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Abstract: Service-oriented architecture (SOA) may effectively be implemented 
in distributed software development like cloud computing, internet of things, 
etc. Expectations from these systems, in terms of their reliability and 
availability, are increasing day by day. Fault-tolerance is an approach that 
ensures the correct functioning of the system even in the presence of faults. 
Various fault-tolerance mechanisms may be applied on a system. It is a 
cumbersome task to decide which mechanism is more suitable for a specific 
situation. Implementation of fault-tolerance involves as an additional cost 
factor due to the redundancy of software components. One has to intelligently 
decide what level of redundancy needs to be applied in a system. In this paper, 
a fault-tolerance policy, at an architectural level, is proposed for an SOA-based 
system. The proposed policy is based on the severity analysis of various 
software services in an SOA-based system. Architecture analysis and design 
language (AADL) is used for the modelling of the system. Fault tree analysis 
and functional hazard assessment have been used for severity analysis. A 
‘smart home security system (SHSS)’ is used for the demonstration of the 
practicality of the proposed model. The proposed policy can be used as a  
fault-tolerance solution. 

Keywords: fault-tolerance; service-oriented architecture; SOA; architecture 
analysis and design language; AADL; error model annex; EMA; functional 
hazard assessment; FHA; fault tree analysis; FTA. 
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1 Introduction 

Service-based systems are distributed in nature. Services may be obtained from multiple 
sources and integrated through loose coupling providing flexibility and scalability during 
system development. An involvement of various service components in a system causes 
new faults sources. Faults may come due to single services and their compositions. For 
designing reliable systems, these newer faults have to be considered and the possibility  
of system functionality in the presence of faults. Safety-critical systems cannot 
underestimate faults because these faults may lead to hazards. Hence, fault-tolerance is 
one of the important aspects of a service-oriented architecture (SOA)-based system 
development that needs to be handled for delivering quality software. 

The basis of fault-tolerance is redundancy, i.e., to have redundant software 
components so that in case of failure of one component, control can be switched to 
redundant component and failure can be masked. Due to the redundancy cost, it is not 
practical to apply fault-tolerance to all the services in a SOA-based system. Different 
services may have different failure impacts. For appropriate implementation of  
fault-tolerant mechanisms, one must have to identify the components, in the system, 
which requires redundancy. Identification of such components is a challenging issue 
because components need to be identified based on some criticality criteria. There are 
different fault-tolerance mechanisms for software systems. It is also an important 
question that what type of fault-tolerance mechanism is required in specific 
circumstances. 

There is several fault-tolerance approaches observed in the literature for SOA-based 
systems. Dobson et al. (2005) have presented a container-based approach for  
fault-tolerance in SOA-based systems. “The container is built with an XML fault 
tolerance policy model which supports fault tolerance mechanisms to be applied at an 
application level.” Bin Zheng et al. (2015) mentioned the design of static and dynamic 
fault-tolerance strategies, as well as the major problems while designing fault-tolerance 
strategies. Qiu et al. (2014) proposed a component ranking model, named ROCloud. 
ROCloud identifies significant components whose failures would have a great impact on 
application reliability based on the application structure information and components’ 
reliability properties. Zheng et al. (2012) have proposed FTCloud, a component-based 
ranking framework to design fault-tolerant applications running on the cloud. Although 
the above contributions deal with fault-tolerance policies in service-based systems, their 
approach is based on the ranking of software services. Furthermore, these approaches 
miss the data and control propagations among software services and criticality analysis 
based on these propagations. The avoidance of the propagation of erroneous information 
within the system is an important concern. We humbly extend the above contributions 
further by proposing an architecture-level fault-tolerance implementation policy based on 
service criticality. 

The propagation of fault has to be avoided in the early phase, otherwise a fault will be 
transformed into a failure and in the end there is high probability of overall system 
getting collapsed. A system will be called as high degree fault-tolerant system if it is able 
to detect errors with the most possible brevity, after its occurrence and also if it is able to 
avoid the propagation of erroneous information within the system. Therefore, to 
addresses this issue – a fault-tolerance policy at an early stage may help to understand the 
system in a better way and one may proceed for reliable design and development of the 
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system. In this paper, an architecture-level fault-tolerance policy is proposed based on the 
criticality analysis. The major contributions of this paper are presented in a three-fold 
manner: 

• The understanding of the faults in the context of a SOA-based system is very 
essential. In the first section, the possible faults that may occur, in a SOA-based 
system, are identified and demonstrated with the architecture analysis and design 
language (AADL). 

• In the second section, functional hazard assessment (FHA) of software services, in a 
SOA-based system, is performed by the failure modes and effects analysis (FMEA) 
and fault tree analysis (FTA) techniques of AADL. 

• A fault-tolerance policy is proposed based on the criticality analysis and FHA. 

In this way, the probability of software malfunction due to the occurrence of faults can be 
minimised by handling faults at an architectural level. A case study of ‘smart home 
security system (SHSS)’ is designed and developed, using AADL and error model annex 
(EMA) and behaviour model annex, for the demonstration of the proposed approach. 

The rest of the paper is structured as follows. The significant work related to our 
approach is briefly summarised in Section 2. In Section 3, the AADL along with EMA 
and behaviour model annex is briefly mentioned. The proposed architecture level fault-
tolerance model for SOA-based system is introduced in Section 4 and in the following 
subsections. The description of the ‘SHSS’ using AADL is given in Section 5. Finally, 
the work is concluded in Section 6. 

2 Related work 

In literature, many methods and technologies have been proposed to describe, analyse 
and tolerate hardware faults at an architecture level. It is difficult to explain software 
faults properly as fault propagates at each level, and identifying the root cause of the fault 
is a tedious task (Sun et al., 2007). In the literature, we found few works that deals with 
tolerating or handling faults at an architecture level in SOA-based systems through 
AADL. Mahdian et al. (2009) in their work, have proposed an approach for faults 
detection and tolerance in service-based systems at an architecture level. They have used 
redundancy-based FT mechanism for adding new components to the presented 
architecture. Gabsi et al. (2016) in their work, have proposed a model-driven approach 
and firstly, they have generated fault-tolerance code using AADL. Secondly, they have 
defined transformation rules from the EMA annex, which is a sublanguage of AADL. 
The work of Mahdian et al. (2009) and Gabsi et al. (2016), are similar as both have 
implemented fault-tolerance at an architecture level to stop the propagation of faults to 
further stages but the difference lies in their FT mechanism implementation. Mahdian  
et al. (2009) have used redundancy whereas Gabsi et al. (2016) have handled faults 
through AADL code itself without replicating components. The limitations of the above 
discussed works are that they directly dealt with the faults tolerance, without identifying 
the possible faults. Therefore, the discussed approach may not be an efficient technique 
in tolerating faults in service-based systems at an architecture level 

Some of the works that we found in the literature deals with model-based approach 
and designing algorithm to tolerate faults at an early stage of system development. Feiler 
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and Rugina (2007), in their work, have used AADL to show architectural patterns in any 
system being analysed to find out all possible issues in the system. To address  
fault-tolerance concisely, they have used the modelling capability of AADL which 
allowed them to describe the redundancy feature of the system’s architecture. Buys et al. 
(2011), in their work, have presented a novel dependability technique which supports 
advanced redundancy management, which aims to autonomously tune its internal 
configuration because of changing context. Sokolsky and Chernoguzov (2014) have used 
AADL to capture the architecture of embedded systems in terms of software and platform 
in a component-oriented manner. Fekih et al. (2019) in their work have proposed a sensor 
and repair-based algorithm to adjust service-based applications, which is very efficient 
whenever a service composition process fails. In addition, this approach can detect faulty 
services very rapidly. The discussed approach is capable of handling faults but the 
authors have not defined any specific criteria according to which fault-tolerance can be 
applied. Therefore, the approaches may not be practically feasible. Hence, a well-defined 
fault-tolerance policy is highly required in future. 

In the literature, we found that the application of fault-tolerance is not limited to  
one field but it is expanding in every domain. One of the work, Zhang et al. (2021), in 
their work, has proposed a fault-tolerant model for a fog system’s performance 
optimisation. The fault-tolerant methodology proposed in this work is based on 
calculating the steady-state probabilities and substituting the faulty fog nodes with the 
most appropriate ones. The experimental results have been performed on a real-time 
system. Another work, Zhang et al. (2018), have presented an online fault detection 
technique on cloud. The proposed online fault detection technique can largely help cloud 
managers to take corrective actions on time before fault occurrence in clouds. The work 
discussed by Zhang et al. (2021) is little bit similar to our work as it has discussed the 
fault-tolerance model for dynamic fog nodes. 

The work presented in this paper is different in the aspect that along with fault 
modelling at the architecture level, it also considers criticality analysis of software 
services. It describes how various fault-tolerance mechanisms may be effectively applied 
in a system based on severity analysis of software services. 

3 AADL 

AADL is an architecture design language, which focuses on system design specification 
by using formal semantics that can be used to analyse systems already in use and 
integrate new systems (Feiler et al., 2006). AADL is standardised by SAE International, 
used for describing system components and their interactions with its operating 
environment (i.e., processors, bus, devices) (Delange et al., 2014). “The AADL 
framework supports an architecture-centric, model-based development approach 
throughout the system lifecycle” (Carnegie Mellon University, no date). 

The AADL EMV2 Error Library is a rich, semi-formal embedded system modelling 
language which is deeply integrated into AADL (Larson et al., 2013). The errors included 
in the library have formalised semantics and the library is designed to be easily extended 
by system developers to become domain- or system-specific. Specifically, the EMV2 
annex provides an ontology of system errors and formal specifications of the semantics of 
the error types in the library (Procter, no date). Specifically, it allows engineers to 
formally specify errors, error propagation and error mitigation (Larson et al., 2013). 
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The AADL behaviour annex [SAE, Annex X Behavior Annex (AS5506-X  
Draft-2.13), no date] is an AADL sublanguage that is used to define the behaviour of an 
AADL application model. The behaviour annex addresses many challenges which are as 
follows: 

• First, it requires to parse and analyse several sub-languages. 

• Secondly, to complete its analysis requires consistency with the core language. 

• Thirdly, the internal representation of the annex needs to be compliant with the core 
language-internal representation (Lasnier et al., 2011). 

Figure 1 Demonstration of components interactions via bus and processor (see online version  
for colours) 
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Figure 2 ‘Online banking system’ and its subcomponents (see online version for colours) 

 

A pictorial representation is drawn here in Figure 1 to demonstrate how a system can be 
modelled using AADL. The system is modelled in terms of its subcomponents. The 
system component and its various subcomponents are organised hierarchically. The ‘bus’ 
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represents a virtual logical connection among various subcomponents. The component 
‘processor’ represents the processing unit. Figure 2 shows modelling of 
‘OnlineBankingSystem’ in AADL. 

Figure 3 Error path specification between subcomponents (see online version for colours) 

 

 

  
 

Figure 4 A possible summarisation of SOA-specific faults (see online version for colours) 
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In the ‘online banking system’, a subcomponent like CreateBankAccount is propagating 
an error. It can be written in AADL as shown in equation (1). 

_ : { , ,
}

BankAcct out out propagation ServiceOmission SequenceOmission
ItemOmission

 (1) 

that means CreateBankAccount component is propagating ServiceOmission, 
SequenceOmission and ItemOmission errors. Similarly, error flow path form in port to out 
port in AADL between two subcomponents is shown in equation (2). 

: _ { }
_ { , , }→

ef error pathEditSysAcct in Executionfaults
BankAcct out ServiceOmission SequenceOmission ItemOmission

 (2) 

An error path is used to specify how an error propagates into the component of a system, 
remains inside the component, and goes out of the component through an outgoing 
feature or binding. Error path of the device ApplyLoans is shown in Figure 3. On the 
event port, Apply_Loans, DiscoveryFault is occurring, which is inside the ApplyLoans 
component and it goes out through an out propagation on out data port Loans_Approved. 
Discovery fault was converted to service crashed fault, which is an extension of 
execution fault as shown in Figure 4. 

4 The proposed architecture level fault-tolerance model for SOA-based 
system 

SOA provides the mechanism to develop software with the help of web services via a 
loose coupling concept. This flexibility makes the architecture feasible for distributed 
applications like cloud computing, internet of things, service-based systems, etc. As its 
use is vastly increasing day-by-day, consumers start to expect the reliability and 
continuous availability of such systems even in the presence of faults. It drives us to think 
beyond fault identification and their handling. Fault-tolerance provides a facility that 
masks the failure into the system through redundancy. Earlier approaches of  
fault-tolerance were based on hardware redundancy and they have the thought in the 
mind that hardware components are degraded with time. Most of the approaches were 
based on operational faults. This concept is not applicable in the case of software 
components as their performance is not degraded with time, but the business and 
performance requirements may be changed. In the case of service-based fault-tolerance 
approaches, one has to deal with design faults because software services do not have 
operational faults. One has to reconsider the approaches keeping software services 
features in mind. The proposed approach is presented in a three-fold manner as shown in 
Figure 4. 

Figure 5 shows the complete proposed methodology adopted to tolerated faults at an 
architectural level. First, an understanding needs to be developed regarding the possible 
faults in a SOA-based system. SOA-specific faults are identified and modelled using 
AADL. The idea is to obtain the criticality of various software services and propose an 
appropriate fault-tolerance policy based on their criticality and failure impact. Therefore, 
in the second step, criticality analysis of various software services, in an SOA-based 
system, is performed through FHA. In the third step, an appropriate fault-tolerance policy 
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is proposed based on the information obtained from criticality analysis. The detailed 
model is described in the following subsections. 

Figure 5 Proposed methodology (see online version for colours) 

Stage 3
(Propose Fault 

tolerance 
policy)

Stage 2
(Perform 
service 

criticality)

Stage 1
(Faults 

identification 
and modelling)

 

4.1 SOA-specific fault modelling through AADL 

In this subsection, an effort has been made to find out the possible faults that may occur 
in a SOA-based system. A fault can be described as a defect in physical structure, 
irregularity, or flaw that occurs in a software service. Hence, it can be said that faults can 
cause errors and errors can lead to the failure of a system. To perform fault-tolerance 
analysis for a SOA-based system, at the architecture level, a clear understanding of all 
possible faults is necessary. For this purpose, SOA-specific faults are identified and 
summarised in Figure 5. SOA-specific faults can also be characterised by the phases in 
which they are introduced, i.e., design faults and operational faults. Here, only design 
faults are discussed. 

Conventionally, there are five stages in SOA, which are publishing, discovery, 
composition, binding and execution (Niknejad et al., 2020). Faults may occur during all 
steps of a SOA-based system. These errors can cause deviation from computational 
accuracy, which will result in a failure unless the SOA-based system is capable of 
tolerating those errors. In Figure 4, possible faults at each stage are mentioned. An 
‘online banking system’ domain is used as an example for demonstrating various faults. 

4.1.1 Publishing faults 
For the sake of the selection of a service, its description is to be made public. Service 
description faults mostly occur because of the incorrect service description. The 
description may itself be faulty (incorrect description) or there might be some 
functional/performance mismatch during the deployment of the service. Service 
deployment fault occurs when there is an error in deploying the service on the target 
platform. For example, Figure 6 shows that in ‘online banking system’, 
UpdatePersonnalInfo subcomponent is propagating publishing fault throughout data port, 
i.e., Update_Info. The component CreateSystemAcc. is propagating incorrect service, i.e., 
service description error. The details entered by the user while creating a system account 
that is mismatched with the deployed service by the service provider.In case the user 
enters the details while creating a system account that is mismatching with the deployed 
service by the service provider. In this case, the CreateSystemAcc is getting 
ServiceDescriptionError. Figure 6 shows the AADL modelling of publishing faults. 
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Figure 6 AADL modelling of PublishingFaults (see online version for colours) 

 

Figure 7 (a) DiscoveryFault functioning (b) AADL modelling of DiscoveryFaults (see online 
version for colours) 

 
 
 
 
 
 
 
 

Fig. 9Discovery Faults Functioning 
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4.1.2 Discovery faults 
Discovery fault may occur during the search process of suitable services at service 
provider locations. It can be of two types – service errors and service timing errors. 
Service error is further divided into service omission, sequence omission and item 
omission. Service omission error occurs while communicating with an unreachable 
service that means now the service which the user is trying to search has been deleted by 
the service provider. Similarly, a sequence omission error occurs when the service 
provider has deleted interlinked services from the service repository. Item omission error 
occurs when some specific functionality has been omitted from the service. In the above 
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three service errors, the fault information that will be passed to users is no service/wrong 
service found. Service timing error occurs when the service is not available at the 
required time it will be either before the time (early service arrival) or after the time 
(delayed service) in an unsynchronised manner. For example, Figure 7(b) shows in an 
‘online banking system’, the ApplyLoans component may receive DiscoveryFault at in 
event port, i.e., Apply_Loans because this component is linked to various other 
components like CreateBankAccount and CreateSystemAccount to complete its 
functionality. Hence, if web service 1 is deleted by the service provider, the web service 3 
while fetching web service 1 will get DiscoveryFaults because it is trying to fetch that 
service that has been deleted. Figure 7(a) shows discovery faults functioning whereas 
Figure 7(b) shows AADL modelling of discovery faults. 

Figure 8 (a) A possible execution fault in a system (b) AADL modelling of a possible 
CompositionFault (see online version for colours) 

 
 
 
 
 

Fig: AADL Modeling of Composition Faults 
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4.1.3 Composition faults 
The process of composing a new service from existing individual services is called  
web service composition. Composition fault occurs mainly when individual services are 
not able to integrate properly or after integration, the functionality/performance of the 
composed service degrades. There can be many reasons for this like while composing a 
new service some faulty services have been used (faulty service composition error) or 
usage of redundant services (service duplication error). During the service composition 
process asymmetric and symmetric matching between service attributes is performed. 
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The mismatch between service attributes results in respective asymmetric and symmetric 
errors (Kushal et al., 2017). For example, Figure 8(b) shows TransferMoney 
subcomponent in ‘online banking system’ may get composition fault at in event port, i.e., 
Transfer_Money because this service has been composed of multiple other services like 
CreateSystemAccount, CreateBankAccount, etc. Therefore, if any service in the 
composition process is wrong then there will be a possibility of composition fault 
occurrence. Figure 8(a) shows composition fault working and Figure 8(b) shows the 
AADL modelling of composition fault. 

4.1.4 Execution fault 
Execution fault occurs during the execution of service or when the output of the service 
does not match with the expected output of the executing service (incorrect output) and 
there can be many reasons for this like incorrect input, faulty service that is due to 
software malfunction. There is also a possibility of service getting crash (service crashed) 
the server will notice this and notify the client about the failure. For example, Figure 9(a) 
shows Edit_SysAcct out data port of EditSystemAccount subcomponent is receiving 
Executionfault in ‘online banking system’ because of CreateSystemAcc. Subcomponent 
which is transmitting servicedescriptionerror due to which Edit_SysAcct is receiving 
incorrect input and causing execution fault through Edit_SysAcct. Figure 9(b) shows 
AADL modelling of execution fault. 

Figure 9 Execution fault functioning (b) AADL modelling of ExecutionFault (see online version 
for colours) 
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4.2 Criticality analysis through FHA 

Understanding various faults, in a SOA-based system, will help in realisation of the effect 
of a particular fault. But the proper impact of a fault can only be assessed through a FHA. 
In this section, a FHA has been performed to find out the level of criticality of software 
services. In addition, the entire system cannot be made redundant. Hence, analysis is 
done to find out the critical components from a complex system by applying safety 
analysis technique, i.e., FHA. Figure 10 shows a system having three components A, B 
and C. To perform FHA, it is required to obtained information about some specific 
properties like severity, occurrence distribution, likelihood, etc. While performing FHA, 
every component property is scanned and a component having high catastrophic severity 
and frequent likelihood is considered to be a critical component. 

Figure 10 Hazard analysis of software services (see online version for colours) 
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FHA will be performed in OSATE (Download and Installation – OSATE 2.10.0 
Documentation, no date) to identify abnormal conditions that may cause an error. The 
tool will scan each component and communicate information about all mentioned error 
events and error sources and an analysis report is generated that includes the list of all 
possible hazards. The severity and likelihood are categorised into five ranges and labels 
respectively according to OSATE tool (Download and Installation – OSATE 2.10.0 
Documentation, no date) standards as shown in Table 1. 
Table 1 Severity and likelihood classification 

Severity 
classification Ranges Likelihood 

classification Labels Components 
categorisation 

Catastrophic 1 (high) Frequent A (high) Highly critical 
Hazardous 2 Probable B Critical 
Severe major 3 Remote C Average 
Major 4 Extremely remote D Less critical 
Minor 5 (low) Extremely improbable E (low) Very less critical 

4.3 The proposed fault-tolerance policy at the architecture level 

In this step, a fault-tolerance policy is proposed to tolerate faults based on the FHA 
technique as discussed above in Section 4.2. FT policy has been proposed at an 
architecture level because it will prove to be very beneficial in identifying and 
eliminating design issues at an early stage of software development. This FT policy 
allows faults and their failure and propagation effects to be identified at the system level. 
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In our proposed FT policy, the list of used FT models is given in Table 2. 
Table 2 List of FT models 

FT model Description 
Fail-stop model The system goes from operational to failed state on the 

occurrence of a failure event. No recovery mechanism. 
Fail-and-recover model The system can recover from failed state to an operational state 

by a recovery mechanism. 
Permanent-transient-failure 
model 

On the first failure, the system goes to failed transient state and 
can be returned to an operational state by applying a recovery 
mechanism. 

Degraded-fail-stop model On the first failure occurrence, the system goes to a degraded 
state but on the second failure, the system goes to a failed state. 

4.3.1 Case 1: fail-stop FT model 
The fail-stop FT model declares states – operational and failed and one error event 
failure. This error event triggers a transition between the two states. This model does not 
declare any recovery event. Hence, the component goes into a permanently failed state in 
case of failure occurrence event. Graphical representation is shown in Figure 11. 

Figure 11 Fail-stop FT model – graphical representation (see online version for colours) 

 
 

Note: OP: operational state and FS: failstop state. 

4.3.2 Case 2: fail-and-recover FT model 
Fail-and-recover FT model also declares two states operational and failed and one error 
event failure in the same way as fail-stop model has declared. The only difference is  
that the model can recover from failure by using a recovery mechanism. Graphical 
representation is shown in Figure 12. 

4.3.3 Case 3: permanent-transient-failure FT model 
In this FT model on the occurrence of the first failure, the system goes to failed transient 
state and can return to an operational state by applying a recovery mechanism. The 
AADL code for this model is shown in Figure 13(a) and graphical representation is 
shown in Figure 13(b). 
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Figure 12 Fail-and-recover FT model – graphical representation (see online version for colours) 
p

 

Note: OP: operational state. 

Figure 13 (a) Permanent-transient-failure FT model AADL code (b) Permanent-transient-failure 
– graphical representation (see online version for colours) 

 
(a) 

 
(b) 

Note: OP: operational state and FT: failed transient state. 

4.3.4 Case 4: degraded-fail-stop FT model 
In this FT model on first failure occurrence, the system goes to a degraded state but on 
second failure the system goes to a failed state and cannot return to an operational state as 
it was in the permanent transient failure FT model. Graphical representation is shown in 
Figure 14. 

Figure 14 Degrade-fail-stop FT model – graphical representation (see online version for colours) 

 

Note: OP: operational state and DE: degraded state. 
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The proposed FT policy is as follows: 

1 A fault-tolerance policy is proposed based on criticality analysis and hazard 
assessment. The motivation behind performing FHA is to find out all abnormal 
conditions, which may cause an error in the future. It is a comprehensive analysis 
tool. By using this analysis tool, a report is generated which contains information 
about all error sources and error events. For each component, various properties, i.e., 
severity, description, likelihood, etc. have to be defined on the relevant EMV2 
artefacts. Figure 15 specifies the severity and likelihood occurrence for error events 
or error propagation as per standards given in OSATE 2.2. According to severity and 
likelihood, the components range is decided and based on that only, fault in the 
component will be handled. For example, catastrophic severe and frequent likelihood 
decides that the component is highly critical and faults will be tolerated by designing 
FT model and creating backups only of the critical components given in Figure 15. 

Figure 15 Classification of components based on severity and likelihood (see online version  
for colours) 

p y

Severity Range Likelihood Labels Components 
range 

Tolerating  
faults 

Catastrophic 1 (high) Frequent A (high) Highly 
critical 

FT model  
+ backup 

Hazardous 2 Probable B Critical Ft model 

Severe major 3 Remote C Average Ft model 

Major 4 Extremely 
Remote 

D Less critical FT model 

Minor 5 (low) Extremely 
improbable 

E (low) Very less 
critical 

FT model 

FT model can be 
FailStop, 

FailAndRecover, 
PermanentTransient 

Failure, and 
DegradedFailStop 

depending on 
application 

 

2 Fault-tolerance is highly required in safety and business-critical applications.  
Safety-critical applications are the applications where the loss of life or 
environmental disaster has to be eliminated to perform smooth functioning. 
Redundancy, one of the fault-tolerance mechanisms, should be employed only for 
critical components. In this way, software FT has been implemented to improve the 
reliability of the overall system by making use of functionally equivalent critical 
backup components to tolerate component failure. 

Figure 16 shows the proposed FT mechanism for critical components in our proposed FT 
policy. Whenever any error is detected in the primary component and the component fails 
due to that error the control is transferred to the backup component directly to ensure the 
continuity of the system. The proposed FT mechanism in Figure 16 is very beneficial 
while developing safety-critical systems, where software analysis and validation are 
major concerns 

The summarised SOA-specific faults in Figure 4 are modelled in the EMA sub-clause 
of AADL as shown in Figure 17. The EMV2 constructs are similar to the syntax and 
styles as defined for AADL. Figure 16 models ‘online banking system’ module errors in 
the EMA. 
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Figure 16 Proposed FT mechanism for critical components (see online version for colours) 

 Primary component failed 
Input 

Control transfers 
Output 

Backup 
component 

Error 
detected

Primary 
component 

 

Figure 17 ‘Online banking system’ error types (see online version for colours) 

 

5 Case study 

A case study of ‘SHSS’ has been taken to demonstrate the practicality of the proposed 
fault-tolerance policy at an architecture level depending on criticality analysis. 

5.1 Architecture modelling of ‘SHSS’ 

A ‘SHSS’ is designed through AADL for the demonstration of the proposed model. This 
case study has been taken from GitHub (no date) for performing the analysis of the 
proposed FT policy. The SHSS is comprised of the major components – MotionDetector, 
MagneticAlarmSet, SmokeDetector, IntruderAlarm, fire alarm and Mobile modelled as 
devices while controller and securityprotocols are modelled as processes as shown in 
Figure 18. All these components are used to design fault-tolerance models and error 
behaviour is associated with each system component to tolerate failures. 
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Figure 18 Architecture level service interaction – ‘SHSS’ (GitHub) (see online version  
for colours) 

 

5.1.1 Fault modelling 
AADL EMV2 allows one to specify error flows along with points of components 
interaction. In ‘SHSS’ service timing response plays an important role because 
everything is dependent on the correct timing of service. For example, a FireAlarm 
component encounters some service timing error while executing this component. In  
this scenario, the ‘SHSS’ will trigger the FireAlarm early, late, or not trigger. The 
homeowner or fire department will not be able to receive the notification of fire on time 
due to the occurrence of ServiceTimingError on the FireAlarm component. The overall 
purpose of designing ‘SHSS’ may diluted. Hence, a fault-tolerant ‘SHSS’ has been 
designed to tolerate the service timing error. Figure 19 shows the error flow in ‘SHSS’. 

Figure 19 Error flow – ‘SHSS’ (see online version for colours) 

  

5.1.2 Applying fault-tolerance in the ‘SHSS’ 
In order to incorporate fault-tolerance features in ‘SHSS’, safety analyses techniques 
have been used which involves architectural modelling such as FHA, FMEA, FTA and 
common-mode assessment (CMA) (Kushal et al., 2017). The architecture is designed and 
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its associated fault model is devised in open source AADL tool environment (OSATE) 
(Download and Installation – OSATE 2.10.0 Documentation, no date). 

1 FHA: The likelihood of occurring ServiceTimingError at F_alarm_on_off port is 
taken as frequent, which means that there is a very high probability of this fault 
because the possibility of occurring discovery fault is mainly during positioning web 
services by service providers and while fetching service descriptions that have been 
made public. The severity of arising ServiceTimingError at F_alarm_on_off port is 
assumed as catastrophic because if an alarm does not ring or rings late, can cause 
loss of life. Similarly, the likelihood and severity of ServiceTimingError of 
servicecrashed fault is taken as frequent because of the uncertain nature of this fault. 
The generated FHA report from OSATE 2.2 tool is shown in Table 3. 

Table 3 Generated FHA report from OSATE 

Component Description Failure Severity Likelihood Comment 
this_MotionDetector ‘Motion 

detector 
sensor 
failure’ 

‘Faulty 
sensors’ 

‘Hazardous’ ‘Probable’ ‘Critical’ 

this_MagneticAlarmSensor ‘Magnetic 
alarm sensor 

failure’ 

‘Faulty 
sensors’ 

‘Hazardous’ ‘Probable’ ‘Critical’ 

this_SmokeDetector ‘Smoke 
Alarm 

Failure’ 

‘Faulty 
sensors’ 

‘Catastrophic’ ‘Frequent’ ‘Highly 
critical’ 

this_IntruderAlarm ‘Unlocked or 
loose doors 

and 
windows’ 

‘Unknown 
faults’ 

‘SevereMajor’ ‘Remote’ ‘Average’ 

this_FireAlarm ‘false alarms 
or unwanted 

fire alarm 
activations’ 

‘Fire alarm 
fail’ 

‘Catastrophic’ ‘Frequent’ ‘Highly 
critical’ 

this_Mobile ‘Early or 
delayed 

notifications’ 

‘Not 
receiving 

notifications’ 

‘Hazardous’ ‘Probable’ ‘Critical’ 

 From Table 3, it is clear that the components this_SmokeDetector, this_FireAlarm is 
a highly critical component because of catastrophic severity and frequent likelihood. 
Hence, to tolerate faults occurring in these components, backup of only these 
components need to be created and this will be a cost-effective mechanism. Table 4 
lists all components in the ‘SHSS’ and based on the FHA report the components are 
classified into the five ranges (as given in Table 1), ranging from highly critical to 
very less critical. According to the criticality of components, the proposed FT policy 
has been applied to tolerate the present faults stated in Table 4. 
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Table 4 Tolerating faults in ‘SHSS’ 

 Criticality level FT model applied FTPolicy-redundancy 
this_MotionDetector Critical Fail-and-recover model Not applied 
this_MagneticAlarmSensor Critical Permanent-transient 

failure 
Not applied 

this_SmokeDetector Highly critical Fail-and-recover model Backup created 
this_IntruderAlarm Average Permanent-transient 

failure 
Not applied 

this_FireAlarm Highly critical Permanent-transient 
failure 

Backup created 

this_Mobile Critical Fail-stop model Not applied 

5.1.3 Demonstration of FT policy on ‘SHSS’ 
To tolerate faults of less critical components a fault-tolerance model is generated that can 
be associated with AADL components. In our case study of ‘SHSS’, the proposed FT 
model has been designed for all the components listed in Table 4. This model has  
been used to show various information related to faults present in interconnected 
communication networks of components. To draw an FT model following points need to 
be taken into account: 

1 failure of a component or system 

2 component behaviour in the presence of faults in terms of operational and failed 
states. 

The proposed FT model is used to recover from the failed state and that can be further 
associated with any other component to tolerate faults. In this section, the faults in the 
components, i.e., ServiceTimingError have been tolerated through various FT models 
whereas Section 5.3 explains tolerated faults in critical components through redundancy. 
For example, to avoid failure of MotionDetector and SmokeDetector components, the FT 
model has been drawn as shown in Figure 20 and Figure 21, respectively. This generic 
fail-and-recovery FT model has been modified by taking into account an occurrence of 
ServiceTimingError at an out event port – motion_detected and smoke_detected of 
MotionDetector and SmokeDetector components, respectively. The fault at an out event 
port is tolerated by recovery transition as shown in Figure 20 and Figure 21. Motion 
sensors in ‘SHSS’ automatically turn on a light or sound an alarm whenever movement is 
detected in the house, and a motion sensor will activate the camera to start recording. In 
Figure 20, the OP state is when motion is detected on time. If the motion is not detected 
on time ServiceTimingError occurs, the system goes to the failed state. The system can  
be back to OP state by rolling back through the recovery mechanism. Similarly, 
SmokeDetector in ‘SHSS’ triggers the alarm whenever smoke enters the house and 
crosses the path of the light beam, light will be scattered by the smoke particles, pointing 
towards the sensor. In Figure 21, the OP state is when smoke is detected on time. If 
smoke is detected late, ServiceTimingError is encountered at an out event port. The 
system goes to failed state temporarily, the system is rolled back to the OP state through a 
recovery mechanism. 
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Figure 20 FT model – MotionDetector 

g. 21  Fig. 
 

                          Recovery 
OP Failed 

Motion_Detected{ServiceTimingError} 

 

Note: OP: operational state and Failed: failed state. 

Figure 21 FT model – SmokeDetector 
 

 

                          Recovery 

OP Failed 

Smoke_Detected{ServiceTimingError} 

 

Note: OP: operational state and Failed: failed state. 

To avoid failure of MagneticAlarmSensor, FireAlarmSensor, and IntruderAlarmSensor 
components, the FT model has been drawn as shown in Figure 22. This generic 
permanent-transient failure FT model has been modified by taking into account an 
occurrence of ServiceTimingError at an out event port alarm_set-off of 
MagneticAlarmSensor component and at in event port F_alarm_on_off and 
I_alarm_on_off of FireAlarmSensor and IntruderAlarmSensor components, respectively. 

Figure 22 FT model – MagneticAlarmSensor 

                              Recovery                                

 

 

OP FT 

Alarm_Sensor_Error{ServiceTimingError}  

Note: FT: failed transient state. 

Fire alarm systems in ‘SHSS’ automatically detects an event that can cause a fire. This 
system receives signals from the fire sensor (smoke, heat or carbon monoxide detector) 
and sends them to the fire alarm panel. The panel triggers the alarm. If the fault occurs, 
the FT model is applied on the occurrence of the first failure; the system goes to failed 
transient state and can return to an operational state by applying a recovery mechanism 
shown in Figure 22. The OP state comes when the alarm beeps on time. In the case of 
ServiceTimingError occurrence, it can be tolerated through the permanent-transient 
failure FT model as discussed. Similarly, the ServiceTimingError can be tolerated in 
MagneticAlarmSensor and IntruderAlarmSensor components following the FT model 
shown in Figure 22. 

To avoid failure of the Mobile component, the FT model has been drawn as shown in 
Figure 23. This generic fail-and-stop FT model has been modified by taking into account 
an occurrence of ServiceTimingError at in event port notification_in. The Mobile 
component in ‘SHSS’ is used to send the notifications to an owner of the house, through 
data received from other components in ‘SHSS’. 
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Figure 23 FT model – Mobile 

 

 

OP FS
Notification_in{ServiceTim
ingError}  

Note: FS: fail stop state. 

5.2 Designing fault-tolerant ‘SHSS’ through redundancy management scheme 

The purpose of designing fault-tolerant systems is that – it functions correctly even in 
presence of faults (Dubrova, 2013). One of the most common ways to achieve FT is by 
using redundancy. Redundancy provides functionalities that are not required in a  
fault-free environment. The redundancy allows either fault masking or fault detection, 
with the techniques such as location, containment, and recovery. For this, two modes, i.e., 
active and inactive mode have been taken as shown in Figure 24. The component’s 
duplicate instance lies inside the system and mode parameter will determine which 
component is in (active) mode at a specific time. Mode transition occurs whenever there 
is a failure of active component. Reactivation through mode transition needs to be 
performed then only the failed component can resume its service (Feiler and Rugina, 
2007). In this way, the backup will be designed only for critical components whose 
failure can affect an overall system or for a life-threatening event. For example – 
SmokeDetector and FireAlarm components in ‘SHSS’ are considered to be critical due to 
the critical functionalities they provide. 

Figure 24 Creating primary and backup of critical components (see online version for colours) 

  

In modelling the FT system, the system is considered to be failure recoverable. Hence, in 
Figure 25, when the control transfers from failed state to error-free state, the recovery 
mechanism involved in case of failure, is the switching from primary component to 
backup component. The system can have multiple operational modes. An operational 
mode represents a particular configuration of a fault-tolerant system, such as operating 
the primary or backup of a redundant system. Figure 26 depicts an AADL architecture 
model (textual AADL) part and its associated error model. A Guard_Event property is 
linked with about event port involved. 

ModeTransition error model is used in Figure 26 is written in detail in Figure 27; 
deactivation and activation of components is performed through mode transitions. The 
used error model declares an initial inactive state. It works on the assumption that an 
inactive component never fails. Whenever an error-free component is activated through a 
mode transition, it goes to an active Error_Free state and it can fail anytime during the 
time when the component is active. If the active failed component wants to regain its 
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Error_Free (active) state, it can be repaired. If a failed component is deactivated, it goes 
to an Error_Free (inactive) state. 

Figure 25 Proposed recovery mechanism 

 

In ‘SHSS’, the backups will be created only for critical components, i.e., FireAlarm and 
SmokeDetector whose failure can affect the service of the overall system or which are 
life-threatening events. 

Figure 26 AADL code specification-recovery mechanism (see online version for colours) 
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Figure 27 ModeTransition error model (see online version for colours) 

  

5.2.1 Limitation of the baseline architecture, without the critical analysis 
component 

Whenever there is a failure of the primary devices, the control will directly transfer to the 
backup of these devices. Hence, there will not be any instance of the overall system 
getting crash and finally, the system will be called as ‘fault-tolerant SHSS’. Figure 28 
depicts redundant instances of critical components that lie inside ‘SHSS’ whose modes 
(primary and backup) decide which instance of component and connection is active. An 
event port for each of the redundant components of SmokeDetector and FireAlarm is 
used to report that it is in a failed state. At a time, only one component is in an active 
mode and only the connections to and from the active component is active in the same 
mode. However, if criticality analysis had not been performed in the SHSS – the 
complete SHSS cannot be made fault-tolerant because of redundancy management 
scheme. And, the crash of one complement can result in the failure of complete system. 

Figure 28 Fault--tolerant ‘SHSS’ (see online version for colours) 
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6 Conclusions 

In designing safety-critical systems, analysis at the architecture level is necessary to 
detect the occurrence of faults at the stage to stop the further propagation of faults in the 
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system. For this reason, there should be a clear understanding of the phase at which  
the fault is occurring. Failures are generally caused by faults in the components  
of the systems that may occur in system design or component integration. The  
software-supported fault-tolerance is relatively new. In this paper, an architectural level 
fault-tolerance policy has been proposed for an SOA-based system. The proposed policy 
covers most of the fault-tolerant mechanisms. The application of the proposed policy may 
enhance the reliability and availability of a system. It is a cost-effective solution that first 
identifies the severity level of services and suggests a suitable policy for that. The policy 
may be improved by obtaining feedback. 
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