

International Journal of Computational Systems
Engineering

ISSN online: 2046-3405 - ISSN print: 2046-3391
https://www.inderscience.com/ijcsyse

Integrated online and offline scheduling of real-time tasks using
a co-processor scheduling unit towards dual-mode kernels

Yacine Laalaoui

DOI: 10.1504/IJCSYSE.2022.10054961

Article History:
Received: 04 March 2022
Last revised: 10 August 2022
Accepted: 10 August 2022
Published online: 19 May 2023

Powered by TCPDF (www.tcpdf.org)

Copyright © 2022 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijcsyse
https://dx.doi.org/10.1504/IJCSYSE.2022.10054961
http://www.tcpdf.org

Int. J. Computational Systems Engineering, Vol. 7, No. 1, 2022 19

Integrated online and offline scheduling of real-time
tasks using a co-processor scheduling unit towards
dual-mode kernels

Yacine Laalaoui
Department of Information Technology,
Taif University,
Taif, Kingdom of Saudi Arabia
Email: y.laalaoui@tu.edu.sa

Abstract: In this paper, we integrate online and offline scheduling of real-time tasks using two
processing elements. The scheduling task executes on the first PE (called scheduling PE or
the co-processor). User tasks execute on the second PE (called main PE). The main objective
is to decrease the scheduling overhead from the main PE. The scheduling PE executes both
online and offline algorithms. Thus, it runs on two different modes, scheduling and dispatching.
The scheduling mode executes first at selection instants using an online algorithm. The offline
algorithm executes in parallel to users tasks. Once the offline algorithm finds a feasible schedule,
the scheduling PE switches to dispatching mode. We further describe a new task states that
fit the proposed design. Finally, we explain the resolvability of the problem of nonpreemptive
scheduling using the IBM ILOG-CP solver and Xu and Parnas’s algorithm using the proposed
design.

Keywords: real-time tasks; scheduler; dispatcher; optimal scheduling; online; offline;
co-processor scheduling.

Reference to this paper should be made as follows: Laalaoui, Y. (2022) ‘Integrated online and
offline scheduling of real-time tasks using a co-processor scheduling unit towards dual-mode
kernels’, Int. J. Computational Systems Engineering, Vol. 7, No. 1, pp.19–29.

Biographical notes: Yacine Laalaoui has received his BSc, MSc and PhD from the Ecole
National Superieur d’Informatique of Algeria in 2002, 2005, and 2010 respectively. Currently,
he is an Associate Professor in Information Technology Department at Taif University. His
main research interests span artificial intelligence and operations research fields with particular
emphasise on scheduling, planning, and knapsacks to solve problems in real-time systems, cloud
computing, and transportation domains.

ReadyQueue. The latter list is used to manage the order
of arrival of tasks awaiting their execution. Each task
Ti is assigned a heuristic value according to its timing
requirements, usually called priority. This heuristic value
is used to fix the order of Ti in ReadyQueue before it
takes the processor. After priority assignment, the scheduler
selects tasks according to the decreasing or increasing
order of their priorities. The instant of taking the processor
depends on the computation times of the task currently
occupying the processor. The start time of Ti depends
also on the scheduler ability to insert idle times. When Ti

has been assigned the processor, it will be removed from
ReadyQueue.

It is known that online schedulers consider three states
for each task: ready, blocked and running (Tanenbaum and
Woodhull, 2006). ReadyQueue is the set that contains all
tasks in ready state while BlockedQueue is the set that
contains all tasks in blocked state. When a task is admitted
to be executed, the system decides whether to put this task
in ready state or in blocked state. The task waits until the

1 Introduction

Scheduling tasks is one of most important challenges in
real-time operating systems (RTOS). RTOS kernels use
either schedulers or dispatchers. The scheduler is used
if an online algorithm is integrated into the kernel. The
dispatcher is used if an offline algorithm is utilised to find
a desired solution before integration of that solution into
the kernel (Xu and Parnas, 2000). Online algorithms tend
to be effective in cases where the problem is polynomially
solvable which are rare in practice. The offline counterpart
has been proposed to bridge the limitation of online
algorithms; but, they are expensive in computational point
of view due to the NP-hardness of most of scheduling
problems (Garey and Johnson, 1979).

1.1 Online scheduling

In online scheduling, task arrival is not known to
the scheduler. Each admitted task is inserted into the

Copyright © 2022 Inderscience Enterprises Ltd.

20 Y. Laalaoui

current system time coincides with its release date to be
moved from blocked state to ready state.

Whatever the implementation of ReadyQueue
(linked-list or heap), its size is kept relatively small to
reduce the search for the task with the highest priority.
When a task is selected for execution by the scheduler,
it is then removed from ReadyQueue. In preemptive
scheduling, the task in running state can be moved again to
ReadyQueue if another task with higher priority is released
in ReadyQueue. This is not the case in non-preemptive
scheduling where the running task releases the processor
after completing all its computing units. Often, tasks are
periodic and new requests for a task are activated at regular
time intervals. The system decides to move those requests
again to ready or blocked states.

The major issue in this design is the size of the
ReadyQueue list. When this size is large, it automatically
causes much system overhead and maybe timing constraints
violation. Moreover, since the scheduling problem is
NP-Hard in most of the cases, there is no guarantee to find
the optimal schedule using a simple heuristic even if the
size of the list is small.

1.2 Offline scheduling and dispatching

Offline schedulers have the aim of producing desired
solutions out-field. Unlike the online approach, the offline
scheduling algorithm has a complete knowledge about the
task set to be scheduled. The result is saved into an array
data structure to be consulted later at run-time by the
dispatcher.

The dispatcher is the RTOS component that assigns jobs
to processors based on their order in the pre-prepared array
using O(1) time complexity. The dispatcher is invoked
the first time to select the first job to take the processor.
The dispatcher is invoked again after the completion of
the first job. Similarly, the second job is selected from the
pre-prepared array. All remaining jobs will be selected after
each others with respect to the pre-computed order.

The common property of all offline algorithms is the
exponential time complexity because of the NP-hardness
of the problem. But, some other existing algorithms have
an exponential space complexity too such as those based
on branch-and-bound. Most of the proposed algorithms
that solve the problem of scheduling tasks under timing
constraints could be found in Shepard and Gagne (1991),
Xu and Parnas (1992), Xu (1993), Cavalcante (1997) and
Abdelzaher and Shin (1999).

1.3 Aim of this paper

In this this paper, we propose a co-processor scheduling
approach that combines both online and offline approaches
in the hope of producing better results.

This paper aims the execution depicted in Figure 1(b)
instead of the classical execution where both the dispatcher
and the scheduler modules are executed on a single
processing element (PE) Figure 1(a).

In Figure 1(b), the dispatcher module is executed by
the main processing element (MPE) while the scheduling
module is executed by the scheduling processing element
(SPE). The task called Ts is the scheduling program. It has
variable computation durations because of the variation of
the size of ReadyQueue. In this design, SPE prepares the
task with the highest priority and the dispatcher reads only
that task instead of searching it from the set ReadyQueue.

Figure 1 Scheduling and dispatching times. Ts is the
scheduling task, (a) serial execution of user and
system tasks (b) parallel execution of the scheduling
overhead

Scheduling and Dispatching instants

Ti Tj Tk

Main PE

(a)

Ts TsTs

Dispatching instants

Ti Tj Tk

Main PE

Scheduling PE

(b)

Notes: Ti, Tj and Tk are user tasks.

The remainder of this paper is organised as follows.
Section 2 presents the most related works. Section 3
gives a colloquial motivation. Section 4 shows our task
model. Section 5 describes the proposed design with some
other consideration in Section 6. Section 7 shows the
experimental work. The paper is concluded in Section 8.

2 Related work

Burleson et al. (1999) proposed a scheduling coprocessor
for their spring system. Their proposed design uses an
iterative heuristic to find good solutions. This means
the non-optimality of their scheduling approach. Starner
et al. (1996) proposed also scheduling unit to increase
time predictability in real-time systems. In the latter
design, the scheduling unit executes a priority-based simple
heuristic algorithm in preemptive context. Salcic et al.
(2006) proposed a scheduler support unit for reactive
microprocessors. All cited works use simple heuristics
which are limited in terms of finding good solutions. Such
limitation is due to the lack of using optimal algorithms. To
overcome this problem, efficient artificial intelligence (AI)
algorithms and solvers are required.

Integrated online and offline scheduling of real-time tasks using a co-processor scheduling unit 21

Wang et al. (2003) integrated online and offline
schedulers to address the problem of accommodating
event-driven tasks into time-driven schedules. The offline
algorithm produces a pre-schedule of the time-driven
workload with sufficient embedded slacks to accommodate
the event-driven workload. The online scheduler follows
the execution order provided by the offline scheduler to
assign tasks to the processor. Their proposed approach uses
a single PE that schedules and executes users tasks. Further,
the offline component executes independently of the whole
system to produce the desired solution. A similar approach
have been proposed in Isovic and Fohler (2009) to address
multiple sets of tasks: periodic, sporadic, and aperiodic.

All existing approaches are either pure online or pure
offline. Purely online approaches can be found in Burleson
et al. (1999), Starner et al. (1996) and Salcic et al.
(2006). Purely offline approaches can be found in Xu and
Parnas (1992, 1993) and Cavalcante (1997). Purely online
approaches use, solely, simple heuristics that are executed
by the co-processor unit while purely offline approaches
use, solely, complex AI solvers to be executed by the
co-processor unit or by the same processor executing users
tasks. Additionally, in purely offline approaches such as
Wang et al. (2003) and Isovic and Fohler (2009), the online
component cannot start until the completion of the offline
component.

In this paper, we propose the integration of both
scheduler and dispatcher into the same RTOS kernel. To this
end, we use a parallel architecture with two PEs to schedule
and execute users tasks.

3 Colloquial motivation

In this section we give a brief colloquial example to the
reader in order to simplify the presentation of the proposed
approach.

Consider a mechanical repair shop with two persons, the
manager and the technician. The manager is responsible on
accounting and scheduling repair requests. The technician
is taking care of the repair tasks. When requests arrive at
early morning, the manager starts doing scheduling, then
he will give the resulting plan to the technician to start the
execution (serving clients) according to the provided plan.

The manager can either give an exact solution or an
approximate one. The exact solution provides the optimal
value, for example the optimal makespan (latest completion
time). The approximate solution gives a feasible solution
not necessarily the optimal one. The fact is that getting
the optimal solution using an exact algorithm is expensive
in computational viewpoint due to the NP-hardness of the
scheduling problem. This means, the manager can stay days
doing the scheduling task if the number of arrived requests
is big. At this time, the technician is idle awaiting the result
of the scheduling task. It is clear that this situation is not
practical at all; the technician should not be idle. Therefore,
providing an approximate solution by the manager seems to
be more practical simply because it can be provided quickly
(using polynomial time algorithm).

In this paper, we propose to combine both approaches.
The manager computes a quick plan and gives it back to
the technician to start serving clients. Once the technician
starts working, the manager will try to get the optimal plan
whatever the time that will take. Once the optimal plan is
ready, the technician can switch from the approximate plan
to the optimal one.

From the operating systems point of view, the
co-processor scheduling unit gives a quick approximate
schedule to the main processor (to execute user activities).
Then, the co-processor unit will take its time to find the
optimal solution; once found, the main processor can switch
from the approximate schedule to the optimal schedule.
This design can be of potential use in real-time systems
where the problem of scheduling remains a major issue.

4 Preliminaries

4.1 Notations and definitions

The following notations and definitions are used along the
present paper:

• n: The number of tasks to be scheduled.

• Ti: A task i, i = 1, ..., n.

• Π = {Ti|i = 1, ..., n} it is the set of all tasks to be
scheduled.

• ri: Release date of the task Ti.

• Ci: Computation time of the task Ti.

• Di: Deadline of the task Ti. It is assumed that it must
be greater than or equal to its computation time Ci,
otherwise no feasible schedule could exist.

• di: The relative deadline of the task Ti.

• Pi: Period of the task Ti.

• LCM : The least common multiple of all task periods
from Π. It is also called the meta-period. It defines
the scheduling interval [0, LCM] in which all tasks
must be scheduled. Each task Ti from Π has exactly
LCM
Pi

jobs (called also requests or invocations). In a
periodic real-time system, the same jobs are released
at regular LCM meta-periods infinitely. Finding the
sequence of satisfied job within the first meta-period
suffices to predict the real-time system (Xu and
Parnas, 1993).

• Γ = {Ti,k|1 ≤ i ≤ n, 1 ≤ k ≤ LCM
Pi

}: It is the set of
all jobs resulting from each task.

• si,k: The start time of the kth job of the task Ti.

• ei,k: The end time of the kth job of the task Ti.

• D ReadyQueue: It is the set of ready jobs computed
by an offline algorithm. This set is consulted
periodically by the dispatching module.

22 Y. Laalaoui

• S ReadyQueue: For convenience, we use this notation
to emphases the set of ready jobs of an online kernel
instead of ReadyQueue notation.

• ReadyRequest: It stores the most eligible job to move
into running state either in dispatching mode or
scheduling mode.

• NEA: Non-efficient algorithm that is often used in
online approaches. We assume that NEA has a
polynomial time complexity.

• EA: Efficient algorithm that is often used in offline
approaches. We assume that EA is optimal and it has
an exponential time complexity.

A task Ti in a schedule is said to be satisfied when its
deadline is met; otherwise it is said to be unsatisfied.

4.2 Task model

A typical real-time application is a finite set Γ of
periodic independent tasks to be scheduled on a single PE
architecture. Each task Ti is characterised by the standard
timing parameters: <ri, Ci, Di, Pi>. Let S be the sum of
all jobs’ computing units:

S =

|Γ|∑
i=1

Ci (1)

Let U be the system load for the task set Π that is defined
as follows:

U =
n∑

i=1

Ci

Pi
(2)

We assume that preemption between tasks is not
allowed and resources can be shared without high
level synchronisation tools (Yacine and Nizar, 2014).
Non-preemptive scheduling has many benefits over
preemptive scheduling that can be summarised in the
following:

• Non-preemptive schedulers offer much less switching
context and system overhead.

• Non-preemptive schedulers on single processor
systems guarantee exclusive access to shared
resources without utilising complex resource
management protocols.

• Non-preemptive schedulers are widely used in
message scheduling in distributed systems where the
atomic unit to send and receive data is a frame with a
fixed size.

• Non-preemptive schedulers are more suitable in
real-time data-bases where transactions are usually
performed non-preemptively.

• Device access and I/O tasks are performed
non-preemptively.

4.3 Objective function

The objective is to find the optimal/near-optimal solution
which is a sequence of all satisfied jobs. If this solution
does not exist, then a solution that has the maximum
lateness (max lateness) would be returned. This means
tasks are authorised to violate their deadlines. The lateness
(li) of each job Ji is defined as follows:

li = MIN(ei − di). (3)

The maximum lateness is taken over all obtained latenesses:

max lateness = MAXJi∈Γ(li) (4)

Our final target is to assign jobs to the processor in
accordance to their order in the optimal/near-optimal value
with the respect to the objective function. For example,
if the NEA produces a solution with some jobs violating
their timing constraints, the EA algorithm attempts to find
a solution with all jobs meeting their timing requirement if
it exists. In the remainder of this paper, we will refer to this
solution as the desired solution.

4.4 Example

Figure 2 shows an example of running two periodic tasks
during the first meta-period. The first task has exactly two
jobs and the first task has exactly one job over the interval
[0, LCM]. LCM is equal the period of the second task P2.
P2 is equal the double of P1.

Figure 2 Example of two periodic tasks during the first
meta-period (see online version for colours)

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����T1

T2

P1 P1

First meta−period = P2

r1
d1

d2

r2

r1+P1

r2+P2

Notes: Up-arrows are release dates and down-arrows
are deadlines. (r1, d1, P1) and (r2, d2, P2) are
tasks’ timing parameters (release dates,
relative deadlines and periods respectively).

5 The proposed approach

The proposed approach uses parallel processing to solve
the problem of scheduling non-preemptive tasks. We
also combine online and offline scheduling to reach the
optimal/near-optimal sequencing of all jobs.

Integrated online and offline scheduling of real-time tasks using a co-processor scheduling unit 23

5.1 Two PEs architecture

First, we describe the suitable hardware architecture. We
use two PE called the SPE and the MPE. The first is
the co-processor unit that is dedicated to execute the
scheduling task. The second is dedicated to execute the
user tasks. The SPE is tasked to prepare the desired
solution by scheduling ready requests. The MPE executes
ready requests one-by-one in the order prepared by the
SPE. Therefore, the load on the MPE will be significantly
decreased compared to the classical design in which both
user and systems tasks are executed on the single processing
unit.

We propose to use only one common memory to share
data between both SPE and MPE. A cache memory can
be added to the MPE for better performance. There is no
need to add such type of memory for the SPE since the real
content of ReadyQueue is required during each scheduling
time. Any change made by the first PE (SPE) in the shared
memory should be visible to the second PE (MPE).

Another important component in this architecture is
the linking bus for possible communications between SPE,
MPE, and the shared memory. Two buses have been used
to connect all components together. The first bus connects
the MPE with the shared memory. The second bus connects
the SPE with shared memory too. This means that each PE
can access the bus on its own and no contention is possible.

We propose to use a RAM memory (with a cache
memory for better performance) that can connect two buses
and as a result it can be shared by two PEs as can be
seen in Figure 3. Each PE has its own bus to connect to
the shared memory. The access to non-shared zones can
be performed easily without any bottleneck. The protection
of shared zones would be left to the programmer by using
standard protection tools such as semaphores.

Figure 3 The overall hardware architecture
Dedicated ports

Main PE (MPE)
Scheduling PE (SPE)

bus1

bus2
Main memory

kernel space

user−space

5.2 Scheduling and dispatching modes

Our second point to explain is the two modes of the kernel:
scheduling and dispatching modes. The scheduling mode
runs if the desired solution has not yet been found. Once
the latter solution is found, the kernel switches to the
dispatching mode. Therefore, a Boolean variable is needed

to check which mode to use by the kernel. Let us call
B Dispatch such Boolean variable. B Dispatch is set
initially to false since the scheduling mode is firstly used
before finding the desired solution. Algorithm 1 shows
how to switch between scheduling and dispatching modes.
Notice that this code is a system task and it executes in
parallel to user’s tasks on the SPE.

Algorithm 1 Dispatching and scheduling switches
1: if not (B Dispatch) then
2: use scheduling mode
3: else
4: use dispatching mode
5: end if

If B Dispatch is false, then the kernel uses the scheduling
mode. This means that usual heuristics, such as RM and
EDF are used to select jobs to be assigned to the MPE.
The variable B Dispatch is set to true once the desired
solution has been found, i.e., once the EA algorithm
terminates with that desired solution. If B Dispatch is true,
then the dispatching mode will be used infinitely or at least
until changes of the current task set, i.e., after admission of
new task(s).

Figure 4 shows a finite automata representation of a
dual-mode kernel. When the kernel starts, it enters the
scheduling mode. The kernel stays (or looping) in the
scheduling mode until finding the desired solution by the
SPE. The transition to the dispatching mode is performed in
both directions scheduling to/from dispatching. The kernel
stays (looping) in dispatching mode infinitely or until
changes of the task set, i.e., after arrival of new tasks.

Figure 4 Finite automata representation of a dual-mode kernel

Scheduling Dispatching

ModeMode

5.3 Scheduling and dispatching modules

Our third point to explain is the scheduling and dispatching
modules. First, we propose to break ReadyQueue set
into two sets called D ReadyQueue and S ReadyQueue.
S ReadyQueue is used during the scheduling mode while
D ReadyQueue is used during the dispatching mode
because the order of jobs is different during each mode.
D ReadyQueue is the set of jobs at ready state during the
scheduling mode. D ReadyQueue is the set of jobs that are
ready during the dispatching mode.

24 Y. Laalaoui

5.3.1 Dispatcher module

The dispatching module is executed by the SPE and it
is simplified as much as possible to reduce the time
complexity to O(1). The SPE reads each ready task from
the shared zone ReadyRequest stored in the main memory.
There is no need to search for the most eligible request
from ReadyQueue. Let Td be the dispatching task and Cd

its computation time. This task executes once the desired
solution has been found and stored in D ReadyQueue set.

5.3.2 Scheduling module

In fact, the SPE has two main tasks to execute when the
relevant event is received namely the scheduling task, noted
Ts, and the dispatching task, noted Td. The scheduling task
Ts is a composite task that includes the following sub-tasks:

1 Selects the next job from S ReadyQueue: If the
complete feasible solution has not yet been prepared
by the SPE, then the SPE works as usual in online
mode. The SPE selects the next job to be written into
ReadyRequest zone according to a plain heuristic such
as EDF and RM. Notice that The SPE takes jobs from
the set S ReadyQueue and not from D ReadyQueue
set. Let us call this task Ts,1 and Cs,1 is its
computation time.

2 Calculation of the LCM: This calculation involves
adding the relevant jobs for each task according to its
period. Each new job is appended to the set open.
The latter set is the input to the planning (scheduling)
algorithm to produce the desired solution including
jobs that will be stored in D ReadyQueue. It is well
know that the task of calculating the LCM has an
exponential time complexity; thus we limit our study
to cases where periods are harmonic (Choquet-Geniet
and Grolleau, 2004). Let us call this task Ts,2 and
Cs,2 is its computation time. The latter task executes
independently of the task Ts,1.

3 Execution of the scheduling algorithm: This task
executes in parallel to the user tasks to find the
desired solution. It reads inputs from the set open
using producer/consumer paradigm. Notice that the
producer is standard while the consumer has to read
all non-blocked requests from the buffer and put them
into open. The input to the scheduling algorithm is
the set open and the output is the set D ReadyQueue.
The nature of the scheduling algorithm has an impact
on the efficiency of this new design since it takes
more time than simple heuristics. This issue will be
discussed separately in the next sections. Let us call
this task Ts,3 and Cs,3 is its computation time.

Let Cs be the computation time of the scheduling task Ts.
Cs can be computed as follows:
Cs = Cs,1 + Cs,2 + Cs,3 (5)

Ts,1 is the task that should be executed first in order
to select the next job from S ReadyQueue because the

expected desired solution is not ready at time t equal 0.
Further, this task should not be preempted by any other
task namely Ts,2 and Ts,3. If Ts,2 could be preempted only
by the task Ts,1. The latter preemption happens in case
of a great number of jobs that must be appended to the
set open. Ts,2 resumes its execution after the completion
of Ts,1 (selection of one job only). Ts,3 is the task that
takes the longest computation time since it executes the
EA algorithm. Ts,3 executes after the completion of Ts,2

because after that time the set open becomes full of all jobs
to be scheduled. The task Ts,3 could be preempted by Ts,1

only.

5.3.3 Required number of meta-periods

Given a set of jobs Γ to be scheduled within a period
equals the meta-period LCM . The objective is to find the
minimum number of meta-periods sufficient to reach the
desired solution by the SPE. In other words, how many
meta-periods are required to find the desired solution?

Let z be the minimum number of meta-periods to reach
this desired solution. z can be computed as follows:

z =

⌈
Cs

S

⌉
(6)

where Cs is the computation time of the scheduling task
which is also the time taken by the search algorithm to find
the desired solution.

It is worth to note that the SPE is not given the
total time Ts during each meta-period since the latter PE
executes the scheduling task in addition to the search task.
During each meta-period, the SPE takes a slot from Ts until
finding the desired solution. Therefore, the total number
of required meta-periods should be minimised. Since the
latter problem is NP-Hard, the time Ts taken by the SPE
is exponential (Jeffay et al., 1991). The ideal case is that
an EA algorithm is able to find the optimal solution within
only one meta-period (z equal to 1). In other words, the
sum of all jobs S processing times is enough for the EA to
find the desired solution.

To simply the proposed design, we assume that the
earliest switching to dispatching mode could be done
during the second meta-period. This means that the desired
solution has been found during the first meta-period and z
is greater than or equal 1. Switching from scheduling to
dispatching mode during the first meta-period is left for
future research works.

5.3.4 Example

Consider an example of a job set Γ with an LCM equal
500 units of time. Assume that the SPE could execute
the scheduling algorithm during 250 units of time during
each LCM . Recall that the SPE will be busy in doing
the scheduling task only when the MPE is busy running
user tasks. The 250 units of times is the value of S that
is equal the sum of all jobs’ computing units. Assume
that the scheduling algorithm takes 1,000 units of time to

Integrated online and offline scheduling of real-time tasks using a co-processor scheduling unit 25

find out the desired solution. Thus, the number of required
meta-periods z is equal 1,000

S that is equal 4. After 4
meta-periods, the desired solution will be ready and the
RTOS kernel must switch to the dispatching mode instead
of the continues use of the scheduling mode.

5.4 Task states and shared memory zones

Our fourth point to explain is the states of real-time task
when the co-processor is utilised to schedule tasks. In
the literature, there is a missing piece of information, yet
important, which is the adequate task states when using two
communicating PEs to schedule/run real-time task sets. In
the present section, we will describe our new states of a
real-time task.

When a task is accepted by the admission controller,
it is in the created state and it is saved into a shared
memory zone called buffer. When the ready task Ti is
selected for execution (to running state), its next release
Ti+1 moves to the state blocked and it is stored in buffer
zone. The SPE reads task requests from that shared zone
to prepare the desired solution where selected requests are
moved now to the new state called ready-ahead. The most
eligible task is then selected and written into the shared
zone called ReadyRequest with a flag ready state. The MPE
executes the dispatcher module to take the ready request
from ReadyRequest zone and move it to the running state.

Communication points between both PEs are buffer
and ReadyRequest zones. Therefore, an adequate
communication and synchronisation tools are required to
protect them again simultaneous access. The producer/
consumer paradigm could be used to protect the buffer
and signals to protect ReadyRequest. It is worth to note
that all used data structures are stored in the kernel
space. The SPE keeps all ready-ahead requests in both
open and D ReadyQueue where the latter contains the
expected desired solution and the former contains a set
of jobs not yet appended to the expected execution plan
(D ReadyQueue). When the SPE terminates the scheduling
task, the most eligible request is selected from the front of
the set D ReadyQueue and written into ReadyRequest zone.
Then, the MPE selects the ready job from ReadyRequest
zone.

Communications between both MPE and SPE are done
using producer/consumer paradigm. The communication
points are shown in Figure 5 in red color called buffer
and ReadyRequest. The buffer contains N items while
ReadyRequest has only one item and the access to this zone
is done in exclusive mode using signal/wait mechanism
on dedicated ports for example. It is worth to note that
the producer is a standard module while the consumer has
to read all the buffer items and put them into the set
open. In fact, we mean by a standard module the action
of putting/getting only one item from/into the shared buffer
and here we make a slight modification of the consumer to
allow moving more than one item from buffer to open.

Figure 5 Tasks states in non-preemptive scheduling on PEs
(see online version for colours)

Admission−Control

Running

Ready

Ready−ahead

Blocked

Admitted
RedayRequestBuffer

S_ReadyQueue

D_ReadyQueue

Open

SPE

SPE/MPE

MPE/SPEMPE

Figure 6 Communication zones and task’s states, (a) buffer
zone (b) ReadyRequest zone (see online version
for colours)

Buffer

BlockedCreated

MPEMPE

SPE

(a)

ReadyRequest Ready

Blocked Running

Ready−ahead

SPE

MPEMPE

(b)

Figure 7 Tasks states along the execution (see online version
for colours)

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������Task

0

BlockedRunningReadyDosen’t exist Ready Running

t

6 Further considerations

6.1 Context switching in SPE

The SPE executes two different algorithms sequentially: the
NEA and the EA algorithms. The NEA, such as RM or
EDF, executes to select the next job to be sent to the MPE.
Recall that our aim in this paper is to reduce the scheduling
overhead to O(1) time complexity. This means that the next
job to be executed on the MPE should be ready before the
completion of the job currently using the MPE. The NEA is
executed before finding the desired solution and after that
the RTOS kernel switches to the dispatching mode as stated
above. Once the next job has been selected using the NEA,
the second algorithm executes the search algorithm to find
the desired solution.

Each time the scheduling mode executes (task Ts,1),
there is no need to save the context since this mode ends
at selecting the task of the highest priority. The EA is
executed until finding the desired solution. The task of
executing the EA algorithm must be preempted from time

26 Y. Laalaoui

to time to switch the SPE to the scheduling mode. Each
preemption needs saving the context of the EA.

Further, the context must be restored when the EA
algorithm is executed. Notice that the first time when the
EA is executed, there is no context to restore as it is shown
in Algorithm 2.

Algorithm 2 Context saving/restoring points
if not (B Dispatch) then

1. Execute the non-efficient algorithm (Ts,1)
Restore− the− context− if − any
2. Calculate the LCM (Ts,2)
Save− the− context− if − preemption
Restore− the− context− if − any
3. Execute the efficient algorithm (Ts,3)
Save− the− context− if − preemption

else
Use dispatching mode (Td)

end if

The overhead of switching the context on the SPE ends
once the desired solution is found. No more context
switching would be needed. It is clear that this overhead on
the SPE does not affect the user tasks on the MPE. Thus,
it does not affect the whole system performance.

6.2 Offline scheduling algorithm to use

The SPE executes a specific EA scheduling algorithm
to prepare the desired solution. The input to the
EA algorithm is the set open, and its output is
a solution stored in D ReadyQueue. In AI point of
view, this problem is a constraint satisfaction problem
(CSP) and algorithms that solve this type of problems
are optimal or non-optimal (Yacine and Nizar, 2014).
Optimal algorithms, that we called EA algorithms, provide
the guarantee of finding the optimal solution. Optimal
algorithms are either complete-and-repair (Minton et al.,
1992) or backtracking algorithms Rossi et al. (2006).
Complete-and-repair algorithms have often exponential
space complexity because they are often based on
branch-and-bound. Backtracking algorithms have often
polynomial/pseudo-polynomial space complexity because
they based on depth-first-search (Van Beek, 2006).

Now, the question is that which scheduling algorithm is
more suitable to the proposed design? Complete-and-repair
or backtracking? Let us examine the complexity of each
class of algorithms. Complete-and-repair algorithms have
been widely used in offline scheduling of real-time tasks
(Shepard and Gagne, 1991; Xu and Parnas, 1992; Xu, 1993;
Cavalcante, 1997; Abdelzaher and Shin, 1999). Since the
problem under investigation is NP-hard, then the space
complexity is exponential because all these techniques are
based on branch-and-bound. The size of the search tree
grows exponentially with the input job set size. Thus,
the kernel-RAM space could be exhausted if the RTOS
integrates this type of techniques.

Remark 6.1: If the RTOS integrates a branch-and-bound
algorithm, then there is a risk of exhausting the kernel
RAM space.

Often, the kernel space is smaller than the user
space. Therefore, it is not recommended to use
branch-and-bound algorithms to produce the desired
solution by the SPE to avoid the risk of exhausting
the kernel space. In turn, backtracking algorithms have
polynomial/pseudo-polynomial complexity. Thus, it is
almost impossible to exhaust the whole RAM space when
these approaches are used. This feature makes backtracking
approaches more suitable to be integrated into an RTOS
kernel.

To summarise, a suitable scheduling algorithm for the
above architecture should have two main properties:

1 Continues improvement of the solution quality: The
used algorithm should be able to improve the solution
quality until finding the optimal one. Optimal
algorithms have this feature since they guarantee to
reach the optimal solution.

2 Linear space complexity: The used algorithm must
have a polynomial/pseudo-polynomial space
complexity to keep the main memory less used by the
OS kernel. We strongly believe that there is no need
to go for an algorithm with an exponential space
complexity to avoid memory exhaustion situations.

7 Experimental study

The objective of the present experimental work is provide
the reader an idea on how the proposed approach works.
The evaluation of existing algorithms is not within the
scope of the present paper. We will use two existing
algorithms and we will show their behaviour when applied
to schedule sample real-time task sets.

7.1 Experimental setup

7.1.1 IBM ILOG-CP solver

IBM ILOG-CP solver is one of the widely used tools in
constraint programming. IBM ILOG-CP is an exact solver
that uses efficient constraints programming techniques
namely Backtracking and propagation algorithms to search
for desired solutions. In the present study, we used IBM
ILOG-CP solver version 12.2 on laptop machine with MS
Windows operating system, Intel CORE i5 processor and 6
GB of RAM space. In software engineering point of view,
there is no need to develop from scratch an ILOG-like
solver to be integrated into a RTOS kernel because
this solver offers very useful application programming
interfaces. IBM ILOG-CP solver has a specification
language to write a constraint program for the problem
to be solved (Laborie and Rogerie, 2008, 2009). The
constraint program that we wrote to solve the problem

Integrated online and offline scheduling of real-time tasks using a co-processor scheduling unit 27

of single processor scheduling of tasks with their own
timing constraints non-preemptively is shows in Figure A1.
This constraint program uses interval variables and
nonOverlap features to boost the search performance of
this solver.

7.1.2 Xu and Parnas algorithm

Xu and Parnas is a widely used brand-and-bound
algorithm to solve the problem of preemptive scheduling
of hard-real-time tasks under timing, precedence and
exclusion constraints on single processor architecture. The
implementation of this algorithm has been done using
C++ on the same laptop machine. In order to force the
non-preemptive scheduling of the input task sets, we have
added exhaustively exclusion constraints between each pair
of tasks. This algorithm has been added to the current
study in order to show empirically that algorithms with
exponential space complexity can generate a great number
of nodes; thus can lead to the exhaustion of the RAM space.

7.1.3 Time quantification

In all our experimental work, we disregarded the operating
system overhead times. We took the time reported by the
solver only which is the amount of time to find the optimal
solution for each task set. To compute property the optimal
solution, we need the quantification of the time units used
in all timing parameters <r, C, D, P>. In the following,
we assume that each computing unit is equal to 0.001
second.1 For example if a task T has <1, 2, 10, 20>
timing parameters, then the new parameters according to the
proposed assumptions are: <0.001, 0.002, 0.01, 0.02>. If the
LCM is equal to 500, then the new value is 500 ∗ 0.001
which is equal to 0.5 second. If the S value is 250, then
its new value is 250 ∗ 0.001 which is equal to 0.25 second.
Thus, if IBM ILOG-CP solver takes ten seconds to find
the optimal solution, then there are 10/(0.25) meta-periods
which is equal to 40. After 40 meta-periods, no more time
will be wasted by the SPE.

7.2 Experimental results

7.2.1 Results on nine-pumpe problem instance

Mine-pumpe is a real-world example used in academia
that contains 782 real-time jobs according to the timing
parameters set in Cavalcante (1997). The corresponding
system load U is 0.3045. This job set can be considered
relatively large. S is equal to 9,135 and LCM is equal
to 30,000. Thus, the quantified timing parameters are 30
seconds and 9.135 seconds for LCM and S respectively.
This job set is solvable at root node using IBM ILOG-CP
solver within a very short time slot equal to 0.1 seconds.
Thus, there are 0.1/9.135 which should be approximated to
1. This means that only one meta-period is quite enough to
find the solution of jobs that satisfy all timing constraints.

This example confirms that sometimes even large
real-time task sets could be solved within a very short

period. It is not recommended to let the online scheduler
violating deadlines infinitely if the input task set is easy to
solve using an EA algorithm.

Table 1 IBM ILOG-CP solver results

Task #jobs S U ILOG-CP Xu and Parnas

set Time (sec) z #nodes Time (sec) z

I1 54 462 0.924 37 81 4 0.211 1
I2 55 463 0.926 7.5 17 4 0.222 1
I3 56 464 0.928 7 16 4 1.77 4
I4 57 467 0.934 16 35 4 0.237 1
I5 58 468 0.936 16 35 8 1.474 4
I6 55 483 0.966 8 17 6 0.363 1
I7 56 484 0.968 7.5 16 6 1.61 4
I8 57 485 0.97 7.5 16 6 0.4 1
I9 58 486 0.972 7.5 16 6 0.415 1
I10 59 487 0.974 7.7 16 6 1.565 4
I11 60 488 0.976 3.5 8 6 0.471 1
I12 61 474 0.948 5.5 12 6 0.42 1
I13 62 476 0.952 2.7 6 7 1.452 4
I14 63 477 0.954 13 28 7 1.422 3
I15 64 480 0.96 6 13 1,812 142.825 298
I16 65 481 0.962 6 13 1,812 149.88 312
I17 57 489 0.978 40 82 12 1.84 4
I18 63 485 0.97 35.5 74 7,401 496.381 1,024
I19 63 481 0.962 13.5 29 8 1.348 3
I20 64 482 0.964 73.5 153 9 1.211 3
I21 65 485 0.97 33 69 18 1.663 4
I22 66 486 0.972 33 68 25 2.492 6
I23 67 487 0.974 34 70 25 3.383 7
I24 68 488 0.976 30 62 25 3.318 7
I25 69 489 0.978 35 72 25 3.175 7
I26 54 458 0.916 8 18 15 1.242 3
I27 67 484 0.968 17.5 37 6 0.6 2
I28 68 485 0.97 35 73 6 0.633 2
I29 69 486 0.972 35 73 6 1.32 3
I30 70 487 0.974 159 327 6 1.297 3

Notes: The time is measured in seconds. the LCM is
500 units of time. Each unit of time
corresponds to 0.001 second.

7.2.2 Results on pseudo-random task sets

We have developed a pseudo random generator to get 30
task sets. The pseudo-random generator uses an initial well
known task set that have a feasible solution. Based on such
feasible solution, we add more tasks by exploiting available
idle times. In this way, we ensure that each generated task
set would have a feasible solution too.

The used initial task set contains 26 jobs with a load
0.8 while the LCM is equal 500. All generated task sets
are difficult to solve since the IBM ILOG-CP solver takes
a long time to find the optimal solution using the constraint
program described in Appendix.

Table 1 shows the time taken by each solver ILOG-CP
and Xu and Parnas. The latter solver succeeds in finding
the feasible solution within a time less than ILOG-CP

28 Y. Laalaoui

solver in most of the cases. Nevertheless, Xu and Parnas
algorithm gives a very long time in three cases. This
difference of behaviour is related to the nature of algorithm
itself. ILOG-CP solver uses backtracking techniques with
only one unsatisfied job at the end of each partial
feasible solution while Xu and Parnas’s algorithm uses
branch-and-bound techniques and it attempts to satisfy
many unsatisfied jobs at each node.2

Xu and Parnas algorithm has the drawback of the
increased size of the search tree. As can be seen in Table 1,
this algorithm can generate 7,400 nodes in relatively small
task sets (with a number of jobs below 63). This result
provides a good example when the scheduling can generate
a great number of jobs for small task sets. Therefore, we
believe that this algorithm is not suitable to be built into an
RTOS kernel upon the risk of exhausting the kernel RAM
space.

We found that IBM ILOG-CP solver takes the longest
time to find the feasible solutions as can be seen in Table 1.
However, its space cost is very small and it has been
neglected. Therefore, no risk to exhaust the kernel RAM
space.

8 Conclusions

In this paper, we proposed the integration of both scheduler
and dispatcher into the same RTOS kernel. To this end, we
have used a parallel architecture with two PEs to schedule
and execute users tasks. The scheduling is performed on
the first PE, called SPE. User tasks are executed on the
second PE, called MPE. The SPE executes both online
and offline algorithms. This means it runs on two different
modes namely, scheduling and dispatching modes. The
scheduling mode is executed first at selection instants using
an online algorithm. The offline algorithm is executed in
parallel to users tasks. Once the offline algorithm finds
an optimal/near-optimal schedule, the SPE switches to
dispatching mode. We have also described a new task states
that fits the proposed design with possible communications
between both PEs.

The new design is also subject to many possible
improvements. Multiprocessor systems, sporadic and
aperiodic tasks, preemptive context with sharing resources
and data dependencies are among the important challenges
in real-time systems area which should be studied
extensively according to the proposed design. We strongly
believe that this new design is very promising to help
solving those challenges.

Acknowledgements

The author would like to thank anonymous reviewers for
their valuable comments to improve the presentation of this
work.

References

Abdelzaher, T.F. and Shin, K.G. (1999) ‘Combined task and
message scheduling in distributed real-time systems’, IEEE
Transaction on Parallel and Distributed Systems, Vol. 10,
No. 11, pp.1179–1191.

Burleson, W. et al. (1999) ‘The spring scheduling coprocessor: a
scheduling accelerator’, IEEE Transactions VLSI System, Vol. 7,
No. 1, pp.38–47.

Cavalcante, S.V. (1997) A Hardware-Software Co-Design System for
Embedded Real-Time Applications, PhD thesis, University of
Newcastle upon Tone.

Choquet-Geniet, A. and Grolleau, E. (2004) ‘Minimal schedulability
interval for real-time systems of periodic tasks with offsets’,
Theoretical Computer Science, Vol. 310, Nos. 1–3, pp.117–134.

Garey, M.R. and Johnson, D.S. (1979) Computers and Intractability.
A Guide to the Theory of NP-Completeness, Freeman, New
York, USA.

Isovic, D. and Fohler, G. (2009) ‘Handling mixed sets of tasks
in combined offline and online scheduled real-time systems’,
Real-Time Systems, Vol. 43, No. 3, pp.296–325.

Jeffay, K., Stanat, D.F. and Martel, C.U. (1991) ‘On non-preemptive
scheduling of periodic and sporadic tasks’, Proceedings of
the 12th IEEE Symposium on Real-Time Systems, December,
pp.129–139.

Laborie, P. and Rogerie, J. (2008) ‘Reasoning with conditional
time-intervals’, 21st International FLAIRS Conference.

Laborie, P. and Rogerie, J. (2009) ‘Reasoning with conditional
time-intervals’, 22nd International FLAIRS Conference.

Minton, S. et al. (1992) ‘Minimizing conflicts: a heuristic repair
method for constraint satisfaction and scheduling problems’,
Artificial Intelligence, Vol. 58, Nos. 1–3, pp.161–205.

Rossi, F., Van Beek, P. and Walsh, T. (2006) Handbook of Constraint
Programming, Elsevier Publisher, ISBN: 1574-6525.

Salcic, Z. et al. (2006) ‘The spring scheduling coprocessor: a
scheduling accelerator’, 12th IEEE International Conference on
Embedded and Real-Time Computing Systems and Applications,
pp.368–372.

Shepard, T. and Gagne, M. (1991) ‘A pre-run-time scheduling
algorithm for hard real-time systems’, IEEE Transaction on
Software Engineering, Vol. 17, No. 7, pp.669–677.

Starner, J. et al. (1996) ‘Real-time scheduling co-processor in
hardware for single and multiprocessor systems’, EUROMICRO
Conference, pp.509–512.

Tanenbaum, A. and Woodhull, A. (2006) Operating Systems Design
and Implementation, Prentice Hall, ISBN-10: 0131429388.

Van Beek, P. (2006) ‘Backtracking techniques for constraint
satisfaction problems’, in Rossi, F., Van Beek, P. and Walsh, T.
(Eds.): Handbook of Constraint Programming, Chapter 4,
pp.85–118, Elsevier Publisher, Netherlands.

Wang, W., Mok, A.K. and Fohler, G. (2003) ‘Pre-scheduling:
integrating offline and online scheduling techniques’, Lecture
Notes in Computer Science, Vol. 2855, pp.356–372.

Xu, J. (1993) ‘Multiprocessor scheduling of processes with
release times, deadlines, precedence and exclusion relations’,
IEEE Transaction on Software Engineering, Vol. 19, No. 2,
pp.139–154.

Integrated online and offline scheduling of real-time tasks using a co-processor scheduling unit 29

Xu, J. and Parnas, D. (1992) ‘Pre-run-time scheduling of processes
with exclusion relations on nested or overlapping critical
sections’, 11th IEEE International Phoenix Conference on
Computers and Communications, Scottsdale, USA, April,
pp.774–782, ISBN: 0-7803-0605-8.

Xu, J. and Parnas, D. (1993) ‘On satisfying timing constraints
in hard-real-time systems’, IEEE Transaction on Software
Engineering, Vol. 19, No. 1, pp.70–84.

Xu, J. and Parnas, D. (2000) ‘Priority scheduling versus pre-run-time
scheduling’, The International Journal of Time-Critical
Computing Systems, Vol. 18, No. 1, pp.7–23.

Yacine, L. and Nizar, B. (2014) ‘Pre-run-time scheduling in
real-time systems: current researches and artificial intelligence
perspectives’, Expert Systems with Applications, Vol. 41, No. 5,
pp.2196–2210.

Notes
1 Notice that this value is a proposed value to show the

behaviour of the global design. A more realistic value
according to a specific hardware could be chosen.

2 Recall that our aim is this paper is not to assess the efficiency
of both algorithms.

Appendix

IBM ILOG-CP constraint program

Table A1 IBM ILOG-CP constraint program: single processor
scheduling of jobs under timing constraints

using CP;
int lcm = ...;
range ilcm = 0...lcm;
int n = ...;
range T = 1...n;
int r[T] = ...;
int c[T] = ...;
int d[T] = ...;
dvar int start[T] in ilcm;
dvar int latness;
dvar interval x [a in T] in r[a]...d[a] size c[a];
maximize lateness == min(a in T) (d[a]-startOf(x[a])-c[a]);
subject to {

forall(a in T){
ct1: start[a] == startOf(x[a]);
ct2: start[a] ≥ r[a];
ct3: start[a] + c[a] == endOf(x[a]);
ct4: lateness ≥0; // a decision problem

}
noOverlap(all(a in T) x[a]);
}

