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Abstract: Recently, with the explosive growth in the number of available 
medical images generated by medical imaging systems, content-based retrieval 
of medical images has become an important method for the diagnosis and study 
of many diseases. Most existing methods find medical images similar to a 
given one based on the extraction and comparison of crucial image features. 
However, similarity values computed with low level visual features of an image 
generally do not match the similarity obtained from human observation well. 
The overall performance of these methods is thus often unsatisfactory.  
This paper proposes a dynamic programming approach for content-based 
retrieval of medical images. The approach represents an image with three 
different histograms that contain both crucial intensity and textural features of 
the image. The similarity between two images is evaluated with a dynamic 
programming approach that can optimally align the peaks in the corresponding 
histograms from both images. Experiments show that the proposed approach  
is able to generate retrieval results with high accuracy. A comparison with 
state-of-the-art approaches for content-based medical image retrieval shows 
that the proposed approach can achieve higher retrieval accuracy in both 
ordinary and nano-scale medical images. As a result, higher retrieval accuracy 
may lead to more reliable results for the diagnosis and treatment of many 
diseases. The proposed approach is thus potentially useful for improving the 
reliability of many applications in health informatics. 



   

 

   

   
 

   

   

 

   

   76 J. Sun et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Keywords: medical image retrieval; similarity; alignment of histograms; 
dynamic programming; intensity features; textual features. 

Reference to this paper should be made as follows: Sun, J., Qi, L., Song, Y., 
Qu, J. and Khosravi, M.R. (2023) ‘A dynamic programming approach for 
accurate content-based retrieval of ordinary and nano-scale medical images’, 
Int. J. Nanotechnol., Vol. 20, Nos. 1/2/3/4, pp.75–97. 

Biographical notes: Jinhong Sun is currently a graduate student in the School 
of Electronics and Information Science at Jiangsu University of Science and 
Technology, China. Her research interests include information hiding and 
medical image processing. 

Liang Qi received his PhD in Electrical Engineering from Jiangsu University, 
China in 2018. He is currently with Jiangsu University of Science and 
Technology, China. His research interests include algorithms for image 
processing, machine learning, intelligent control and its applications in 
mechanical engineering. 

Yinglei Song received his PhD in computer science from the University of 
Georgia, USA in 2006. He worked as an Assistant Professor of Computer 
Science at the University of Maryland Eastern Shore, USA from 2007 to 2012. 
He is currently with Jiangsu University of Science and Technology, China.  
His research interests include algorithms for image processing, machine 
learning, bioinformatics and data mining. 

Junfeng Qu received his PhD in Computer Science from the University of 
Georgia, USA in 2006 and joined the Department of Information Technology 
and Computer Science at Clayton State University as an Assistant Professor  
in that year. He is currently working as a Professor of Computer Science at the 
Clayton State University, USA. His research interests include image 
processing, information hiding, machine learning and bioinformatics. 

Mohammad R. Khosravi received the BSc, MSc and PhD degrees in Electrical 
Engineering with expertise in communications and signal processing from 
Shiraz University of Technology, Shiraz, Iran, in 2013, 2015, and 2020, 
respectively. He is currently with the Department of Computer Engineering, 
Persian Gulf University, Bushehr. His main interests include statistical signal 
and image processing, medical bioinformatics, radar imaging and satellite 
remote sensing, and computer communications. 

 

1 Introduction 

In the past decades, the rapid development of various medical imaging systems has led to 
the generation of a large number of medical images. In practice, these medical imaging 
data can provide useful information for the diagnosis, study and treatment of many 
diseases [1,2]. For example, a database that contains the medical images for different 
cases of a disease can be constructed. For images collected from a new case of the same  
disease, the database can be searched to find images similar to them. The information of 
these similar images can probably provide insights into the diagnosis and treatment of the  
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new case [3]. In such applications, the similarity of two medical images is often 
automatically evaluated by a computer program based on the contents of them. Content-
based medical image retrieval (CBMIR) thus has become an important problem in 
medical image processing. 

A generalised problem of CBMIR is the problem of content-based image retrieval 
(CBIR). CBIR searches databases for images similar to a given image based on the 
similarities between the given image and images in the databases. The similarity of two 
images is generally computed with an algorithm and is crucial for the accuracy of 
retrieval. To improve the accuracy of CBIR, a large number of approaches have been 
proposed to accurately compute the similarity of two images [4–11]. In Sikha and Soman 
[4], visual saliency based features are combined with texture and color features for 
similarity evaluation. The work in Raghavan and John [5] proposes a hybrid approach 
that utilises enhanced first type of pessimistic covering based lower approximation multi-
granular rough sets for CBIR. In Ghodratnama and Abrishami [6], a new feature 
weighting approach is combined with C-means clustering to improve the accuracy of 
CBIR. In Al-Mohamade et al. [7], a novel multiple query retrieval approach based on 
visual feature discrimination is proposed for computing the similarity of two images.  
The work in Nikolaos et al. [8] proposes a regularised discriminative deep metric learning 
method to improve the accuracy of CBIR. The proposed method learns a representation 
that can encode the latent generative factors for each image class. In Buvana et al. [9],  
a number of different features, including the histogram of oriented gradients (HOG) 
features, local binary pattern (LBP) and gray-level co-occurrence matrix (GLCM) are 
combined to improve the retrieval accuracy. In Ng et al. [10], it is shown that lower 
layers in convolutional neural networks (CNNs) are generally more important than the 
last layers. A novel approach is thus proposed for extracting convolutional features from 
different layers in CNNs for CBIR. In Tzelepi and Tefas [11], a model retraining method 
is proposed to obtain more efficient convolutional representations for CBIR. The feature 
representations are computed from the activations of the convolutional layers in a deep 
CNN model with max-pooling. 

Numerous computational methods have been developed for CBMIR [12–18]. 
Currently, most of the existing computational methods come from three different 
categories. They are methods based on local features, visual words dictionary and deep 
learning techniques respectively [19]. 

For methods based on local features, the crucial local features are first obtained from 
images and the similarity between two images is evaluated based on the values of their 
local features. A distance metric is often utilised to evaluate the similarity between the 
feature vectors of two images. For example, in Srinivas et al. [20], mean and variance of 
pixel intensities are used as local features to evaluate the similarities of images. In Tao 
[21], PA-AP chest images are retrieved with a multi-level learning-based algorithm that 
uses local features of images. In Shamna et al. [22], topic and location models are used to 
construct an automatic medical image retrieval system. In Ahmed [23], a new retrieval 
method based on relevance feedback is proposed for CBMIR. The feedback mechanism 
utilises the voting values of each class in the image repository. In Qazanfari et al. [24], 
CBMIR is performed with a short term learning approach based on a collection of low 
level image features. The work in Kashif et al. [25] improves the retrieval accuracy of 
lung diseases with a new approach that combines local ternary pattern (LTP), local phase  
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quantisation (LPQ), and discrete wavelet transform. In Renita and Christopher [26],  
a new approach based on grey wolf optimisation-support vector machine (GWO-SVM) is 
developed for CBMIR. In Shinde et al. [27], a flexible directional filter bank (DFB) is 
proposed for CBMIR. The parameters of the Hermite transform in the DFB can be 
adaptively tuned for improved retrieval accuracy. 

Methods based on visual words dictionary use the bag-of-visual-words (BoVW) 
technique to generate features for a medical image. In Zhang et al. [28], a retrieval 
approach based on a pruned dictionary is proposed to obtain the features of medical 
images for the evaluation of similarities. In Shamna et al. [29], visual spatial word 
matching is used in the proposed CBMIR framework to compare medical images. The 
work in Banerjee et al. [30] proposes a retrieval method that combines high level 
semiconductor words with low level image features to achieve improved accuracy.  
In Karamti et al. [31], a vectorisation technique is combined with a pseudo-relevance 
model to construct a framework for CBMIR. In Torjmen-Khemakhem and Gasmi [32],  
a relevance feedback approach is proposed for CBMIR, the approach selects the most 
important context features for evaluating the similarities of medical images. The work in 
Nair et al. [33] combines canonical correlation analysis (CCA) and fuzzy C means 
clustering to improve the computational efficiency of CBMIR. 

Recently, deep learning based approaches have been extensively applied to the 
retrieval of medical images. Deep learning approaches provide neural network based 
models that can effectively describe the relationships between the visual local features 
and the semantic features of a medical image [34]. A large number of deep learning based 
methods thus have been proposed for CBMIR. For example, in Sun et al. [35], a novel 
deep learning method is proposed to retrieve medical images with improved accuracy  
in integrated RIS/PACS. In Cai et al. [36] and Qayyum et al. [37], deep learning 
frameworks based on convolutional neural networks (CNNs) are developed for CBMIR. 
The CNNs used in the proposed frameworks are trained for the classification of medical 
images. Medical images are retrieved with the features and the classification results 
generated with the CNNs. The work in Yang et al. [38] considers the multi-domain 
medical image retrieval problem and constructs a deep learning based single multi-
domain medical image retrieval (MIR) model to effectively integrate the knowledge from 
multiple specialist MIR models. The work in Haripriya and Porkodi [39] proposes a 
parallel deep convolutional neural network (PDCNN) model to combine deep 
convolutional neural network (DCNN) features, low level content features, high level 
semantic features and compact features together to achieve improved accuracy for 
CBMIR applications. 

Although significant progresses have been achieved in the development of 
computational approaches for accurate CBIR and CBMIR, a number of challenges 
remain. Firstly, although deep learning based methods have provided an effective 
approach to the extraction of accurate high level semantic features of an image, the 
semantic gap between the high-level semantic features and low level local features of 
images remains a major obstacle to the further improvement in retrieval accuracy [40]. 
Secondly, due to the fact that the feature extraction methods in many state-of-the-art 
(SOTA) approaches for CBIR are initially designed for image classification, the 
scalability of these approaches on various target datasets is often not satisfactory and 
cannot be guaranteed [41]. Thirdly, many feature extraction methods often generate high 
dimensional feature vectors for computing the similarity of two images. A large amount  
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of computation time is usually required for the computation and comparison of such 
feature vectors. A trade-off between computational efficiency and retrieval accuracy 
therefore exists for most of the SOTA approaches for CBIR [42]. New approaches are 
thus desirable to overcome the challenges and further improve the performance of CBIR. 
In particular, certain important fine details in images may need to be considered 
collectively when retrievals of nano-scale medical images are performed, an approach 
that can accurately compare such fine details in two medical images is thus crucial for 
improving the accuracy of CBMIR. 

In this paper, we develop a new approach for accurate content-based retrieval of 
medical images. Due to the fact that more accurate results of retrieval would lead to 
improved diagnosis accuracy in health informatics [43,44], the proposed approach is 
aimed at improving the retrieval accuracy. The approach is unsupervised and compares 
both the low level and high level features of medical images with a dynamic 
programming approach. For each image, three different histograms are obtained to 
represent both the low level and high level features. To compute the similarity of two 
images, all possible alignments for each pair of corresponding histograms are considered 
and the one that minimises the distance between the two histograms is selected with 
dynamic programming. The similarity between the corresponding histograms is 
computed from their optimal alignment. The overall similarity value of two images is a 
weighted combination of the similarity values obtained on the three histogram pairs 
associated with the images. 

A histogram provides a simple representation of both high level and low level 
features in an image. Specifically, a histogram describes the statistical distribution of a 
given local feature within an image and can be considered as a feature vector that 
contains both high level and local information in the image. An appropriate comparison 
of histograms constructed from two images can thus generate important information on 
their similarity. The proposed approach uses a dynamic programming method to compute 
an optimal alignment of the structures in two histograms. The resulting optimal alignment 
compares high level features and low level ones together and can potentially alleviate 
problems that may arise from the semantic gap. Due to this fact, the proposed approach 
may lead to a more accurate evaluation of similarity. 

On the other hand, it is clear that the size of a histogram only depends on the possible 
values of the given local feature and is independent of the size of an image. The proposed 
approach can thus be applied to various target datasets without the scalability problem.  
In addition, the dynamic programming procedure can be efficiently performed in constant 
time. This fact implies that the computational efficiency can be guaranteed in cases where 
the histogram of each image in a searched database has been computed in a preprocessing 
stage. 

The proposed approach is tested with the Kvasir dataset [45] and the hela dataset 
[46]. The Kvasir dataset is a dataset of ordinary medical images and the hela dataset is 
composed of nano-scale medical images. The performance of the approach in both 
precision and recall is compared with that of SOTA methods for CBMIR. Experimental 
results show that, compared with other SOTA methods, the proposed approach is able to 
achieve improved search accuracy for retrieval on both ordinary and nano-scale medical 
image datasets. The experimental results thus suggest that the proposed approach is able 
to capture crucial low level and high level features of a medical image and it thus can  
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possibly be applied for CBMIR tasks in large databases of both ordinary and nano-scale 
medical images. 

2 The proposed approach 

The proposed approach computes the similarity of two images in two steps. In the first 
step, all pixels in both images are processed and two local features are extracted for each 
pixel with two linear convolutional operators. Since previous research on CNN has 
shown that local features obtained with linear convolutional operators can effectively 
improve the accuracy of CBMIR [35–39], histograms obtained from such local features 
may contain crucial information in an image. For each image, three histograms are 
constructed to describe the statistical distributions of the two local features and intensities 
of all pixels in the image. 

In the second step, each histogram constructed from one image is compared with the 
corresponding one from the other image. The goal of the comparison is to recognise and 
align similar structures in two histograms to the largest extent. A similarity score is then 
computed based on the result of alignment. Since similar structures may appear in 
different positions in two histograms, the comparison is performed with a dynamic 
programming approach similar to the algorithm used for optimal sequence alignment in 
bioinformatics [47]. 

Dynamic programming methods have been extensively used to efficiently compute 
optimal solutions for combinatorial optimisation problems from a variety of areas,  
such as speech recognition [48], image processing [49] and bioinformatics [50] etc. For 
example, dynamic programming methods have been extensively used in bioinformatics 
for the analysis, comparison and alignment of biological sequences [50]. A dynamic 
programming approach is recently proposed in Li et al. [49] for real-time enhancement of 
colour images. In Li et al. [51], dynamic programming is utilised for real-time 
classification of brain tumours. In general, dynamic programming methods can efficiently 
find exact solutions for many optimisation problems and can thus guarantee both the 
accuracy and computational efficiency for many image processing applications in 
practice. 

2.1 Extraction of image features 

Let I  be the intensity map of a medical image with p  rows and q  columns. For each 
pair of integers i  and j  that satisfy 1 i p≤ ≤  and 1 j q≤ ≤ , ( , )I i j  denotes the intensity 
of the pixel in row i  and column j . The intensity value of a pixel is generally an integer 
between 0 and 255. For each given intensity value l  between 0 and 255, ( , )C I l  is the 
number of pixels with an intensity value of l  in I . ( , ) ( , ) /iR I l C I l pq=  is thus the ratio 
of pixels with an intensity value of l  in I . A histogram mH can be constructed for I  by 
combining the values of ( , )iR I l ’s for all possible values of l . Specifically, mH  is 
defined as follows. 

 
0 255

{ ( , )}m i
l

H R I l
≤ ≤

= ∪  (1) 
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For the pixel at row i  and column j  in I , four different values ( , )lD i j , ( , )rD i j , 
( , )uD i j  and ( , )dD i j  for intensity difference can be computed as follows if both 

1 i p< <  and 1 j q< <  hold. 

 ( , ) | ( , ) ( , 1) |lD i j I i j I i j= − −  (2) 

 ( , ) | ( , ) ( , 1) |rD i j I i j I i j= − +  (3) 

 ( , ) | ( 1, ) ( , ) |uD i j I i j I i j= − −  (4) 

 ( , ) | ( 1, ) ( , ) |dD i j I i j I i j= + −  (5) 

Consider the values of ( , )lD i j , ( , )rD i j , ( , )uD i j  and ( , )dD i j  for all integer pairs 
( , )i j  that satisfy 1 i p< <  and 1 j q< < . It is clear that each value is an integer between 
0 and 255, a histogram dH  that describes the probability for each integer between 0 and 
255 to appear in these values can be obtained. Specifically, let ( , )vR I l  denote the 
probability for integer l  ( 0 255l≤ ≤ ) to appear in these values, dH  can be constructed 
as follows. 

 
0 255

{ ( , )}d v
l

H R I l
≤ ≤

= ∪  (6) 

Another integer feature value can be defined for the pixel at row i  and column j  in I , 
if all neighbouring pixels that surround the pixel are considered. Let ( , )nM i j  be the 
mean intensity value of all pixels that surround the pixel at row i  and column j . If both 
1 i p< <  and 1 j q< <  hold, ( , )nM i j  can be computed with equation (7) as follows. 

 

1 1

1 1
( , ) ( , )

( , )
8

s t
n

I i s j t I i j
M i j =− =−

⎢ ⎥+ + −⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥⎣ ⎦

∑∑
 (7) 

The difference between ( , )nM i j  and ( , )I i j  is an important local feature for the pixel. 
Let ( , )nD i j  be the difference and ( , )nD i j  can be computed as follows. 

 ( , ) | ( , ) ( , ) |n nD i j I i j M i j= −  (8) 

Since 0 ( , ) 255nD i j≤ ≤  holds for any integer pair ( , )i j  that satisfies1 i p< <  and 
1 j q< < , a histogram nH  can be constructed to model the distribution of ( , )nD i j ’s for 
all integer pairs ( , )i j  that satisfy 1 i p< <  and 1 j q< < . For each integer l  between 0 
and 255, ( , )nR I l  is the probability for l  to appear as the value of ( , )nD i j  for a pixel at 
( , )i j . nH  can be obtained as shown in equation (9). 

 
0 255

{ ( , )}n n
l

H R I l
≤ ≤

= ∪  (9) 

It is evident that mH  represents the high level intensity features of a medical image, 
while both nH  and dH  represent combinations of high level features and low level 
textural features. Figure 1 provides an example of a medical image and the histograms 
obtained based on the example image. 
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Figure 1 (a) shows an example of a medical image while (b)–(d) show the histograms obtained 
with equations (1), (6) and (9) respectively (see online version for colours) 

 

2.2 Alignment of histograms 

The similarity of two histograms can be compared with an alignment approach similar to 
the method used for the alignment of biological sequences in bioinformatics. Let 1H  and 

2H  be two histograms. Each of 1H  and 2H  contains the probability value for each 
integer between 0 and 255. To simplify the notation, we use ( )iH l  ( 1,2i = ) to denote the 
probability value associated with integer l  in iH . An alignment 1 2( , )A H H  between 1H  
and 2H  is a set of integer pairs defined as follows. 

 1 2 1 1 2 2( , ) {( , ), ( , ),...( , )}k kA H H l m l m l m=  (10) 

where k  is the number of aligned integer pairs in the alignment and 0 255s tl l≤ < ≤  and 
0 255s tm m≤ < ≤  hold for all integers s  and t  that satisfy 1 s t k≤ ≤ ≤ . 

An alignment selects k  probability values from each histogram and form k  pairs 
based on the selected probability values. The probability values in each pair are 
considered to be related, a distance measure can be computed for an alignment based on 
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the paired probability values in the alignment. The distance measure ( )d A  for the 
alignment defined in equation (10) can be computed as follows. 

 1
1 2

1 2

( )
( ) ( ( ) ( )) ln 2(256 )

( )

k
u

u u
u u

H l
d A H l H m k P

H m=

= − + −∑  (11) 

where 0P >  is the penalty value for an unpaired probability value. The penalty term is 
intended to increase the distance between two histograms when there are unpaired 
probability values in the alignment. Clearly, the factor 2(256 )k−  in the term is the 
number of unpaired probability values in the alignment. A larger number of unpaired 
probability values in an alignment thus would lead to a larger distance value for the 
alignment. 

A closer analysis of the first term in equation (11) shows that, in the case where 
1 2( ) ( )u uH l H m> , 1 2( ) ( ) 0u uH l H m− >  and 1 2ln ( ) / ( ) 0u uH l H m >  both hold, the 

product of them is a positive number. On the other hand, when 1 2( ) ( )u uH l H m< , 
1 2( ) ( ) 0u uH l H m− <  and 1 2ln ( ) / ( ) 0u uH l H m <  both hold, the product of them remains 

positive. It is thus clear from equation (11) that ( ) 0d A ≥  holds for any alignment 
1 2( , )A H H  and ( ) 0d A =  holds only in the case where 256k =  and 1 2( ) ( )u uH l H m=  

holds for each integer u  between 1 and k . In other words, the distance measure of an 
alignment defined in equation (11) is nonnegative and its value is zero only when all 
probability values are paired in the alignment and all paired probability values in the 
alignment are identical. The distance defined in equation (11) thus provides a valid 
measure for the similarity between two aligned histograms. 

2.3 Alignment with dynamic programming 

Given two histograms 1H  and 2H , a large number of different alignments exist between 
them. To evaluate the similarity between 1H  and 2H , the alignment with the minimum 
distance can provide crucial information on probability values that are most likely related 
in 1H  and 2H . The paired probability values in the alignment can thus be utilised to 
compute a similarity value for 1H  and 2H . 

For a given nonnegative integer x  between 0 and 255, [0, ]iH x  ( 1, 2i = ) denotes the 
probability values associated with all integers between 0 and x  in iH . Based on the 
distance measure defined in equation (11), a dynamic programming algorithm can be 
employed to compute the alignment that minimises the distance measure. Specifically, 
two 256 256×  tables M  and T  are maintained for the dynamic programming. M  is the 
table used to store the intermediate results during the dynamic programming and T  
stores the information needed to trace back and obtain the paired probability values.  
For integers x  and y that satisfy 0 255x≤ ≤  and 0 255y≤ ≤ , ( , )M x y  stores the 
minimum distance between the probability values in 1[0, ]H x  and those in 2[0, ]H y .  
In the case where 0x >  and 0y >  both hold, one of the following four cases holds for 
an alignment between probability values in 1[0, ]H x  and those in 2[0, ]H y . 

1 None of 1( )H x  and 2 ( )H y  are paired in the alignment. 

2 1( )H x  is paired but 2 ( )H y  is not paired in the alignment. 
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3 2 ( )H y  is paired but 1( )H x  is not paired in the alignment. 

4 1( )H x  is paired with 2 ( )H y  in the alignment. 

Based on the above four cases, since the distance between two alignments is computed 
with equation (11), ( , )M x y  is related to ( 1, 1)M x y− − , ( 1, )M x y−  and ( , 1)M x y −  
with the following recursion relation when 0x >  and 0y >  both hold. 

 

( 1, 1) 2
( 1, )

( , ) min
( , 1)

( 1, 1) ( , )

M x y P
M x y P

M x y
M x y P

M x y s x y

− − +⎧ ⎫
⎪ ⎪− +⎪ ⎪= ⎨ ⎬− +⎪ ⎪
⎪ ⎪− − +⎩ ⎭

 (12) 

where P  is the penalty for the generation of an unpaired probability value and ( , )s x y  
can be computed as follows. 

 1
1 2

2

( )
( , ) ( ( ) ( )) ln

( )
H xs x y H x H y
H y

= −  (13) 

In the case where 0x =  and 0y ≥ , (0, )M y  can be computed with equation (14). 

 
( 2)

(0, ) min
(0, )

y P
M y

yP s y
+⎧ ⎫

= ⎨ ⎬+⎩ ⎭
 (14) 

where (0, )s y  can be computed with equation (13). Similarly, in the case where 0x >  
and 0y = , ( ,0)M x  can be computed with equation (15). 

 
( 2)

( ,0) min
( ,0)

x P
M x

xP s x
+⎧ ⎫

= ⎨ ⎬+⎩ ⎭
 (15) 

When 0x >  and 0y > , the value of ( , )T x y  is set to indicate which value on the right 
hand side of equation (12) is assigned to ( , )M x y . Similarly, when 0x =  and 0y ≥ , 

(0, )T y  is set to indicate which value on the right hand side of equation (14) is assigned 
to (0, )M y ; in the case where 0x >  and 0y = , ( ,0)T x  is set to indicate which value on 
the right hand side of Equation (15) is assigned to ( ,0)M x . The information in T  is used 
later for the determination of paired probability values in the optimal alignment. 

After all elements in have been determined, the algorithm uses a tracing back 
procedure to determine the probability values that have been paired in the optimal 
alignment. The tracing back procedure starts with the information in (255,255)T  and 
computes the paired probability values based on the following steps. 

1 Set 255a = and 255b = , initialise set A  to be empty; 

2 Include pair ( 1( )H a , 2 ( )H b ) into set A  if the value of ( , )T a b  suggests that a pair 
is formed between 1( )H a  and 2 ( )H b  in the optimal alignment. 

3 If one of a  and b  is 0, go to step 5. 

4 Update the values of a  and b  based on the value of ( , )T a b , then go to step 2. 

5 Output A  as the set of paired probability values. 
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2.4 Evaluation of similarity 

The similarity between two histograms 1H  and 2H  can be evaluated based on the 
optimal alignment 1 2( , )A H H  obtained from the dynamic programming approach.  
Let 1 1( , )l m , 2 2( , )l m , …, ( , )k kl m  be the pairs of probability values in 1 2( , )A H H , two 
vectors 1V  and 2V  with k  components can be constructed from 1 2( , )A H H  as shown in 
equations (16) and (17). 

 1 1 1 1 2 1( ( ), ( ),..., ( ))kV H l H l H l=  (16) 

 2 2 1 2 2 2( ( ), ( ),..., ( ))kV H m H m H m=  (17) 

The similarity of 1V  and 2V  can be evaluated based on their inner product as follows. 

 
1 2
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1 2

2 2
1 2
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t t
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i j
i j

H l H m
l V V

H l H m

=

= =

=
∑

∑ ∑
 (18) 

where the numerator is the inner product of 1V  and 2V , the denominator is the product of 
the norms of 1V  and 2V . Geometrically, 1 2( , )l V V  is the cosine of the angle between 1V  
and 2V . 1 2( , )l V V  is thus a positive number between 0 and 1. 1 2( , )l V V  is 1 when 1V  and 

2V  are vectors along the same direction, which implies that there is a common factor 
between each pair of the corresponding components in 1V  and 2V . The aligned part of 
two histograms thus have the same structure in the case where 1 2( , )l V V  is 1. In addition, 
a lower value of 1 2( , )l V V  implies a larger angle between 1V  and 2V , which indicates a 
lower similarity between the aligned parts of the histograms. 

In addition to the similarity between 1V  and 2V , the total percentages of aligned 
probability values in the alignment is also considered in the evaluation of the similarity 
between 1H  and 2H . Let 1( )ap H  and 2( )ap H  denote the total percentages of aligned 
probability values in and respectively. It is clear that 1( )ap H  and 2( )ap H  can be 
computed as follows. 

 1 1
1

( ) ( )
k

a i
i

p H H l
=

=∑  (19) 

 2 2
1

( ) ( )
k

a i
i

p H H m
=

=∑  (20) 

The similarity between and can thus be evaluated based on 1( )ap H , 2( )ap H  and 
1 2( , )l V V  as shown in equation (21). 

 1 2 1 2
1 2

( ( ) ( )) ( , )
( , )

2
a ap H p H l V V

s H H
+

=  (21) 

For two images 1I  and 2I , three histograms are obtained for each of them to represent 
the high level and low level texture features together. Let 1

mH , 1
dH  and 1

nH  be the 
histograms obtained on 1I  and 2

mH , 2
dH  and 2

nH  be the corresponding histograms 
obtained on 2I . The similarity between and can be evaluated as follows. 
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 1 2 1 2 1 2
1 2 1 2 3( , ) ( , ) ( , ) ( , )m m d d n nt H H w s H H w s H H w s H H= + +  (22) 

where 1 2( , )m ms H H , 1 2( , )d ds H H  and 1 2( , )n ns H H  are similarity values computed based on 
the dynamic programming approach presented in Subsection 2.3 and equation (21); and 
positive constant relative weight values that satisfy the following constraint. 

 1 2 3 1w w w+ + =  (23) 

2.5 Computational complexity 

Given two images 1I  and 2I  that need to be compared for a similarity value, it is 
straightforward to see that the computation of the three histograms for each image needs 
linear computation time. Specifically, the amount of computation time needed to 
preprocess the images to obtain the histograms that are to be aligned is 1 1 2 2( )O p q p q+ , 
where 1p  and 1q  are the numbers of rows and columns in 1I , 2p  and 2q  are the 
numbers of rows and columns in 2I . 

The dynamic programming approach needs constant computation time since only 256 
different intensity values are considered for each histogram. The computation time 
needed to compute the similarity of two images is thus (1)O  if the histograms of both 
images have been available. In practice, the histograms of medical images in a database 
can be computed and stored in the database for retrieval. The retrieval process can 
directly use these histograms and thus only need to perform the dynamic programming 
approach to compute similarity values. The proposed approach is thus computationally 
efficient. 

3 Experimental results 

The proposed approach has been implemented into a computer program DCBMIR in 
MATLAB and its performance is tested with the Kvasir dataset [45] and the hela dataset 
[46]. The hela dataset is a dataset of nano-scale medical images. Both datasets consist of 
images from a number of different classes. For all experiments, DCBMIR is applied to a 
dataset to search for images that are similar to a given image from the dataset.  
To evaluate the accuracy of the search results, images from the same class are considered 
to be similar and should have similarity values higher than those obtained on images from 
different classes. The performance of DCMIR is compared with that of a number of 
SOTA methods that utilise different models for medical image retrieval. These methods 
include RFRM [23], CNNSH [36], DCNN [37], VPDML [8], DMD [4], GWOSVM [26] 
and PDCNN [39]. RFRM is a retrieval method based on relevance feedback. In RFRM,  
a number of important images are labelled as positive feedback and some insignificant 
ones are labelled as negative feedback. The retrieval results are refined based on the 
labelling of these images. CNNSH, DCNN, VPDML and PDCNN are deep learning 
based retrieval methods. GWOSVM retrieves medical images with a model based on 
support vector machine and DMD uses a dynamic mode decomposition framework for 
retrieval. 
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3.1 Experiments on the Kvasir dataset 

The Kvasir dataset contains 4000 medical images in total and the images in the dataset 
are classified into 8 different classes. Each class in the dataset contains 500 images.  
A detailed description of the images in the dataset is shown in Table 1. Figure 2 shows an 
example image for each class in the dataset. For each class, 10 images are randomly 
selected and each selected image is queried in a collection of images from the dataset 
with the proposed approach to find the images that are most similar to it. 

Table 1 Some information on the Kvasir dataset used for the testing of the proposed approach 

Class number Class name Number of images Image size 
1 Dyed-lifted-polyps 500 720 × 576 
2 Dyed-resection-margins 500 720 × 576 
3 Esophagitis 500 1280 × 1024 
4 Normal-cecum 500 720 × 576 
5 Normal-pylorus 500 1280 × 1024 
6 Normal-z-line 500 1280 × 1024 
7 Polyps 500 720 × 576 
8 Ulcerative-colitis 500 720 × 576 

Figure 2 (a)–(h) are the examples of images from classes 1–8 in the Kvasir dataset respectively 
(see online version for colours) 

 

DCBMIR returns a number of images that have the highest similarity values with the 
queried one. The number of images returned is considered to be an integer parameter c  
and can be set by the user. The performance of the proposed approach on the Kavsir 
dataset is compared with that of RFRM [23], CNNSH [36], DCNN [37], VPDML [8], 
DMD [4], GWOSVM [26] and PDCNN [39]. The accuracy of each approach is evaluated 
based on precision and recall. The precision of a search result is the percentage of related 
images that have been included in the search result. The recall of search result is the 
percentage of related images in the returned images. The precision rP  and recall eR  for a 
given result can be computed based on equations (24) and (25). 
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CP
T

=  (24) 

 e
CR
N

=  (25) 

where C  is the number of images related to the queried image in the result, rT  is the 
total number of images related to the queried image and N  is the number of images in 
the result. 

Figure 3 Examples of the searched results generated by the proposed approach on the Kvasir 
dataset: (a) shows the 10 images returned for the query of an image from class 1  
and (b) shows the 10 images returned for the query of an image from class 3 (see online 
version for colours) 

 

Table 2 The mean and standard deviations (std.) of precision obtained by DCBMIR on each 
class in the Kvasir dataset when 500, 1000, 1500, 2000, 2500, and 3000 images are 
generated in a retrieval result 

Class  500c =  1000c =  1500c =  2000c =  2500c =  3000c =  

Mean 0.7558 0.9117 0.9417 0.9667 0.9775 0.9833 1 
Std. 0.1287 0.0948 0.0752 0.0481 0.0423 0.0296 

Mean 0.6675 0.8175 0.8800 0.9100 0.9325 0.9550 2 
Std. 0.1301 0.1280 0.1250 0.1119 0.0977 0.0724 

Mean 0.6258 0.7108 0.7642 0.8025 0.8300 0.8608 3 
Std. 0.2755 0.2872 0.2711 0.2390 0.2234 0.2015 
Mean 0.7250 0.8367 0.8875 0.9400 0.9675 0.9858 4 
Std. 0.1899 0.1475 0.1196 0.0889 0.0558 0.0243 
Mean 0.4000 0.4800 0.5325 0.5875 0.6575 0.7125 5 
Std. 0.2395 0.2526 0.2571 0.2559 0.2687 0.2554 
Mean 0.6206 0.6813 0.7138 0.7362 0.7650 0.7963 6 
Std. 0.2623 0.2735 0.2761 0.2757 0.2738 0.2657 
Mean 0.6650 0.8425 0.8825 0.9175 0.9675 0.9825 7 
Std. 0.0844 0.1290 0.1217 0.0990 0.0613 0.0467 

Mean 0.6217 0.8083 0.8842 0.9242 0.9608 0.9800 8 
Std. 0.1968 0.2244 0.1992 0.1417 0.0924 0.0534 

Mean 0.6352 0.7611 0.8108 0.8481 0.8823 0.9070 Overall 
Std 0.1071 0.1354 0.1349 0.1306 0.1191 0.1053 
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Figure 3 shows two examples of the query results generated by DCBMIR.  
In Figure 3(a), an image from class 1 is queried in the Kvasir dataset and nine out of  
10 returned images are from class 1. In Figure 3(b), an image from class 3 is queried and 
eight out of 10 returned images are from class 3. Tables 2 and 3 show the mean and 
standard values of precision and recall of DCBMIR respectively on each class in cases 
where a different number of images are generated in the retrieval results. The number of 
generated images (parameter c ) is set to be 500, 1000, 1500, 2000, 2500, and 3000 in the 
experiments. It can be seen from the tables that the precisions become higher and the 
recalls become lower when more images are generated in the retrieval result, Figure 4 
shows the relationships between the precisions and recalls obtained with DCBMIR and 
the other SOTA retrieval methods. It is clear from the figure that DCBMIR outperforms 
the other SOTA retrieval methods in accuracy on the Kvasir dataset since a higher overall 
precision can be achieved by DCBMIR under a given value of recall. 

Table 3 The mean and standard deviations (std.) of recall obtained by DCBMIR on each class 
in the Kvasir dataset when 500, 1000, 1500, 2000, 2500, and 3000 images are 
generated in a retrieval result 

Class  500c =  1000c =  1500c =  2000c =  2500c =  3000c =  

Mean 0.7558 0.4558 0.3139 0.2417 0.1955 0.1639 1 
Std. 0.1287 0.0474 0.0251 0.0120 0.0085 0.0296 

Mean 0.6675 0.4088 0.2933 0.2275 0.1865 0.1592 2 
Std. 0.1301 0.0640 0.0417 0.0280 0.0195 0.0724 

Mean 0.6258 0.3554 0.2547 0.2006 0.1660 0.1435 3 
Std. 0.2755 0.1436 0.0904 0.0598 0.0447 0.2015 
Mean 0.7250 0.4183 0.2958 0.2350 0.1935 0.1643 4 
Std. 0.1899 0.0737 0.0399 0.0222 0.0112 0.0243 
Mean 0.4000 0.2400 0.1775 0.1469 0.1315 0.1187 5 
Std. 0.2395 0.1263 0.0857 0.0640 0.0537 0.2554 
Mean 0.6206 0.3406 0.2379 0.1841 0.1530 0.1327 6 
Std. 0.2623 0.1368 0.0920 0.0689 0.0548 0.2657 
Mean 0.6650 0.4213 0.2942 0.2294 0.1935 0.1638 7 
Std. 0.0844 0.0645 0.0406 0.0248 0.0123 0.0467 

Mean 0.6217 0.4042 0.2947 0.2310 0.1922 0.1633 8 
Std. 0.1968 0.1122 0.0664 0.0354 0.0185 0.0534 

Mean 0.6352 0.3805 0.2703 0.2120 0.1765 0.1512 Overall 
Std. 0.1071 0.0677 0.0450 0.0327 0.0238 0.0175 

Table 4 compares the highest precisions DCBMIR and the other methods can achieve on 
each class in the dataset. It can be seen from the Table that DCBMIR outperforms all 
other methods on classes 1, 4, 7, and 8 and it achieves the highest overall precision.  
The overall precision of DCBMIR is higher than that of RFRM. The results in Table 6 
also show that RFRM significantly outperforms DCBMIR in precision on class 6. This 
fact suggests that the feedback mechanism employed in RFRM can probably be 
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combined with the proposed dynamic programming approach to further improve the 
accuracy of DCBMIR. 

Figure 4 The relationships between precisions and recalls for DCBMIR (the proposed) and the 
other SOTA retrieval methods on the Kvasir dataset; the horizontal axis is the recall and 
the vertical axis is the precision (see online version for colours) 

 

Table 4 The highest precisions obtained by DCBMIR and RFRM on each class 

Method Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Overall 

DCBMIR 0.9833 0.9550 0.8608 0.9858 0.7125 0.7963 0.9825 0.9800 0.9070 

RFRM 0.9000 0.9000 0.8500 0.8500 0.8500 0.9000 0.8500 0.8000 0.8625 

PDCNN 0.9527 0.9211 0.8753 0.9423 0.7343 0.7531 0.9621 0.9239 0.8831 

DMD 0.9316 0.9643 0.8531 0.9015 0.7123 0.7434 0.9476 0.8686 0.8653 

VPDML 0.9215 0.9372 0.8621 0.8954 0.7263 0.7154 0.9323 0.8834 0.8592 

GWOSVM 0.9026 0.9137 0.8333 0.8642 0.8061 0.7043 0.9121 0.7717 0.8385 

CNNSN 0.8465 0.7847 0.7462 0.7331 0.7011 0.6872 0.8215 0.7333 0.7567 

DCNN 0.7823 0.7557 0.7754 0.6743 0.6529 0.6642 0.7539 0.7125 0.7214 

3.2 Experiments on the hela dataset 

There are in total 862 nano-scale medical images in the hela dataset and the dataset 
contains 10 different classes. The number of images in a class ranges from 73 to 98. 
Table 5 shows the detailed information on the image classes in the dataset. An example 
image for each class in the dataset is shown in Figure 5. For each image in the dataset, a 
search is performed with DCBMIR in the dataset for images with c  highest similarities 
to the image. Figure 6 shows two examples of the query results generated by DCBMIR. 
Figure 6(a) shows the query result of an image from class 1, the first nine returned 
images are from class 1. Figure 6(b) shows the query result of an image from class 10 and 
the first eight returned images are from class 10. 
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Figure 5 (a)–(j) are the examples of images from classes 1–10 in the hela dataset respectively 

 

Figure 6 Examples of the searched results generated by the proposed approach on the hela 
dataset: (a) shows the 10 images returned for the query of an image from class 1, where 
the first 9 images are from class 1 and the last image is from class 3 and (b) shows the 
10 images returned for the query of an image from class 10, where the first 8 images are 
from class 10 and the last two images are from class 5 

 

The values of parameter c  are then selected to be 100, 200, 300, 400, 500 and 600 
respectively. Table 6 shows the mean and standard deviations of precisions obtained on 
each class in the dataset for different values of c . The mean and standard deviations of 
recalls on each class for different values of c  are shown in Table 7. The relationships 
between the precisions and recalls obtained with all methods on the hela dataset are 
shown in Figure 7. The figure clear shows that the overall accuracy of DCBMIR on the 
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hela dataset is higher than that of the other SOTA retrieval methods since DCBMIR can 
achieve a higher precision for a given value of recall. 

Table 5 Some information on the hela dataset used for the testing of the proposed approach 

Class number Class name Number of images Image size 
1 actin 98 382 × 382 
2 dna 87 382 × 382 
3 endosome 91 382 × 382 
4 er 86 382 × 382 
5 golgia 87 382 × 382 
6 golgpp 85 382 × 382 
7 lysosome 84 382 × 382 
8 microtubules 91 382 × 382 
9 mitochondria 73 382 × 382 
10 nucleolus 80 382 × 382 

Table 6 The mean and standard deviations (std.) of precision obtained by DCBMIR on each 
class in the hela dataset when 100, 200, 300, 400, 500, and 600 images are generated 
in a retrieval result 

Class  100c =  200c =  300c =  400c =  500c =  600c =  
Mean 0.8300 0.8967 0.9222 0.9422 0.9589 0.9778 1 
Std. 0.1072 0.0748 0.0576 0.0418 0.0277 0.0181 
Mean 0.7500 0.7901 0.8000 0.8300 0.8899 0.8901 2 
Std. 0.1581 0.1197 0.1247 0.1160 0.1370 0.1370 
Mean 0.6300 0.7500 0.7800 0.8600 0.8701 0.9201 3 
Std. 0.2359 0.2273 0.2150 0.1647 0.1567 0.0919 
Mean 0.6650 0.8050 0.8675 0.8975 0.9175 0.9525 4 
Std. 0.1688 0.1711 0.1236 0.0968 0.0755 0.0583 
Mean 0.6100 0.7000 0.7233 0.7617 0.8017 0.8600 5 
Std. 0.1101 0.0882 0.1037 0.1042 0.0938 0.0763 
Mean 0.6601 0.7451 0.7650 0.7801 0.8151 0.8350 6 
Std. 0.1150 0.1117 0.0944 0.1085 0.1081 0.0883 
Mean 0.6475 0.7676 0.7951 0.8125 0.8450 0.8800 7 
Std. 0.1618 0.1882 0.1961 0.2015 0.1870 0.1517 
Mean 0.6450 0.7700 0.8500 0.8600 0.8800 0.9050 8 
Std. 0.1165 0.1378 0.1434 0.1370 0.1418 0.1301 
Mean 0.7300 0.8000 0.8600 0.9000 0.9550 0.9901 9 
Std. 0.1337 0.1106 0.0876 0.0667 0.0497 0.0211 
Mean 0.6486 0.7330 0.7972 0.8500 0.8858 0.9314 10 
Std. 0.0886 0.1004 0.1148 0.1167 0.1028 0.0758 
Mean 0.6816 0.7758 0.8160 0.8494 0.8819 0.9142 Overall 
Std. 0.0676 0.0533 0.0583 0.0557 0.0527 0.0502 
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Table 7 The mean and standard deviations (std.) of precision obtained by DCBMIR on each 
class in the hela dataset when 100, 200, 300, 400, 500, and 600 images are generated 
in a retrieval result 

Class  100c =  200c =  300c =  400c =  500c =  600c =  

Mean 0.8134 0.4393 0.3013 0.2309 0.1880 0.1597 1 
Std. 0.1051 0.0367 0.0188 0.0103 0.0054 0.0029 
Mean 0.6525 0.3437 0.2320 0.1805 0.1549 0.1290 2 
Std. 0.1375 0.0521 0.0362 0.0252 0.0238 0.0198 
Mean 0.5733 0.3413 0.2366 0.1957 0.1583 0.1395 3 
Std. 0.2147 0.1035 0.0653 0.0375 0.0285 0.0139 
Mean 0.5719 0.3462 0.2487 0.1930 0.1578 0.1366 4 
Std. 0.1452 0.0736 0.0354 0.0208 0.0130 0.0083 
Mean 0.5307 0.3045 0.2098 0.1656 0.1395 0.1247 5 
Std. 0.0958 0.0384 0.0301 0.0227 0.0164 0.0110 
Mean 0.5610 0.3166 0.2167 0.1657 0.1385 0.1183 6 
Std. 0.0978 0.0475 0.0268 0.0230 0.0184 0.0125 
Mean 0.5439 0.3223 0.2226 0.1706 0.1420 0.1232 7 
Std. 0.1359 0.0790 0.0549 0.0423 0.0314 0.0213 
Mean 0.5870 0.3504 0.2578 0.1957 0.1602 0.1372 8 
Std. 0.1060 0.0627 0.0435 0.0312 0.0258 0.0197 
Mean 0.5329 0.2920 0.2093 0.1642 0.1394 0.1205 9 
Std. 0.0976 0.0404 0.0213 0.0122 0.0072 0.0026 
Mean 0.5189 0.2931 0.2126 0.1700 0.1417 0.1242 10 
Std. 0.0709 0.0402 0.0306 0.0234 0.0165 0.0100 
Mean 0.5885 0.3349 0.2347 0.1832 0.1520 0.1313 Overall 
Std. 0.0877 0.0427 0.0287 0.0211 0.0155 0.0124 

Figure 7 The relationships between precisions and recalls for DCBMIR (the proposed) and the 
other SOTA retrieval methods on the hela dataset; the horizontal axis is the recall and 
the vertical axis is the precision (see online version for colours) 
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4 Conclusions 

In this paper, a new approach is developed for accurate content-based retrieval of medical 
images. The proposed approach utilises three different histograms to represent the high 
level features and the low level textural features of a medical image together. Three pairs 
of histograms can thus be formed for two medical images. The structures of each pair of 
histograms are compared and the largest substructure shared by the two histograms is 
recognised. Such shared substructures may provide crucial information on the low level 
and high level features shared by both images. The similarity of two medical images is 
thus evaluated based on the identified shared substructures. The recognition of the largest 
substructure shared by two histograms is performed by optimally aligning the histograms. 
The optimal alignment can be efficiently computed with a dynamic programming 
approach. The optimal alignments of the corresponding histograms are used to obtain the 
largest shared substructure and a similarity value is computed for the two images based 
on the identified largest shared substructure. Experimental results obtained on two 
benchmark datasets show that the proposed approach is able to outperform SOTA 
approaches for CBMIR on both ordinary and nano-scale medical images. 

It is clear that more experiments are needed in future work to provide a more 
thorough evaluation of the retrieval accuracy of the proposed approach. In addition, more 
image features that can represent the most important aspects of a medical image can 
probably be extracted if deep learning based technique can be employed. The statistical 
properties of such features can be described by histograms and the alignment between 
such histograms with the proposed approach can probably significantly improve the 
retrieval accuracy. However, the training of the parameters in such a model cannot be 
performed with a gradient based iterative method and is thus computationally intensive. 
New computational methods are probably needed to improve the computational 
efficiency of training for a retrieval approach that combines the proposed approach and 
deep learning based methods. In addition, retrieval methods that are more service-
oriented may significantly extend its areas of applications in practice. The combination of 
the proposed method with deep learning based feature extraction techniques, fog 
computing [52] and service-oriented computing [53] thus might be an important direction 
for our future efforts to further improve the performance of the proposed approach. 
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