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Abstract: In this work, modified histogram estimation (MHE) architecture is 
proposed to verify the histogram count in the FPGA platform, and the Basic HE 
(BHE) architecture is also implemented for comparative purpose. The entire 
proposed MHE architecture is developed newly so as to reduce the logical 
elements involved in the HE process. In MHE architecture, dual port read only 
memory (DPROM), carry select adder based counter (CSAC), and Optimal Bin 
Counter (OBC) are used to evaluate the HE count with effective accuracy. The 
amount of percentage reduced by the 256 sample MHE is 17.62%, 15.41% and 
23.01% for area, power and delay respectively. Additionally, the performance 
of the proposed MHE is compared with four existing methods HOG, HBS, 
MBPA and DMH. The number of flip flops utilised by the MHE architecture is 
2177 for Vertex 6 device, which is less compared to the HOG and MBPA. 
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1 Introduction 

Generally, histogram provides an approximate visual interpretation of discrete or 
continuous data [1]. Histogram of a grey scale image contains 256 grey levels and its 
hardware implementation makes it suitable in medical and military applications. 
histograms are used in a wide range of applications. In digital image processing it plays a 
vital role in colour image segmentation and also provide better brightness and contrast to 
an image [2]. Technical calculation and higher area are required when the applications of 
image processing are integrated into the portable devices. Therefore, the low complexity 
design is required because of the restricted battery capacity and less size of portable 
devices [3]. Adaptive Fuzzy Filter based on Histogram Estimation (AFHE) was 
developed to remove the salt and pepper noise from the colour image [4]. Histograms 
estimation for RGB model is computed faster and requires a little memory. If the image 
size is 512 × 512 pixels, it required more memory to store histogram. So in Wei and Lin 
[5], the fast and memory efficient multivariate histogram computation method is 
introduced and later pipelining concept were implemented [6]. 
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Denisova and Sergeyev [7] introduced an efficient colour-based method that depends 
on the histogram feature for person re-identification issue in video surveillance due to 
large illumination variations, low resolution and insufficient viewing [8]. Further, 
Segmented Histogram Object Recognition Technique (SHORT) was implemented to 
create impact in real-time applications and it helped to identify the similar objects in 
database [9]. The FPGA hardware implementation proves that SHORT is 28X faster and 
suitable for real-time. An exploratory synthesis revealed that in CLAHE [10] process the 
image sequence from infrared cameras with high dynamic range and some other artefacts 
are introduced in Dutton et al. [11]. The feature like single shot exposure time is 
impossible due to jitter in CMOS sensors which are reconstructed with pixel wise 
histogram streaming. But, it does not improve the depth accuracy due to large amount of 
uncorrelated noise [12]. Shifted inter frame histogram [13] produced a remarkable 
robustness for low SNR. Histogram also relies on TDC implementations, which 
significantly increase the conversion rate but lags in providing accuracy that may be 
improved with more advanced FPGA [14]. Basically, a histogram is a density estimator 
where PDF is estimated by rescaling histogram data. Even though the performance loss is 
minimised in PDF, there was no proper design about bin count to estimate the histogram 
count in FPGA platform [15]. The major contributions of the research work are given as 
follows: 

• The entire architecture is designed newly to evaluate the histogram of the input 
images. The BHE and MHE architectures are implemented in this research work. 

• In this work, 9 samples and 256 sample input values are undergone in the HE 
process. So, two different architectures are designed to perform histogram and the 
estimated values are shown on the Modelsim waveform window. 

• In MHE, DPROM, CSAC, and OBC are used to design the HE with more accuracy 
in the estimation window. 

• Due to the usage of proposed logical elements architecture, the ASIC and FPGA 
performances are reduced in MHE architecture. 

• Moreover, the MHE is used to remove the noises which are present in the medical 
images. The image enhancement process is implemented for the Brain MRI, Lungs 
CT, and Mammogram. 

The organisation of the paper is given as follows: the literature review about the existing 
histogram estimation architectures developed in the FPGA platform is given in Section 2. 
The description about the existing BHE architecture with its problem statement is 
described in Section 3. The clear description about the MHE architecture with its sub 
modules architecture is provided in Section 4. The ASIC and FPGA performances of the 
MHE architecture along with existing architecture is evaluated in Section 5. Finally, the 
conclusion is made in Section 6. 

2 Related works 

Ghaffari et al. [16] analysed a FPGA based feature extraction algorithm, named 
Histogram of Oriented Gradients (HOG) with four principles and different improvement 
techniques in every class. The first group was represented as the optimisation of the 
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algorithm. The subsequent class was used for information control procedures which 
incorporate numerical portrayal. The third gathering modified the features for HOG, and 
the fourth one was the usage of appropriate platform. Based on the concerned 
applications and scenarios, the system uses the pure FPGA implementations or HW/SW 
co-designs. The survey helped to separate the algorithm into parts for each platform to 
get good performance results. Most of the works in HOG algorithm were approximated 
and simplified using interpolation in bin assignments (smoothing histogram curve) and 
normalisation steps to gain high speed. However, the proposed method was failed as the 
normalisation process was the most time consuming and became a hurdle to achieve high 
speed algorithm with high accuracy. 

Hazra et al. [17] discussed the concept of FPGA in the reversible watermarking 
algorithm by Histogram Bin Shift (HBS). After processing the embedding and decoding 
procedure in reversible mode process, it extracted both the original image and watermark 
at the receiver end. In a Xilinx system generator, watermarking scheme was involved and 
a brief survey of hardware architectures were required for the embedding and extraction 
processes with maximum operating frequency of 445.330 MHz and 201.824 MHz. The 
power consumption was found to be low (i.e.) 1.215 W and 0.104 W. The hardware 
based simulation for the full image was carried out on 2 FPGA platforms, Spartan 3E (for 
extraction) and Virtex-7 (for embedding). Compared to software based module, it 
achieved an inherent speed which was incorporated in test equipments like MRI scan, CT 
scan and X-ray whose test result was given in greyscale format. Thus, this scheme was 
incorporated only for grey scale images and not applicable for colour images. 

Mondal and Banerjee [18] presented a module to compute the histogram by fast VLSI 
architecture. The Memory-Based Parallel Algorithm (MBPA) was used to perform the 
histogram computation and it was possible to implement different logic modules. It 
consequently accelerated the computation of joint histogram which favoured the 
computation of mutual information for similarity measurements. If the similarity among 
the neighbourhood data increases, the total number of clock cycles to compute histogram 
was reduced. The histogram computation for an image of size 480×640 was examined; 
whose critical path delay was reduced to 34τ when compared to parallel array histograms 
critical path delay (i.e.) 101τ. The hardware utilisation of the MBPA architecture was 
99.66% which is less compared to latest architecture and it consumed 8.78 mW power. 
Reconfiguration time span was not tolerable and considered to be bottleneck, because it 
required more number of clock cycles to re-compute the histogram and increased the 
critical path delay which directly affected the speed of architecture. 

Yang et al. [19] proposed a FPGA implementation of an efficient sliced integral 
histogram algorithm with two key technologies namely, local integral histogram (LIH) 
and buffered integral histogram (BIH). The entire image was divided into ‘S’ non 
overlapping slices and each slices are independent to each other. So, BIH was used to 
store the global IH at lower boundaries which saved 21.2% of storage than conventional 
algorithm. The FPGA platform was considered for hardware implementations where its 
functionality and system performance evaluated. The performance metrics like speed, 
storage capacity and power consumption of SIH algorithm were compared with IIC and 
FII algorithms. In the comparison, high resolution image (1280×720) SIH algorithm was 
3–6 times faster which saved 1962-3157 count LE’s with minimum power consumption 
of 334.41 mW than the IIC and FII algorithm. A line buffer of length ‘W’ was introduced 
to buffer the meantime results which exhausted the hardware resources if the slice 
number was getting higher. It significantly affected the resource utilisation and 
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performance. Hence, this approach was inadequate to keep a balance between 
performance and hardware resources in real-time. 

Bannoy et al. [20] explained the concept of face recognition with high speed FPGA 
implementation and Distance between Multiple Histogram (DMH). In this algorithm, 
from each row of query and database images, distance metric (i.e.) sum of standard 
deviations between multiple histograms were calculated. Gamma correction method was 
used to conclude that standard deviation computation was best option to compare the 
query and database. The database face matched query with lowest distance score which 
was independent of illumination and outperforms better than the face recognition 
algorithm “Eigen faces”. Even if the ambient illumination changed with facial 
expression, this module identified the face 16 times faster than Eigen face algorithm. The 
operating frequency of the FPGA Zed-Board is 100 MHz which helped to increase the 
speed of the entire architecture. This hardware accelerator utilised only 18% of look up 
tables, 11% of flip flop and worked 10× time faster than software version and 160× time 
faster than Eigen face. Furthermore, this concept was tested with sidelight (left or right) 
effects on the face, but it failed to recognise the face with sidelight (left or right) effects 
due to the asymmetrical change in histogram. 

3 Conventional architecture 

The existing PDF architecture of the histogram estimation is shown in Figure 1 which 
contains the First In First Out (FIFO), Access Pattern Memory (APM), bin count, and 
priority encoder [15]. Based on the FIFO length, the input sample is given to the FIFO 
which generate the output for every clock cycle. As per the architecture design, old 
sample and the new sample were connected to the APM module. The APM module has 
designed by the Read Only Memory (ROM) incremented and decremented modules. 
After performing the incremented/decremented operation, the output has connected to the 
Bin module. 

Figure 1 Conventional histogram estimation architecture 
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Bin module helped to find the histogram values of the input samples. In Figure 1, the bin 
count process was evaluated for all the samples. These bin count outputs were connected 
to the comparator to perform the comparison with the centre value. The comparative 
results were taken and processed the priority encoder operation [2, 15]. 

3.1 Problem identification 

In recent years, most of the HE research works were developed in the MATLAB platform 
and only few research works have been developed in the topic of HE in the FPGA 
platform. So, it is quite difficult to implement the HE in Verilog language. While 
designing the HE in FPGA platform, following problems have been encountered. 

• Bin count architecture module was not given properly to estimate the histogram 
count. The process of each and every step did not explain clearly. Due to the 
unavailability of explanation of the bin count, the researchers have been suffered a 
lot to find the HE. 

• For designing the APM, the depended modules are not perfectly matched to evaluate 
the histogram count. More logical elements have been used to design the APM 
module. 

• Normally, most of the HE research works have been shown in the MATLAB 
platform only. No other research works have been developed in FPGA platform to 
visualise the histogram count in the simulation waveform. 

• For storing the old sample and new sample operation in APM, two ROM have been 
used in the architecture. 

• The hardware utilisation of the HE architecture is high due to the usage of more 
logical elements, ROM, and bin count. 

Solution: 

To overcome the aforementioned drawbacks, MHE is introduced in this research work. 
Along with the MHE architecture, BHE architecture is also implemented to evaluate the 
histogram count for analysis purpose. Both the architectures were implemented using 
Verilog language and the FPGA and the pattern values are stored in the DPROM helps to 
analyses the pattern process for old and new sample values. CSLA based counter is used 
to count the values for every clock cycle with less hardware utilisation. Optimal bin 
counter is used to analyse the number of 1’s present in the DPROM output. 

4 Basic histogram estimation architecture (BHE) 

• The architecture of BHE is shown in Figure 2. The Input pixel is read and converted 
to binary value with the help of MATLAB. 

• If counter LSB is equal to 0 means, the input value goes to upper ROM. 

• If counter LSB is equal to 1 means, the input value goes to lower ROM. 

• Normal adder is used to design the 8-bit binary counter 
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• Upper and lower 256 bits are going to perform the bin count operation. 

• In bin count, one’s count operation has been performed. Example. If input is 
1011011 means output is 5. This bin count has less efficiency and uses more 
resources. 

• Bin count results are subtracted with 256 decimal value. Normally,1-bit counter is 
used in output side. 

• If counter is 0, above value is delivered to the output side. If counter is 1, below 
value is move to output side. 

• This result is given to the counting process. This results stored in text file is used to 
get histogram bar. The bar graph is generated with the help of ‘bar’ function in the 
MATLAB. The detail explanation of the MHE architecture with its equation is 
explained in 4.1. 

Figure 2 BHE architecture process 

 

4.1 Modified histogram estimation architecture (MHE) 

The MHE architecture is shown in Figure 3 which contains the CSLA counter, DPROM, 
OBC, counting process modules. In this section, 9 samples HE process and 256 samples 
HE process is explained. Initially, 3×3 size of input image is read in MATLAB to 
calculate the HE process in FPGA platform. The 3×3 image contains 9 samples as well as 
16×16 size image contains the 256 samples. With the help of “dec2bin” function in 
MATLAB, the pixel values are converted into the binary values and each pixel contains 8 
bit of binary data which is stored in text file. This stored text file is given to the VLSI 
platform to evaluate the HE count. The 9 sample pixel values are shown in Figure 4. 
Here, 9s ( 0 ) memory is stored “00000001” binary values as well as 9s ( 7 ) memory is 
stored “00000001”. 
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Figure 3 MHE architecture process (see online version for colours) 

 

Figure 4 Input values of 3×3 image 

00000001

00000011

00000011

00000010

00000010

00000001

00000010

00000001  
where  

9s ( 0 ): Initial sample stored in 0th memory 

9s ( 7 ): Last sample stored in 8th memory. 

From the 9 samples, the histogram count evaluation process is performed in FPGA 
platform. Initially, the counter is designed to count the values from 0 to 8 based on the 
pixel values. If the image contains the 9 sample, the counter is incremented from 0 to 8. If 
the image contains 256 samples, the counter is incremented from 0 to 255. So, 8 bit 
counters have designed in this research work. The 9 sample counter values and 256 
samples counter values are given in equations (1) and (2). 

 { }counter _ 9 _ sample _ out 0,1,2,3,4,5,6,7,8=  (1) 

 counter _ 256 _ sample _ out {0,1, 2, 255}= …………  (2) 

Based on the counter least significant bit (LSB), the input samples are crossed the 
counting process, which are given equations (3) and (4). 
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 [ ] '
outif (cnt 0 4 d0)==  

  1D X=  (3) 

 [ ] '
outif (cnt 0 4 d1)==  

  2D X=  (4) 

where 

[ ]outcnt 0 : LSB bit of counter output 

X: input samples 

1D : current sample 

2D : previous sample. 

If the counter LSB is equal to zero, the input is considered as current sample and it 
choose the top path as shown in Figure 3. Similarly, if the counter LSB is equal to one, 
the input is considered as previous sample and it choose the below path in Figure 3.  
In every clock cycle the counter LSB is changed to 0 and 1. Based on the clock cycle, the 
previous and current sample values are connected to the DPROM to perform the pattern 
operation. In DPROM module, the 8-bit new sample and 8-bit old sample data are stored 
in DPROM and the main advantage of this method is that the old and new samples are 
stored in single DPROM. Each and every memory (M) like M [0], M [1], up-to M [255] 
can be stored in 256-bits. The pattern values are given in Table 1. 

Table 1 Patter values of 255 memory 

Address Pattern 
0 111111…......1111111 
1 011111……..1111111 
2 001111…......1111111 
3 000111……..1111111 
4 000011……..1111111 
0 0 
0 0 
0 0 
254 000000……..0000011 
255 000000……..0000001 

At initial clock cycle, 9s [0] and 9s [1] samples are given to the DPROM to perform the 
pattern process. 9s [0] memory and 9s [1] memory contains the decimal value of 1 and 3 
respectively. Initially, these two values are connected to the DPROM and the output is 
given in equations (5) and (6). 

 [ ]9s 0 1 11111 ......1111111
outDROM

= …  (5) 
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 [ ]9s 1  011111 ......1111111
outDROM

= …  (6) 

Each samples are performed the pattern process with respect to the clock signal. Based on 
the sample size, the output count of the DPROM is evaluated. In this research work,  
9 and 256 samples undergo the pattern process. So, the DPROM output count are 9 and 
256 respectively for the proposed architecture. This 255 bit outputs are connected to the 
optimal bin count value module which helps to count the number of 1’s present in the 256 
bit values. 

The BHE and MHE bin count process is shown in Figures 5 and 6. For both the 
process, DPROM output (256 bit) is given to the input of bin count process. Among the 
256 bit, each and every bit is checking whether “1” is present in the respective bit or not. 
In both the processes, “FOR loop” is used to fetch the entire 256 bits. In BHE 
architecture, every bit checks the “If statement” to confirm which output is stored in 
“ones” variable. But, there is no usage of “if statement” in MHE architecture. In MHE, 
the bit values are directly undergone the one count process. Due to this, the MHE 
architecture occupied less resources. The BHE and MHE bin count output generation 
process is given in equations (7) and (8). 

 1BCBHE ones= +  (7) 

 [ ]OBCMHE ones DO i= +  (8) 

where  

BCBHE : bin count output of BHE architecture 

OBCMHE : optimal bin count output of MHE architecture. 

The output of the bin count is considered as 8 bit which performs the subtraction 
operation with 256 maximum value. The subtraction output is given in equations (9) and 
(10). 

 [ ]9  0   256  out OBCs sub MHE= −  (9) 

 [ ]9  1   256  out OBCs sub MHE= −  (10) 

After performing the subtraction, carry select adder based counter (CSAC) is designed to 
count 0 and 1 respectively as shown in equations (11) and (12) 

 '
outif (cnt 4 d0)==  

  [ ]_ _1 9  1  outF out s sub=  (11) 

 '
outif (cnt 4 d1)==  

  [ ]_ _ 2 9  0  outF out s sub=  (12) 

where  

_ _1F out : 1st memory subtraction output 

_ _ 2F out : 0th memory subtraction output. 
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Based on the counter value, the output of the subtraction performs the counting process 
operation. 

Figure 5 BHE bin count process 

 

Figure 6 MHE optimal bin count process 

 

Figure 7 shows the architecture of counting process which is already given as a block in 
Figure 3. The binary values of image pixels are given as input to the AND gates for 
counting process. This counting process provides three different outputs such as 
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_ _1 F out Register , _ _ 2 F out Register  and _ _ 3 F out Register  from three different 
stages. The pixel density of 1, 2 and 3 are given to the first, second and third stage 
respectively. Here, the register is initialised to provide pixel density in the respective 
stages. For example, the operation of the first stage with the input of 00000001 (i.e., 8 
bit)is given as follows: The given input is divided into two different inputs as 4bit and it 
is given to the two AND gates of first stage. In general, AND gate deliver the output of 1, 
only when all the inputs are 1. So, the output from the two AND gates are 0 as well as the 
AND operation between the 0 and 0 from 1st AND gate and 2nd gate is 0. Next, this 
value 0 is stored in the register and it is given as feedback to the operation of A B+ . 
where, A  is the value stored in the register and B is a constant value i.e., 1.The operation 
of A B+  (0+1) provides the value of 1 and this value 1 is replaced in the register instead 
of previous value 0. Subsequently, the value in the register is stored in the 

_ _1 F out Register . The same operation is processed up to the 9 samples, when the input 
image is in the size of 3×3.The operation of first stage is processed, only when the input 
pixel density is 1. Finally, the counting process delivers the amount of pixels in the image 
which has a density of 1. According to this 9 sample research work, pixel 1 is coming for 
4 times, pixel 2 is coming for 3 times, and pixel number 3 is coming for 2 times which 
pictorial representation is shown in Figure 12. Similarly, the same counting process is 
developed for the 256 samples of 16×16 image which has 256 stages. Based on the input 
bit size, the counting stage process need to be designed. For 8 bit input samples, 256 
stages of registers are required. Because, the 8-bit combination values are generated from 
0 to 255. For counter process, incremental operation need to perform. At that time, CSLA 
adder is used which is explained as follows. 

The architecture of the CSLA is shown in Figure 8 and this CSLA contains a 
Multiplexer (MUX), Binary-to-Excess Converter (BEC), Ripple Carry Adder (RCA) and 
4 Full Adder (FA) design. The operation of the CSLA is explained with the example 
input 0100A =  and  0101B = . At initial stage, the 0 0 10, 1, 0A B A= = =  and 1 0B =  are 
given as input to the RCA circuit. The group 2 of CSLA has one 2-b RCA, that contains 
two FA for 0inC = . The output of the first FA is sum of 1 and carry of 0 as well as this 
carry value is given as input to the second FA. Subsequently, the 2nd FA provides the 
sum of 0 and carry of 0. Then the carry from the 2nd FA is given as input to the MUX 
while the output of RCA is equal to 01. Moreover, the 2 1A =  and 2 1B =  are given as 
input to the 1st FA that provides the sum of 0 and carry of 1 during the 2nd stage. The 1st 
FA’s carry is 1, 3 0A =  and 3 0B =  are provided as input to the 2nd FA that provides 
sum of 1 and carry of 0. Next, the output of FA is given as input to the BEC as well as the 
important operation of the BEC is one-bit incremental operation. The output is 11, when 
the binary input of 10 is given to the BEC. Subsequently, the BEC and 2nd stage FA 
outputs 10 are given to the input of the MUX. The selection line is 0, when the output of 
MUX is 10 otherwise MUX delivers the output as 11. Furthermore, the concatenation 
between the 1st stage output (01) and MUX output (10) provides the value of 1001. The 
input arrival time is less when compared to the multiplexer selection input arrival  
time [21]. 
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Figure 7 Counting process for 9 sample architecture (see online version for colours) 

 

5 Results and discussion 

The experimental results and discussion of the MHE architecture are described in this 
section. MATLAB R2018a is used to read the image and the image is resized into 3×3 
and 16×16. Subsequently, the resized image is converted to binary value which is stored 
into .txt file. The architecture of MHE is implemented and simulated in the Modelsim 
10.5 to verify the histogram estimation. The Verilog code of the MHE is incorporated in 
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the Xilinx 14.7 ISE and Cadence RTL compiler to analyse FPGA and ASIC 
performances. Here the proposed MHE architecture is operated in the Windows 8 
operating system with Intel core i3 processor and 4GB RAM. 

5.1 Performance analysis 

The MHE architecture with CSLA counter, DPROM, OBC and counting process 
modules is developed for two different image sizes 3×3 and 16×16. The 3×3 sized image 
has 9 samples and 16×16 has 256 samples. The example input image having size of 
16×16 is shown in Figure 9 which is read using the MATLAB. Next, the image pixels are 
converted into binary values as 256 samples which is shown in Figure 10. These binary 
values are given as input to the Verilog code to estimate the histogram of the pixels. The 
FPGA performances such as LUT, slice registers, LUT-FF pairs, and block RAM is 
analysed for the Virtex 6 device. Additionally, the ASIC performances such as area, 
power and delay are analysed using the 180 nm technology. 

Figure 8 Operation of CSLA (see online version for colours) 

 

Figure 9 16×16 input image 
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Figure 10 256 samples 
10100000 
10010111 
01100111 
01110100 
10000010 
10000100 
10000010 
10000000 

| 
| 
| 
| 
| 

10111000 
01100111 
01101111 
01011000 
01001110  

Tables 2–5 show the ASIC, percentage reduction, FPGA performances and frequency 
analysis of the MHE and BHE architectures. Tables 2–4 show that the MHE architecture 
provides better performance than the BHE architecture. The area of the MHE architecture 
is 96846 um2which is less when compared to the existing BHE architecture. The 
reduction percentage achieved by the MHE in 9 samples are 48.03%, 68.76% and 
29.61% for area, power and delay respectively. The RTL code is converted into netlist 
file to evaluate the area, power, and delay in the TSMC 180 nm technology. With the 
help of the cadence RTL compiler report menu option, the ASIC performances are 
calculated. Due to the optimal design of the MHE architecture, the performance values 
are improved than the BHE architecture. Moreover, the number of slice LUT used by the 
MHE architecture is 3388 which is less when compared to the BHE architecture. The 
hardware utilisation of the MHE architecture is minimised using the DPROM and CSLA 
adder. But, the existing BHE architecture requires two different ROM to store the 
previous and current sample operation in APM. Additionally, the more number of logical 
elements, bin count and inappropriate APM used in the BHE architecture increases the 
hardware utilisation of BHE. From the Table 5, knows that the operating frequency of the 
MHE architecture is higher than that of the BHE architecture. The operation speed is high 
and delay is less for the MHE architecture due to the higher operating frequency i.e., 
112.335 MHz. Due to the usage of optimal bin count, DPROM and CSLA adder, the 
MHE frequency has been improved than BHE architecture. 

Table 2 ASIC performance analysis using 180 nm technology 

Architecture Area (um2) Power (W) Delay (ps) APP (um2×W) ADP (um2×ps) 
9 sample-BHE 186357 4.984 233 928803.2 43421181 
9 sample-MHE 96846 1.557 164 150789.2 15882744 
256 sample-BHE 5889206 8.245 265 48556503.4 1560639590                       
256 sample-MHE 4851472 6.974 204 33834165.7 989700288 
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Table 3 Percentage of ASIC performance reduction by MHE 

Percentage of reduction by MHE 
Parameters 9 sample 256 sample 
Area 48.03 17.62 
Power 68.76 15.41 
Delay 29.61 23.01 

Table 4 FPGA performance analysis using Virtex 6 device 

Occupied 
resources 

% of 
utilisation 

FPGA device, 
Speed grade and 
package FPGA performances 

Total 
resources BHE MHE BHE MHE 

Number of slice registers 160000 4120 4116 2% 2% 
Number of slice LUTs 80000 13500 3388 16% 4% 
Number of fully used 
LUT-FF pairs 

15554 2066 2127 13% 13% 

XC6VCX75T, -2 
and FF484 

Block RAM 264 8 8 3% 3% 

Table 5 Frequency analysis of BHE and MHE 

Architecture Operating frequency 
BHE 41.39 MHz 
MHE 112.335 MHz 

The simulation waveform output for 9 samples (3×3 image) is shown in Figure 11. The 
control signals for the MHE architecture are clk, en, and rst. The binary input given to the 
MHE architecture is specified as x  which is the binary value of image pixel. The output 
from the DPROM are represented as Curr_samp_ROM out and Prev_samp_ROM out. 
Here, _F out  is the output from the counting process. In _F out , the pixel with density 
of 1, 2 and 3 are obtained for 4, 3 and 2 clock cycles respectively. Then the pixel density 
of 1, 2 and 3 are obtained from the Final_out_1, Final_out_2, and Final_out_3 
respectively. This simulation waveform of Figure 11 shows that the histogram is 
preciously estimated for the all 9 samples of 3×3 image. Similarly, the MHE architecture 
is also analysed for the 256 samples of 16×16 image. Moreover, the _F out  from the 
Verilog is given as input to the MATLAB to analyse the number of pixels with respect to 
the pixel density as shown in Figure 12. Similarly, the number of pixels with respect to 
the pixel density for 256 samples is shown in Figure 13. Figures 12 and 13 shows that the 
proposed MHE architecture preciously estimates the histogram of the pixels. The 
complexity of the model is increased when the input image size is increased. Because, the 
number of pixel values are increased and it required more registers to store the values. 
So, the complexity in depends on the input image size. 
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Figure 11 9 samples simulation waveform output (see online version for colours) 

 

Figure 12 9 sample output (see online version for colours) 

 

Figure 13 256 sample output (see online version for colours) 
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5.2 Application of MHE in the medical field 

In the medical field, image enhancement plays a vital role to identify the each pixel 
clearly for monitoring the disease conditions [22, 23]. Normally, the generated medical 
images are contains the noises which does not provide the good quality. So, it is 
mandatory to de-noise the image for obtaining better quality of the image. In this case, 
histogram estimation is very important stage to identify the pixel value count which helps 
to process the further operation. After histogram estimation, the probability needs to be 
calculated for the pixel count. The probability helps to identify the number of occurrence 
pixel among the overall pixel count [24, 25]. Once the probability is done, the cumulative 
distribution operation is performed to get the optimal values of the pixel. The 
combination of two pixel probability values are added and produced the cumulative 
distribution values. Similarly, the cumulative distribution is performed for all the 
probability pixel values. From the results, the grey level value (255) is multiplied and 
produced the enhanced output values. From this, we have obtained enhanced quality of 
the medical image. This process is applied for the Brain MRI, Lungs CT, Mammogram 
images which results are shown in Table 10. 

In Table 10, the different input images are taken and performed the image 
enhancement operation. The original image and its histogram as well as the enhanced 
image and its histograms are clearly included in the table. From this it is clears that the 
input medical images are perfectly enhanced and produced the output. This noise free 
medical images are helped the doctors to identify the problem of the patients clearly. The 
hardware utilisation of the various images results are the same only. Because, there is no 
variations in the FPGA module. 

5.3 Comparative analysis 

The comparative analysis of the proposed MHE architecture with existing architecture is 
described in this section. The MHE architecture is compared with four existing 
architectures such as HOG [16], HBS [17], MBPA [18] and DMH [20]. This comparative 
analysis is taken in terms of slices, LUT, flip flops, frequency, power. 

Tables 6–9 shows the performance comparison of the MHE architecture for Virtex 6, 
Virtex 6 (MBPA), Virtex 7 and Zynq Z 7020 devices. Table 6 shows the comparison of 
MHE architecture with HOG [16] and Table 7 shows the comparison of MHE with 
MBPA [18] method. In Virtex 6, the number of BRAM in MHE architecture is 8 that is 
less when compared to the HOG [16] and the number of slices in MHE is 1478 which is 
less than MBPA [18] method. The power consumed by the MHE architecture is 1.041 W 
for Virtex 7 device, it is less when compared to the HBS [17]. Moreover, the number of 
LUT for Zynq Z 7020 device is 3456 which is less when compared to the DMH [20]. 
Hence, the aforementioned results prove that the MHE architecture provides better 
performance than the HOG [16], HBS [17], MBPA [18] and DMH [20]. The MHE 
architecture requires only one DPROM to store the current and previous operation values.  
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The CSLA adder used in the MHE provides faster arithmetic operations during histogram 
estimation that leads to the minimisation of delays. The hardware utilisation of the MHE 
architecture is less due to the usage of fewer logical elements. 

Table 6 Comparison of MHE architecture with HOG for Virtex- 6 device 

Virtex 6 
Parameters HOG [16] MHE 
BRAM 3906 8 
4 input LUT 77623 3388 
Flip flops 5874 2177 
Frequency (MHz) 104.25 112.335 

Table 7 Comparison of MHE architecture with MBPA for Virtex- 6 device 

Virtex 6 
Parameters MBPA [18] MHE 
Slices 2920 1478 
4 input LUT 2684 3388 
Flip flops 2465 2177 
Frequency (MHz) 116.24 112.335 

Table 8 Comparison of MHE architecture for Virtex-7 device 

Virtex-7 
Parameters HBS [17] MHE 
No. of slice registers 38774 4116 
No. of slice LUTs 50124 3451 
No. of occupied slices 12850 3062 
Maximum frequency (MHz) 445.330 134.21 
Power (W) 1.215 1.041 

Table 9 Comparison of HE architecture for Zynq Z-7020 FPGA device 

Zynq Z-7020 FPGA 
Parameters DMH [20] MHE 
FF 11850 2345 
LUT 9594 3456 
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Table 10 Medical image denoising with histogram (see online version for colours) 

Input image Input histogram Enhanced image Enhanced histogram 

 

 
 

  

6 Conclusion 

In this paper, the MHE architecture is proposed to effectively estimate the histogram of 
the 3×3 and 16×16 size images. The sub modules used in the MHE are the DPROM, 
CSAC and OBC, which leads to improve the performance of the histogram estimation. 
The DPROM used in the MHE stores the current and previous sample operation. But the 
BHE architecture requires two different ROM to store the samples of current and 
previous operation. The utilisation of the DPROM, CSAC and OBC leads to minimise 
the amount of hardware used in the MHE architecture. The operating frequency of the 
112.335 MHz is high when compared to the BHE architecture. The higher operating 
frequency of MHE architecture improved the speed of histogram estimation process. The 
area, power and delay are reduced by the MHE in 256 sample by 17.62%, 15.41% and 
23.01%. Additionally, the MHE architecture provides better performance than the BHE, 
HOG, HBS, MBPA and DMH. The number of flip flops used in the MHE architecture is 
2177 for Virtex 6 device, and it is less than the HOG and MBPA. Moreover, the image 
enhancement application was also implemented in this work to enhance the medical 
image quality. In the future, different optimal architecture will be designed to perform the 
histogram equalisation with less hardware utilisation. 
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