, P.H., Gluch, D.P. and Hudak, J.J. (2006) The Architecture Analysis & Design Language
(AADL): An Introduction, February, p.CMU/SEI-2006-TN-011 [online] http://www.sei.cmu.
edu/library/abstracts/reports/06tn011.cfm (accessed 23 November 2020).

 28 S. Goel

Fekih, H., Mtibaa, S. and Bouamama, S. (2019) ‘The dynamic reconfiguration approach for
fault-tolerance web service composition based on multi-level VCSOP’, Procedia Computer
Science, Vol. 159, pp.1527–1536, DOI: 10.1016/j.procs.2019.09.323.

Gabsi, W., Zalila, B. and Jmaiel, M. (2016) ‘EMA2AOP: from the AADL error model annex to
aspect language towards fault tolerant systems’, 2016 IEEE/ACIS 14th International
Conference on Software Engineering Research, Management and Applications, SERA 2016,
pp.155–162, DOI: 10.1109/SERA.2016.7516141.

GitHub (no date) GitHub – mmanjun/AADLModel_HomeSecuritySystem: AADL is Architecture
Analysis and Description Language, Designed and Developed by the SAE for Specification,
Analysis, Automated Integration and Code Generation of Real-time Performance-critical
(Timing, Saf).

Kushal, K.S., Nanda, M. and Jayanthi, J. (2017) ‘Architecture level safety analyses for
safety-critical systems’, Journal of Aeronautics & Aerospace Engineering, Vol. 6, No. 1,
pp.1–8, DOI: 10.4172/2168-9792.1000181.

Larson, B. et al. (2013) ‘Illustrating the AADL error modeling annex (v.2) using a simple
safety-critical medical device’, HILT 2013 – Proceedings of the ACM Conference on High
Integrity Language Technology, November, pp.65–83, DOI: 10.1145/2527269.2527271.

Lasnier, G. et al. (2011) ‘An implementation of the behavior annex in the AADL-toolset OSATE2’,
Proceedings – 2011 16th IEEE International Conference on Engineering of Complex
Computer Systems, ICECCS 2011, May 2014, pp.332–337, DOI: 10.1109/ICECCS.2011.39.

Mahdian, F. et al. (2009) ‘Modeling fault tolerant services in service-oriented architecture’,
Proceedings – 2009 3rd IEEE International Symposium on Theoretical Aspects of Software
Engineering, TASE 2009, pp.319–320, DOI: 10.1109/TASE.2009.41.

Niknejad, N. et al. (2020) ‘Understanding service-oriented architecture (SOA): a systematic
literature review and directions for further investigation’, Information Systems, Vol. 91,
p.101491, DOI: 10.1016/j.is.2020.101491.

Procter, S. (no date) The AADL Error Library: 4 Families of System Errors, Software
Engineering Institute [online] https://insights.sei.cmu.edu/sei_blog/2019/05/the-aadl-error-
library-4-families-of-system-errors.html (accessed 15 June 2020).

Qiu, W. et al. (2014) ‘Reliability-based design optimization for cloud migration’, IEEE
Transactions on Services Computing, Vol. 7, No. 2, pp.223–236, DOI: 10.1109/TSC.2013.38.

SAE, Annex X Behavior Annex (AS5506-X Draft-2.13) (no date) [online] https://www.sae.org/
standards/content/as5506/2/ (accessed 27 August 2020).

Sokolsky, O. and Chernoguzov, A. (2014) Analysis of AADL Models Using Real-Time Calculus
With Applications to Wireless Architectures, July 2008.

Sun, H., Hauptman, M. and Lutz, R. (2007) ‘Integrating product-line fault tree analysis into AADL
models’, Proceedings of IEEE International Symposium on High Assurance Systems
Engineering, DOI: 10.1109/HASE.2007.46.

Zhang, P., Shu, S. and Zhou, M. (2018) ‘An online fault detection model and strategies based on
SVM-grid in clouds’, IEEE/CAA Journal of Automatica Sinica, Vol. 5, No. 2, pp.445–456,
DOI: 10.1109/JAS.2017.7510817.

Zhang, P.Y. et al. (2021) ‘A fault-tolerant model for performance optimization of a fog computing
system’, IEEE Internet of Things Journal, Vol. 4662, No. c, pp.1–1, DOI: 10.1109/jiot.2021.
3088417.

Zheng, Z. et al. (2012) ‘Component ranking for fault-tolerant cloud applications’, IEEE
Transactions on Services Computing, Vol. 5, No. 4, pp.540–550, DOI: 10.1109/TSC.2011.42.

