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Abstract: Existing supply chain designs focus on efficiency and cost 
minimisation, particularly in just-in-time (JIT) systems. At the same time, 
sustainability requires designs that preserve resources and minimise 
environmental impact; thus, companies should design their supply chains to be 
simultaneously flexible, sustainable, and efficient. This study proposes a 
genetic algorithm-based optimisation model to address the trade-off between 
the total supply cost and the carbon emission cost during supply network 
disruption. The model is tested using a case study to validate its applicability 
using the particle swarm optimisation (PSO) approach. A number of factors are 
analysed: lead time, order quantity variance, and transportation mode selection. 
Performance variables include the total supply chain cost which comprises 
production, transportation, and CO2 costs. The model has many opportunities 
for application where the supply chain is disrupted, such as in the recent 
pandemic, especially when companies do not want to compromise efficiency 
and sustainability. 
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1 Introduction 

One key characteristic of supply chains is that they are frequently disrupted by 
unexpected events, the coronavirus pandemic being the latest example. Other examples 
include the Icelandic volcano eruption which disrupted air transport for a week and 
hurricane Katrina in 2005. In this case, Wal-Mart was able to recover quickly by 
proactively overstocking its nearby distribution centres with items likely to be affected 
(Leonard, 2005; Klibi et al., 2010). Other examples include hurricane Floyd (Norrman 
and Jansson, 2004), the Japanese tsunami and the Thai flooding in 2011 (Chopra and 
Sodhi, 2014). In each case, severe disruptions of supply chains caused discontinuation of 
operations and forced companies to look for alternative supplies and reconfigure their 
supply chains (Smith, 2013). One reason why operations were affected so severely is that 
companies implemented just-in-time (JIT) operations, such as in the case of Western 
digital (WD) who had to shut down two of their factories due to the Thai floods. WD had 
proactively moved inventory from JIT processes at supplier warehouses to a safe place 
and managed to resume operations after 48 days (Wai and Wongsurawat, 2013). Natural 
disasters now occur more often around the globe, with increasing severity, with the result 
that natural disaster has climbed into the top two risks for businesses globally 
(Kleindorfer and Saad, 2005). This can be attributed to the fact that operations rely on JIT 
production with global supply chains. 

On the other hand, solutions that mitigate risks from natural disasters, such as 
increasing inventory, keeping inventory at dispersed locations, having backup suppliers, 
procuring from multiple locations, etc. undermine JIT cost efficiency (Chopra and Sodhi, 
2014). Despite the extensive literature on risk mitigation and supply chain design, no 
prior studies model how JIT production can recover from a natural disaster. 

Companies therefore need to achieve two conflicting goals simultaneously: supply 
chain efficiency and disruption risk minimisation. Recently, a new requirement is 
becoming apparent: the sustainability of supply chains, making the design of supply 
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chain networks (SCNs) a priority for researchers and professionals. However, few 
empirical studies have attempted to present an integrated model which is capable of 
coping with unexpected disruptions in a sustainable way that protects JIT operations. 

Rose (2011) points out that natural disasters not only disrupt supply chain operations, 
they may have a negative impact on environmental sustainability, which adds to the 
complexity of how to effectively model supply chains, yet necessitates that both 
resilience and sustainability be modelled together in order to manage them appropriately. 

An increasing number of studies, (e.g., Scheel, 2016; Thomas et al., 2016) consider 
that there is a simultaneous need to achieve efficiency, resilience, and sustainability. 
Thus, the design of SCNs, apart from business implications, has direct practical and 
policy implications. The motivation for undertaking this study concerns the lack of 
empirical studies that holistically model supply chain design; a gap that has been 
identified in previous literature reviews, as pointed out by Jauhar and Pant (2016), that 
most of the previous studies consider these two elements (resilience, sustainability) in 
isolation from each other. 

This study introduces a new integrated model and computational algorithm that are 
simultaneously resilient in terms of dealing with disruption risks, sustainable regarding 
CO2 emissions, and efficient in terms of reducing supply chain cost and lead time waste. 
The presented research considers three pillars playing a significant role in improving 
SCN resilience including robustness (ability to stand against disruptions), leanness 
(reducing waste by adopting a JIT system), and sustainability (reducing environmental 
impact). This study aims to develop a genetic algorithm-based optimisation model to 
determine the minimum total cost (total cost and tax charges) in companies operating JIT 
business models. A number of scenarios are also analysed hypothesising various order 
quantities of raw materials (RM) shipped by local and/or external suppliers through 
various transportation options. 

The developed model is demonstrated by a manufacturing case study based on real 
data. The next section reviews the relevant literature concerning optimisation of the 
design for a sustainable supply chain. The proposed model is presented in a subsequent 
section. Then, a case example illustrates how the model can be applied in a real case. 
Various scenarios are presented including a sensitivity analysis. In the last section, results 
and discussion are then presented, and the paper concludes with limitations and 
recommendations for future research. 

2 Literature review 

2.1 Supply chain design 

During recent decades, companies have increasingly focused on supply chain 
management (SCM) to reduce costs and improve the bottom line in order to give them a 
competitive edge (Tang, 2006). Initially, the focus was on fundamental decisions in 
designing supply chains regarding the production facilities’ size, location and capacity as 
well as transportation modes such as road, rail, or sea available to serve the markets in a 
manner that ensures cost minimisation (Speier et al., 2011; Chopra and Meindl, 2013). 
However, a combination of global mega-trends such as globalisation, market volatility, 
trade wars, and environmental concerns put pressure on companies to rethink their supply 
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chains beyond cost efficiency. Supply chain design needs to achieve two performance 
objectives at the same time: 

1 cost efficiency 

2 sustainable performances, i.e., reducing their environmental impact by eliminating 
black carbon emissions (Sodhi et al., 2012). 

Meeting all demands simultaneously increases the complexity of the SC design; for 
example, in global supply chains, designs should incorporate international trade routes, 
port locations, incoterms, possible tax advantages, multi-modality and demand factors 
(Meixell and Gargeya, 2005). 

Attributable to the inherent complexity of the SCN and the need to meet multiple 
objectives’ efficiency, resilience, and sustainability, supply chain models need to address 
this complexity in unison. 

2.2 Supply chain modelling 

Although many articles and books have discussed the issue of modelling supply chains 
(Seuringa and Müller, 2008), few have considered optimisation of both efficiency and 
sustainability constrained by disruption uncertainties (Olhager et al., 2015). As noted in 
the introduction section, companies face increasing high-impact uncertainties (Fang and 
Shou. 2015); yet, Eskandarpour et al. (2015) reviewing empirical studies on SCN design, 
conclude that scarce empirical studies deal with all dimensions of sustainability, while 
the majority of the studies do not incorporate uncertainty at all (Tsao et al., 2018). 

The majority of previous studies adopt known parameters, thus they do not have to 
include uncertainty in their models (Cordeau et al., 2006; Özceylan and Paksoy, 2013) or 
model the supply chains stochastically (Listeş and Dekker, 2005). However, these 
assumptions are further from today’s supply chain realities than the need to address both 
efficiency and sustainability while operating in uncertain environments (Tang, 2006). For 
example, reviews from Koberg and Longoni (2019), Rebs et al. (2019) and Srivastava 
(2007) show a growing interest in sustainable supply chains and an emerging need to 
model them realistically. 

Linton et al. (2007) suggest incorporating waste when modelling the total cost of the 
supply chain as a way to include sustainability as a decision goal apart from efficiency, 
solely. In this regard, additional to cost efficiency, supply chain design should consider 
black carbon tax that increases total supply chain cost (Peng et al., 2016). 

2.3 Supply chain optimisation models 

Prior studies have examined various sources of SCN risks including disruptions (Samson 
and Gloet, 2018) and optimisation models to minimise risks (Allaoui et al., 2018). 
However, this literature stream has few overlaps with sustainable supply chain 
optimisation modelling. Cousins et al. (2004) develop a model on green supply chains, 
considering two main aspects: the role of risk and the motivations of companies to 
undertake the different types of environment issues related to supplier initiatives. Mari  
et al. (2014) introduced an optimisation model which incorporates taking into account the 
sustainability aspect via carbon emission and resilience via location-specific risks. Also, 
regarding the sustainability issue and risk disruptions, the mathematical model presented 
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by Saffar et al. (2015) focuses on minimising total costs and environmental impact. 
Rotaru et al. (2014) and Davarzani et al. (2015) have introduced modelling approaches 
concerning analysing the effects of disruption risks on SCN designs. 

Fathollahi-Fard et al. (2018) found that meta-heuristics outperform other analytical 
models in SCN design. Ardalan et al. (2016) model supply chains with multi-mode 
demand as a multi-objective problem with an iterative Lagrangian relaxation based on 
heuristics. 

However, few studies have modelled efficiency, uncertainty and sustainability at the 
same time. 

El Dabee et al. (2013) propose an optimisation model that resembles the model in this 
study. In their model, El Dabee et al. (2013) consider an optimisation model for supplier 
selection during risk of disruption while JIT is the preferred operational model. However, 
the model in the current study differs in terms of presenting a structural modelling 
approach which is used to identify the interrelationship between JIT (lean strategy) and 
environmentally friendly transportation (green strategy), taking into account the fact that 
both strategies are influenced by potential disruption risks. 

3 Proposed optimisation model 

3.1 Problem statement 

Price variations of a product in global markets require the assumption that the distribution 
network consists of external suppliers of the RM involved in manufacturing that product. 
Essentially, effective implementation of a JIT strategy in an assembly system requires 
instantaneously replenishment of the RM. Accordingly, costs of replenishing stocks and 
the inventory cost of final products will not be included in the analysis. The causes of 
risks and uncertainties can be numerous and unpredicted, such as the case of the COVID 
pandemic, trade wars, demand fluctuations, natural disasters accidents (the Beirut port 
explosion); all these risks affect external suppliers. Without a doubt, all these unforeseen 
events impose significant risks on production processes, threaten the managerial control 
and put into test the entire supply chain. One way of risk mitigation is having excess 
suppliers, e.g., both locally and globally, in case an emergency supply is required. 
However, dependence on local suppliers is typically costlier compared to global suppliers 
due to the high prices, which is related to the low level of risk incidence and short lead 
times. 

In this study, the proposed optimisation model, to address the undertaken problem, 
considers both local and global (external) suppliers, using the available transportation 
modes, that may be (sorted by cost): waterways, railways, roads and airways. 

3.2 Model assumptions 

The model is subject to a number of assumptions to arrive at an optimal solution. Due to 
existing uncertainties in the SCN, assumptions are made related to order size, product 
price, availability of all RM, reliability of local backup suppliers, cost of transport, and 
labour payments in order to bring the model closer to reality. Additionally, assumptions 
are used for evaluating the proposed model in terms of their ability to provide accurate 
predictions. Therefore, model assumptions are as follows: 
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• Regardless of order size, we consider the ordering cost at a constant rate for each 
order of input RM. 

• Regardless of inventory batch size, there is no change in the final product price. 

• As it is commonly accepted, the utilities cost is calculated as percentage of total 
product cost associated to batch size decision. 

• The availability of all RM in the production system is committed by the key external 
supplier. In this case, disruption risk is considered nil. In case of losing one or more 
key suppliers in the event of a potentially significant disruption, companies have the 
option to procure RM locally. 

• Relying on local procurement ‘RSLBj’ influences the total cost provided by local 
backup supplier ‘SLEj’. Procuring locally would require an additional cost compared 
to procuring from regular external suppliers ‘SEj’. 

• The model views the cost of transport as proportional to distance and the type of 
transport facilities used. 

• The employee or labour payment is under the fixed rate cost system. In this system, 
no consideration is given to the quantity or quality of work done. 

• In the case of disruption, the additional cost is calculated as a percentage of the total 
cost. The exact percentage rate depends on the impact of the disruption on the JIT 
production. 

• Duties cost will be considered in the proposed model only when external suppliers 
‘SEj’ supply RM to the company since local supply does not incur import duties. 

• A percentage of the total cost CRM is used as a reference to calculate the transfer 
price cost which is needed to procure RM from regular external supplier ‘SEj’. 

• A reliability index j (0–1) is developed to assess and reflect the availability of 
supplying RM by local backup suppliers. 

• Some RM types can be supplied by either the external or local supplier, or both. 

• Carbon dioxide emissions from both production and recovery are uncertain. 

• The purchase price can be negotiated and varies considerably. Such factors are 
dependent on order size, discounts, payment terms, and historical relationships, 
amongst other mitigating factors. 

3.3 Decision variables 

NSELB number of suppliers of RM to the production facility (unit). This includes both 
external and local suppliers used during disruption: 

1, if the external supplier is active
0, if the external supplier disruptedEj

j
S

j


= 


 

1, if the local backup supplier is active
0, if the local backup supplier not usedLBi

j
S

j


= 

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dp daily final product demand by customer (unit) 

tm critical measurement of transportation of RM delivery using mode of 
transportation ‘m’ 

QM required weekly demand quantity from RM ‘i’ which is ordered to produce the 
final product (unit). 

3.4 Model constraints 

In the proposed model, there are two of constraints imposed by capacity related to stack 
buffer and production. First, the buffers have a finite capacity. Regardless of order size, 
the amount of materials (RM, finished products and so on) for each order is restricted; the 
buffer will not grow or overflow. Second, the production system has enough capacity to 
fulfil the required demand. The production scenario is producing the maximum output 
possible from the system under working one daily shift. However, when the demand is 
more than the production capacity, the company needs to work three daily shifts. 

3.5 Mathematical modelling 

This research uses the same notations of El Dabee et al. (2013) which set to describe the 
indexes and parameters relating to the modelling. For more detail, the reader can refer to 
El Dabee et al.’s (2013) research. 

The multi-objective optimisation of SCN design is presented below. 
The objective functions of the proposed model are to minimise both the total 

production cost (CT) and the carbon cost (Ctax) in the SCN: 

( )Minimise +Total T taxC C C=  (1) 

Different direct and indirect costs are associated with the operation of SCN. The 
components of total cost are calculated in equations (2)–(8). First, purchase cost of 
materials from different suppliers ‘CRM’ can be computed in equation (2). Then, the cost 
of the employee, ‘CW’, represents the wages paid to the employee to perform the required 
duties in the company, which is calculated based on the unit of time, as shown in 
equation (3). The utilities cost ‘CU’ is calculated using equation (4) and the next  
equation (5), calculates the supply chain cost ‘CTP’ (for explanation on equations, see  
El Dabee et al., 2013). The cost breakdown in equations (1)–(5) is as follows: purchasing 
cost ‘CP’, ordering cost ‘CO’, transportation cost ‘Ctr’, holding cost ‘CH’, transfer price 
cost ‘TP’ and, finally, duties cost ‘CD’. 

( ) ( )

( )

1 1 1

, ,
1 1 1 1 1

+ % +

+ + %

SLB SLBP

SLB SLBP T P

s l

N NN

RM UOs UHi RM js
s i s

N NN N N

UMSLBi SLB V m m is
i s s l i

C C OF C d LT SF

C T t V

= = =

= = = = =

= × × ×

× ×

 

 
 (2) 

1 1

+
P P

i

N N

W W L i
i i

C C C h
= =

= =   (3) 
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1

%
P

i

N

U RM
i

C Util C
=

= ×  (4) 

+ +Tp RM W UC C C C=  (5) 

CTp comprises the procurement cost of the RM and component parts bought from an 
external supplier. The equation to calculate this cost is shown in equation (6): 

( ) ( )

( )

( )

( )

1 1 1

, ,
1 1 1 1 1

1 1 1 1

1 1

+ % +

+ + %

+ 1 +

+ + + % +

SE SEP

SE SEP T P

j l

SE SEP P

P

i i

N NN

Tp UOj UHi RM jj
j i j

N NN N N

UMSEi SLB V m m ij
i j j l i

N NN N

UPi j j j UPi
i j j i

LHN
k k

L i RM
k ki k

C C OF C d LT SF

C T t V

C IF D tp C

LH IC h util C
Max LH I

= = =

= = = = =

= = = =

= =

= × × ×

× ×

− × ×

××
×

 

 

 


1 1

kP P

i

N N

pt
i i

C
= =

× 

 (6) 

Managing disruption risks to avoid supply chain breakdown requires local procurement 
which entails a higher wholesale price. In this case, the expected cost regarding CTp can 
be written by modifying (6) as follows: 

( ) ( )

( ) 1

1 1 1

, ,
1 1 1 1 1

+ % +

+ + %

SLB SLBP

SLB SLBP T P

i

N NN

Tp UOs UHi RM jj
s i s

N NN N N

UMSLB SLB V m m is
i s s l i

C C OF C d LT SF

C T t V

= = =

= = = = =

= × × ×

× ×

 

 
 (7) 

( )Tp RM W UC C +C +C=  (8) 

Each supplier is assessed by a risk score depending on the risk it poses to the total supply 
chain. Consequently, equation (9) calculates this cost resulting from the impact of 
supplier disruption risk. 

( )1 1

kP

i

LHN
k k

R pt
k ki k

LH IC C
Max LH I= =

×= ×
× s (9) 

( )T Tp RC C +C=  (10) 

With regard to CO2 emissions, equation (11) has been adopted to compute the total of 
those emissions that occur during RM transportation. QMi is the volume (MT) of RM, νi is 
the distance (miles) that RM need to travel, Efmi is the emissions in kg CO2/MT (note:  
MT = metric ton). 

Ei Mi i fmiC Q ν E= × ×  (11) 
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The computed CO2 emissions using the above equation, is only the emission of the black 
carbon resulting from using the RM i across the supply chain to meet the weekly 
production cycle (unit). Efmi is the emission factor associated with the mode of 
transportation used for shipping RM. Meanwhile, the destination travelled of needed RM 
is νi. Therefore, for computing quantities of CO2 emissions which arise for producing one 
product: 

1

PN

E Mi i fmi
i

C Q ν E
=

= × ×  (12) 

The GHG emissions protocol created standards that are applicable to the companies 
(DEFRA, 2013). Based on these standards, the CO2 emissions factors for the various 
transport modes used by companies to procure resources are as follows: 2.31 for road 
(diesel and petrol), i.e., 1.51 for LPG fuel, 0.03 for rail, 0.57 for air, and 0.06 for sea 
transportation. In order to determine the cost of emitting the amount of carbon from 
logistical operations, this paper takes a moderate fee level of carbon tax as m.u 25 for 
each ton of carbon dioxide emitted. Depending on this assumption, the total CO2 cost is 
calculated as: 

25tax EC C= ×  (13) 

3.6 Genetic algorithm 

Due to globalisation, technological advances, and competition, SCNs are becoming 
increasingly complex. Most SCNs consist of several intricate processes, multiple sources 
of products, variety and diversity of RM with significant resource constraints (Altiparmak 
et al., 2006). The inherent complexity of SCNs makes their optimisation an ND-hard 
problem. 

On the other hand, supply chains need to deal with the challenge of stochastic 
demand (Cardona-Valdes et al., 2011). Hence, any adopted mechanism to solve this type 
of problem should be effective enough to cope with these challenges. The main obstacle 
for obtaining an optimal solution for supply chain design is the existence of many 
variables in relation to uncertainty and the system’s structure. Using traditional 
mathematical programming techniques to solve such a problem has limitations. It can 
easily become trapped in the local optimum solution area due to the large number of 
decision variables and constraints being too complex (Franca et al., 2010). An alternative 
solution is to use genetic algorithms that use random inferential approaches and  
problem-solving techniques that simulate the processes that occur during natural 
evolution (Gupta and Ghafir, 2012). 

Added to that, the processing time of these techniques is too long and also results in 
low efficiency. As a consequence, GA has been proposed to derive solutions through the 
optimisation process for different types of SCN problems. Jauhar and Pant (2016) 
analysed around 220 papers that applied GA for this purpose. Following guidelines and 
applications of this method in previous studies, this study adopts the GA method for the 
following reasons: 

1 it has been proved as an effective mechanism in solving the p-median problem, 
which is the undertaken problem of this research 
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2 it is fast and relatively easy to apply in this type of problem 

3 as a computational tool, it can be easily adaptable to deal with infeasible alternative 
solutions. 

3.6.1 GA structure for optimising the SCN design 
The GA emulates the Darwinian evolution process: initially, a population is defined and 
then a number of candidates are created and selected using different fitness functions; the 
algorithm is based on genetic operators (crossover/mutation) and continues to generate 
candidates by ‘mating’ parents until a stopping criterion is satisfied and a solution is 
achieved (Reeves and Rowe, 2003). 

Figure 1 describes the GA scheme adopted in this paper. For an addressed problem, 
each cycle generates an individual (or candidate solution). The cycle will be repeated 
until reaching the promised solution which satisfies the imposed constraints and where, 
consequently, a termination condition is achieved. From using GA in this research, it is 
expected to find high-quality solutions with the capacity for simultaneous cost-risk 
reduction to the problem when designing an SCN which adopts a JIT approach to reduce 
waste. 

This paper uses GA to design a sustainable SCN which works under a JIT approach 
and probably exposes potential risk disruptions. As stated before, the aim is to find the 
optimal design solution for this network which can offer minimum cost as well as the 
ability to handle different constraints. In the developed GA, real numbers are used for 
chromosome representation. Consequently, representation of the chromosome will only 
produce feasible solutions which do not need high computational time as this is what is 
required by the developed GA. 

Figure 1 GA scheme of an SCN optimisation design (see online version for colours) 

Candidate 

Repeat until stopping criteria are met 

Manipulate Reproduce 

Elitist 

Select chromosomes 

Population 

Genetic operators Evaluate candidate fit  

 

3.6.2 Fitness function 
A fitness function is a single figure of merit which is needed to assess how close 
produced chromosomes are to achieving the set objectives. Normally, the fitness function 
is a particular type of objective that is used to summarise, as a single scalar value, how 
close a given design solution is to the optimal design solution (Garg, 2010). 

The fitness function (F) aims to minimise the total cost CTotal comprised of total 
product cost CT and estimated CO2 emissions cost Ctax in candidate designs of SCN: 
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( ) ( )( )
100 100

1 1Total T tax
F

C + C +C +
= =  (14) 

To avoid the unwanted error, ‘divide by zero’, in the last equation [equation (14)], a 
constant of 1 was added for this purpose. 

3.6.3 Selection 
A selection approach is used in the developed GA as a procedure for selecting a part of 
the chromosomes (individuals) that are generated from the initial solution in order to 
contribute to their features. In this research, the replacement selection method is chosen 
for extracting a subset of the chromosomes from an existing population, based on the 
quality of index used here. 

3.6.4 Stopping criterion 
A stopping or termination criterion is the last step in the GA process. It occurs in two 
cases: 

1 when the chance of achieving major changes in the future generation is too low or 

2 after a fixed number of generations (Leuveano et al., 2012). 

Prior studies have used a fixed number of generations to terminate the GA execution 
(Mahmudy et al., 2012). The same criterion was used in this study. 

4 Case example 

Using a real case scenario, we demonstrate the algorithm presented above. The case 
example concerns a simple assembly process for a hollow-shaft electric motor. The final 
product consists of 25 parts (Np = 25). The case company has 11 external suppliers  
(NSE = 11) and procures from them RM in fixed lot size. The risk of dependence on 
outsourcing from ‘external suppliers’ has become great, thus it is assumed that the best 
course of action is dependent on seven domestic (local backup) suppliers (NSLB = 7) who 
can supply the RM with shorter lead times, less risk of shortage, but with extra cost. The 
adoption of a JIT production strategy means that the ordering and receiving of the right 
amount of RM from suppliers (whether local or external) it time dependent, i.e., it 
depends on the actual and immediate need for the production system (Table 1). 

The production system consists of five main operations. The company hires five 
employees (w1, w2, w3, w4 and w5 respectively). Each employee runs each operation 
individually. 

We assume that each day has eight working hours (Nh), and each working week has 
five days. Each employee receives a fixed wage of 14 monetary units per hour (mu/h). 
Mostly, the suppliers, whether external or local, offer price discounts when the company 
buys RM in bulk. Price discounts range between 5% to 14%. Utilities cost is also fixed at 
10% of RM cost. 

The system has a scheduled production capacity of 70 units per day, and the main 
dependence is on the external suppliers (SE) to regularly supply RM. In cases of one or 
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more from those external suppliers being disrupted, then local backup suppliers (SLB) 
could be resorted to fill the shortage of assembly RM. 

When the supplier’s lead time is uncertain, it affects the system in terms of both cost 
and services perspectives. Therefore, it is imperative that this be taken into account when 
it comes to meet the needs of customers in fixed periods and at normal times. When the 
supplier’s lead time is uncertain, it affects the system in terms of both cost and services 
perspectives. Therefore, it is imperative that this be taken into account when it comes to 
meet the needs of customers over fixed periods and during normal times. 

The focus is on the timely delivery of RM to avoid any delay which would affect the 
performance of JIT production. The price of the final product is set at 485 m.u. 
Table 1 Model parameters 

Part 
no. 

Weight 
(pounds) 

Supplier type 
Local backup supplier  External supplier 

Supplier 
no. SLB 

Lead-time 
(LT) 

(Days) 

Destination 
of required 

RM (v) 
(miles) 

Supplier 
no. SE 

Lead-time 
(LT) 

(Days) 

Destination 
of required 

RM (v) 
(miles) 

1 6.62 1 4 218  1 24 3,108 
2 5.51 1 4 218  1 24 3,108 
3 0.33 2 6 311  2 32 3,108 
4 6.62 1 4 218  1 24 3,108 
5 1.65 3 3 186  3 18 4,661 
6 0.22 4 5 249  4 38 3,729 
7 4.85 4 5 249  4 38 3,729 
8 13.23 4 5 249  5 42 4,040 
9 0.55 4 5 249  5 42 4,040 
10 1.65 3 3 186  3 18 4,661 
11 0.44 2 6 311  2 32 3,108 
12 5.51 5 2 155  6 28 3,108 
13 2.65 5 2 155  7 35 4,972 
14 0.33 5 2 155  7 35 4,972 
15 0.66 5 2 155  6 28 3,108 
16 0.33 3 3 186  9 20 2,175 
17 0.55 6 8 311  8 45 2,486 
18 0.22 2 6 311  2 32 3,108 
19 0.33 6 8 311  8 45 2,486 
20 0.55 3 3 186  9 20 2,175 
21 0.33 6 8 311  8 45 2,486 
22 0.55 7 7 373  10 28 3,108 
23 0.33 7 7 373  10 28 3,108 
24 0.55 7 7 373  10 28 3,108 
25 0.55 7 7 373  11 21 2,486 
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5 Results and analysis 

The GA was used to optimise the JIT SCN of the case example with the following 
results. One of the key decisions is the number of international suppliers (SEj) of RM, 
which are 11 in this model. 

SEj can take two values 0 or 1 depending on the selection, or not, of the specific 
supplier. Using SEj = 1, this means the SE can provide RM, and the total cost CT can be 
computed using equation (3). Meanwhile, CT computation relies on equation (4) when  
SEj = 0, i.e., SEj has disruption. In both equations, dp remains the same. Herein, the 
computation of CT is associated with changes in dp at four levels, 1, 2, 3 and 4. One of 
the model’s components is ‘tm’ which can take four distinct values, each value represents 
one transportation mode and, specifically, road: 1, rail: 2, air: 3, ship: 4. 

Lastly, the order quantity ‘QM’ has seven levels: 350, 700, 1,050, 1,400, 1,750, 
2,100, and 2,450. 

5.1 Applying developed model for finding optimal solution 

Using the main GA parameters with the values shown in Table 2, the developed GA 
generates the optimal SCN design taking into account the total cost under various 
disruption risk scenarios. The GA code was developed using Java programming language 
micro edition. A standard personal computer was used with an i5-3210M CPU with two 
cores working at its base frequency and minimal memory of four gigabytes. After 249 
iterations, the GA found an optimal solution-chromosome (Table 3). Table 3 shows the 
details of the optimal chromosome after 249 generations. 
Table 2 GA parameter values 

Parameter The values 
Crossover rate (Pc) 0.7 
Mutation rate (Pm) 0.15 
Population size (N) 500 
Maximum generations (Gmax) 5,000 
Generation stop (Gmax_Stop) 30,000 

Table 3 Best chromosomes (decision variables) obtained using a replacement selection 
method 

NSELB  dp 
1 0 0 0 1 0 1 0 1 0 0  210 

tm  QM 
1 3 4 2 1 3 2 4 1 3 4  1 1 1 1 1 1 1 1 1 1 1 

Table 4 Best GA solution 

Iter Time(S) dp CO CH CP Ctr CD TP CW CU Cpt CR CT 
252 47.30 210 6.95 9.92 314.97 36.26 2.92 2.24 8.0 37.33 418.58 20.90 440.0 

Figure 2 illustrates the cost scores of best and average of all chromosomes over specified 
run generations (3,000). The optimal chromosome fluctuations are a natural outcome of 
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the population diversity that is caused by the adopted selection strategy. Replacement 
selection strategy and adaptive adjustment of crossover and mutation operators (Pc and 
Pm) will create new children which can explore alternative directions in the solution space 
which can protect optimal chromosomes of every generation from being trapped and 
replicate them to the next generation. 

Figure 2 Diagram of comparison between best and average score of chromosomes related to total 
final product cost (see online version for colours) 
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5.2 Comparison of GA with other optimisation methods 

This section compares the performance of GA and with particle swarm optimisation 
(PSO) as an alternative optimisation method to design a sustainable SCN under 
disruption risks. Similar to GA, PSO is a metaheuristics algorithm with an ability to find 
global optima. Details regarding the design structure and implementation of PSO are 
beyond the scope of this paper. More on PSO can be found in Kennedy and Eberhart 
(1995) and Eberhart and Kennedy (2001). Implementations of GA and PSO algorithms 
are coded and run using Java programming software. The specified parameters related to 
the GA and PSO are shown in Table 5. Here, it should be noted that these parameters are 
the same as those used in the GA run (Table 2) to find the optimal design solution which 
resulted in Figure 2. The fitness function [presented in equation (14)] is used to reflect the 
goodness of each algorithm. 
Table 5 GA vs. PSO comparison 

GA PSO 
Crossover rate (Pc): 0.7 C1: 2.0, C2: 2.0 
Mutation rate (Pm):0.15 Wstart, Wend inertia weight coefficients: 0.9, 0.4 
Population size (N): 300 Swarm size (N): 300 
Maximum generations (Gmax): 1,000 Maximum generations (Gmax): 1,000 

Note: C1: cognitive acceleration coefficient, C2: social acceleration coefficient. 

Each algorithm was run ten times to test its performance and obtain the best chromosome 
that solves the identification problem. The results are provided in Table 6 which shows 
the characteristics of the best run optimised by the two algorithms. 
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Table 6 Optimised decision variables and corresponding fitness function obtained by GA and 
PSO 

Iter. Time (S) dp Cpt CR CT-max CT-ave F.Fmax F.Fave 
Genetic algorithm 
223 48.1 210 418.6 21 439.5 440 0.23 0.23 
PSO 
126 48 210 418.6 21 439.5 446.7 0.23 0.23 

The results confirm one GA drawback; it has expensive computational cost. The 
developed GA reached the optimum solution after 223 iterations, while PSO achieves this 
after 126 iterations. 

PSO is sub-optimal because the final cost is higher than the cost achieved with GA; 
therefore, these findings indicate that the GA-proposed model is superior to the PSO 
approach. 

The improvement in performance of GA with the given fitness function is clearly 
attributed to the result of population diversity caused by the adopted selection strategy. 
Herein, the operators’ crossover or mutation generates a new offspring which can move 
in different directions in the solutions space and, consequently, enable the GA to avoid 
being trapped in local optimal areas. 

As shown in Table 6, PSO is faster in reaching the optimal solution design (126 
iterations while GA 223 iterations) but both algorithms take the same time (around 48 
seconds) to determine their results. The PSO algorithm is appropriate to a system which 
is linear, time-invariant, and deterministic. However, SCNs are considered from 
stochastic systems – as detailed before – so, none of these characteristics are perfectly 
achieved. 

5.3 Sensitivity analysis of decision variables 

The assumption, here, is that the supply chain designers decide to run the proposed model 
using each of three assumed optimisation run designs (also known as scenarios) and then 
analyse the results. The sensitivity analysis strategy represents the beauty of supply chain 
design modelling. 

Computational experiments are carried out to ascertain how the optimised solutions 
are affected by the changes in different levels of decision variables. 

5.3.1 Scenario one: different cases of occurrence for external suppliers’ 
disruptions and decision variable changes are made to different levels 

The main concern of many companies that mainly depend on the selection of local/global 
suppliers (NSE = 11, NSLB = 7) to procure RM is the potential disruption that may occur to 
the supply chain system. For completed understanding of this concern, the possibility of 
disruption for both suppliers is assumed as follows: the company has one major supplier 
(denoted by j) who is prone to disruption, and one backup local supplier who can 
replenish the inventory, i.e., SEj = 0 else SEj = 1. 

For simplicity, the same assumption takes place for both scenarios of local or external 
procurement. 
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Table 7 shows how disruption affects the key decision variables. Through a closer 
look at the table, and depending on the obtained CTotal, for each design, it becomes clear 
that the optimal combination of all decision variables was superior in comparison with 
those costs obtained by making separate optimisations for each decision variable. Clearly, 
CTotal is a function of examined decision variables in this research: the customer’s 
demand the quantity of RM, lead times, and transport mode. 

Any change in these variables that may occur during the possible disruption of the 
system will alter CTotal. Based on the above results, the reliance on the local supplier 
when all external suppliers are exposed to disruption may change several costs. 
Specifically, Cp has the highest rate of change when it comes to compare to other 
disruptions. Thus, with these changes, the change in Ctr value does not appear to be a 
significant change. This is because these slight changes are attributed to the transporting 
of RM from the original to the production system. 
Table 7 Disruption impact on key decision variables 

No. 
External supplier position in the 

supply chain QRM/week 
(unit) 

dp/day 
(unit) 

tm 
(unit) 

CT 
(m.u) 

Ctax 
(m.u) 

CTotal 
(m.u.) 

1 2 3 4 5 6 7 8 9 10 11 
1 1 1 1 1 1 1 1 1 1 1 1 350 70 1 393.40 230.1 623.5 
2 1 1 0 0 1 1 0 0 1 0 1 350 70 2 428.00 183.7 611.74 
3 1 0 1 1 0 0 1 1 0 0 0 350 70 1 447.95 148.3 596.27 
4 0 0 0 1 1 0 0 0 0 0 0 1,050 140 4 444.54 1,799 2,243.14 
5 1 0 1 0 0 1 0 1 0 1 1 350 70 1 458.79 141.5 600.26 
6 1 1 0 1 1 0 0 0 1 0 0 1,050 140 1 412.15 553.8 965.90 
7 0 1 1 0 0 1 1 0 1 0 1 350 70 1 464.23 87.96 552.19 
8 1 1 0 1 1 0 1 0 0 1 1 350 70 1 430.95 206.7 637.67 
9 0 1 1 1 0 0 0 1 1 0 0 350 70 1 449.90 70.50 520.40 
10 1 1 1 0 0 1 0 1 1 1 0 350 70 1 456.35 145.4 601.73 

5.3.2 Scenario two: different cases of occurrence for external suppliers’ 
disruptions and decision variables remain unchangeable 

Two cases are taken into consideration: 

1 risk-free, where there is no disruption and all external suppliers send their RM 
without any disruption risk 

2 a disruption breaks down the capacity of the external suppliers in providing the 
materials to the system. 

Results are depicted in Figure 3 that demonstrates how the costs are alternated under 
supplying with the local backup suppliers and without externals. Considering a backup 
local supplier to provide the material to satisfy the demand when disruption occurs, the 
expected production cost will be increased. When the disruption is widespread to the total 
number of suppliers, CP and CR increase compared to less disruption events where CH, 
Ctr, TP and CD become minimal. 
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5.3.3 Scenario three: sensitivity analysis of disruption risks 
A number of analyses examined the sensitivity of the model under different conditions of 
disruption risks. Specifically, external suppliers were split into two groups; the first group 
were the odd numbers and the second group the even numbers. Under this scenario, the 
second group was disrupted. The results are shown in Table 8. The minimum total cost 
objective is small (CT = 418.2) and another objective is relatively high. This means the 
impact of disruption probability on the sustainability aspect of the system is costly. In 
addition, the optimal value of other cost components: Ctr, CU and CR are high. This 
implies that even disruption of some external suppliers would increase the production 
cost. According to Table 8 results, Ctr is directly influenced by disruption probability. 
This is because this type of cost is linked to the transportation mode. CU is a fixed cost 
calculated as a percentage of purchase cost [equation (4)] thus disruption indirectly 
affects this cost. Consequently, CR increases due to using extra suppliers as an alternative 
to reduce the impact of supply disruptions. 

Figure 3 Comparison of disruption effect on different costs (see online version for colours) 
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Table 8 Sensitivity analysis: SE1, SE3, SE5, SE7, SE9 and SE11 are active (SEJ = 1 not distributed), 
other external suppliers: SE2, SE4, SE6, SE8 and SE10, are distributed (SEJ = 0) 

No. 
External supplier situation in the 

supply chain QRM/week 
(unit) 

dp/day 
(unit) 

tm 
(unit) 

CT 
(m.u) 

Ctax 
(m.u) 

CTotal 
(m.u.) 

1 2 3 4 5 6 7 8 9 10 11 
1 1 0 1 0 1 0 1 0 1 0 1 350 70 1 435.8 197 632.76 
2 1 0 1 0 1 0 1 0 1 0 1 350 70 3 447.8 31.75 479.55 
3 1 0 1 0 1 0 1 0 1 0 1 700 95 1 428.3 394 822.28 
4 1 0 1 0 1 0 1 0 1 0 1 1,050 140 2 425.4 50.5 475.89 
5 1 0 1 0 1 0 1 0 1 0 1 1,750 115 3 484.1 158.5 642.59 
6 1 0 1 0 1 0 1 0 1 0 1 2,100 140 4 523 6,165 6,688.2 
7 1 0 1 0 1 0 1 0 1 0 1 1,050 170 1 418.2 591 1,009.2 
8 1 0 1 0 1 0 1 0 1 0 1 1,400 210 2 425.7 67.5 493.2 
9 1 0 1 0 1 0 1 0 1 0 1 2,100 155 3 489.9 190 679.9 
10 1 0 1 0 1 0 1 0 1 0 1 1,050 210 4 462.5 3,083 3,545.3 
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5.4 Impact of transportation on carbon emissions 

Comparison of CO2 emissions by different transport modes was analysed using all 
possible combinations (Figure 4). Figure 5 presents the distance travelled by each 
transportation mode for the same energy expenditure. Here, the assumption is made that 
one batch weights 20 tonnes. Figure 4 shows that shipping by water is a small contributor 
to environmental impact for long distance transportation compared to road, rail, and air 
cargo. Cargo ships are by far the most energy efficient mode of transportation, suitable 
for long-haul, global transportation of containerised goods. Numerically, shipping is 
recognised as the most efficient mode of transport with 0.45 metric tonnes of black 
carbon emissions. 

Figure 4 CO2 emissions by transportation mode (see online version for colours) 

 

Figure 5 Distance travelled with the same energy expenditure (see online version for colours) 

 

Rail transportation always comes out better than other modes (truck and air), often by a 
lot. The results indicate rail emits 0.635 metric tonnes; these emissions are very low in 
comparison with road diesel carbon emissions of 5.5567 metric tonnes or air cargo of 
43.649 metric tonnes. In summary, the cost incurred by ships decreases with increased 
transport volumes while emissions are less than other transportation means. Ships are the 
preferred transportation mode in terms of sustainability performance. Major savings in 
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energy can be achieved with shipping by watercraft for transporting RM in supply chain 
systems. In this regard, shipping one ton of cargo only requires 1 kWh. 

5.5 Managerial implications 

In an increasingly complex and uncertain environment, companies are seeking ways to 
achieve multiple objectives at the same time, yet few studies, so far, have examined the 
simultaneous optimisation of efficiency, resilience and sustainability. As such, the 
proposed model has significant practical applications. One of the key decisions is to 
source locally or globally; the other decision that managers face is how to prioritise 
between efficiency, resilience and sustainability; the recent COVID pandemic 
demonstrated how important it is to reconsider disruptions and their effects on SCN 
design. 

The proposed model can be considered as a baseline for the models intending to 
consider multi manufacturers and multi retailers. Further, the results indicate that 
considering production and distribution design optimisation separately negatively affects 
the performance during disruptions of SCNs. These two findings should be considered 
when designing supply chains or re-designing existing ones: 

1 Using local suppliers to handle a disruption which results from natural disasters and 
causes stopping external suppliers is mostly like to increase the total production cost. 

2 CO2 emissions increase with increasing transaction quantities and when using 
aircraft as a quick transportation mode to cope during the disruption of an SCN. 

The results also show that companies should strategise their supplier selection, 
incorporating disruption risks into their decision-making process. A disruption may affect 
not only the supply side but, at the same time, the demand side (such as in the case of the 
recent pandemic). In this case, companies need a holistic approach, which this model can 
offer. 

6 Conclusions and further research 

This paper presented a unique optimisation approach concerning how to mitigate against 
potential supply chain disruption risks. The approach included an optimisation model 
applied to obtain optimal design of an integrated SCN. Also, the model developed in this 
paper considered the impact of introducing carbon tax into the suggested supply chain 
design. The model assumes that there are two kinds of suppliers, local and 
global/external, which are responsible for providing RM. Procuring from local/global 
suppliers is subject to a variety of costs and lead times depending upon disruptions due to 
unexpected risks. 

Both local and external suppliers have to manage potential disruptions in supply 
chains caused by natural or man-made disasters, or economic crises. The development of 
GA and the optimisation design of SCNs were presented in detail and the fundamental 
structure of GA was outlined. To ensure the validity and for improving the proposed 
model, it was applied to an industrial case example, and the results of the experiments 
validated the model and its parameters. Specifically, the experimental results show that 
the model measures the SCN performance in various design scenarios effectively. Also, 
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the results confirmed that the model can be used to obtain a design that can meet desired 
expectations. Finally, to provide a contribution that the performance of the proposed GA 
in this research is superior to find optimal solutions to undertaken problems in terms of 
accuracy and iterations, the PSO approach was chosen for the purpose of performance 
comparison. The results indicate that the GA proposed model is superior to the PSO 
approach. 

One characteristic of any GA model is that, specific to the problem it tackles, the 
derived solution cannot directly be transferred to other problems without proper  
re-adjustment, calibration and parameterising. Nevertheless, the model can be easily 
applied by companies to evaluate how they perform in terms of efficiency, sustainability 
and resilience. However, as with all models, it is subject to some limitations that need to 
be taken into account before the model is applied in practice. Specifically, it considers 
one product, one process and one retailer, while the many real cases are multi products 
involving several processers and retailers. 

Future research areas may extend from the work presented in this paper in various 
directions: First, multi-modal transportation is a popular option that can be easily 
achieved by modifying the model parameters. Then, operations can produce more than 
one product whereby, in this case, the daily demand would concern multiple products. 
Such research offers opportunities to explore quantitative models that integrate different 
sources of disruption risks. In addition, the assumption in the presented model is that 
demand is deterministic, which may not be the case due to the stochastic nature of SCNs 
in most cases. This issue could be a valuable recommendation for further research. 

References 

Allaoui, H., Guo, Y., Choudhary, A. and Bloemhof, J. (2018) ‘Sustainable agro-food supply chain 
design using two-stage hybrid multi-objective decision-making approach’, Computers and 
Operations Research, Vol. 89, pp.369–384, https://doi.org/10.1016/j.cor.2016.10.012. 

Altiparmak, F., Gen, M., Lin, L. and Paksoy, T. (2006) ‘A genetic algorithm approach for  
multi-objective optimization of supply chain networks’, Computers and Industrial 
Engineering, Vol. 51, No. 1, pp.196–215. 

Ardalan, Z., Karimi, S., Naderi, B. and Khamseh, A.A. (2016) ‘Supply chain networks design with 
multi-mode demand satisfaction policy’, Computers and Industrial Engineering, Vol. 96, 
pp.108–117, https://doi.org/10.1016/j.cie.2016.03.006. 

Cardona-Valdes, Y., Alvarez, A. and Ozdemir, D. (2011) ‘A bi-objective supply chain design 
problem with uncertainty’, Transportation Research Part C, Vol. 19, No. 5, pp.821–832. 

Chopra, S. and Meindl, P. (2013) Supply Chain Management: Strategy, Planning and Control,  
5th Global ed., Pearson, Boston. 

Chopra, S. and Sodhi, M.S. (2014) ‘Reducing the risk of supply chain disruptions’, MIT Sloan 
Management Review, Vol. 55, No. 3, pp.73–81. 

Cordeau, J.F., Pasin, F. and Solomon, M.M. (2006) ‘An integrated model for logistics network 
design’, Annals of Operations Research, Vol. 144, No. 1, pp.59–82. 

Cousins, P., Lamming, R. and Bowen, F. (2004) ‘The role of risk in environment-related supplier 
initiatives’, International Journal of Operations and Production Management, Vol. 24, No. 6, 
pp.554–565. 

Davarzani, H., Farahani, R.Z. and Rahmandad, H. (2015) ‘Understanding econo-political risks: 
impact of sanctions on an automotive supply chain’, International Journal of Operations and 
Production Management, Vol. 35, No. 11, pp.1567–1591. 



   

 

   

   
 

   

   

 

   

    A genetic algorithm-based optimisation model 21    
 

    
 
 

   

   
 

   

   

 

   

       
 

DEFRA (2013) Environmental Reporting Guidelines, Crown copyright, UK. 
Eberhart, R.C. and Kennedy, J. (2001) Swarm Intelligence, 1st ed., Morgan Kaufmann, London, 

UK. 
El Dabee, F., Marian, R. and Amer, Y. (2013) ‘A novel optimisation model for simultaneous  

cost-risk reduction in multi-suppliers just-in-time systems’, Journal of Computer Science,  
Vol. 9, No. 12, pp.1778–1792. 

Eskandarpour, M., Dejax, P., Miemczyk, J. and Péton, O. (2015) ‘Sustainable supply chain network 
design: an optimization-oriented review’, Omega, Vol. 54, pp.11–32, https://doi.org/10.1016/ 
j.omega.2015.01.006. 

Fang, Y. and Shou, B. (2015) ‘Managing supply uncertainty under supply chain Cournot 
competition’, European Journal of Operational Research, Vol. 243, No. 1, pp.156–176. 

Fathollahi-Fard, A.M., Hajiaghaei-Keshteli, M. and Mirjalili, S. (2018)’ Multi-objective stochastic 
closed-loop supply chain network design with social considerations’, Applied Soft Computing, 
Vol. 71, pp.505–525, https://doi.org/10.1016/j.asoc.2018.07.025. 

Franca, B.R., Jones, E.C., Richards, C.N. and Carlson, J.P. (2010) ‘Multi-objective stochastic 
supply chain modeling to evaluate trade-offs between profit and quality’, International 
Journal Production Economics, Vol. 127, No. 2, pp.292–299. 

Garg, P. (2010) ‘Evolutionary computation algorithms for cryptanalysis: a study’, International 
Journal of Computer Science and Information Security, Vol. 7, No. 1, pp.1–5. 

Gupta, D. and Ghafir, S. (2012) ‘An overview of methods maintaining diversity in genetic 
algorithms’, International Journal of Emerging Technology and Advanced Engineering,  
Vol. 2, No. 5, pp.56–60. 

Jauhar, S.K. and Pant, M. (2016) ‘Genetic algorithms in supply chain management: a critical 
analysis of the literature’, Sādhanā, Vol. 41, No. 9, pp.993–1017. 

Kennedy, J. and Eberhart, R.C. (1995) ‘Particle swam optimization’, Proceedings of ICNN’95 – 
International Conference on Neural Networks, Perth, WA, Australia, 27 November– 
1 December. 

Kleindorfer, P.R. and Saad, G.H. (2005) ‘Disruption risk management in supply chains’, 
Production and Operations Management, Vol. 14, No. 1, pp.53–68. 

Klibi, W., Martel, A. and Guitouni, A. (2010) ‘The design of robust value-creating supply chain 
networks: a critical review’, European Journal of Operational Research, Vol. 203, No. 2, 
pp.283–293. 

Koberg, E. and Longoni, A. (2019) ‘A systematic review of sustainable supply chain management 
in global supply chains’, Journal of Cleaner Production, Vol. 207, pp.1084–1098, 
https://doi.org/10.1016/j.jclepro.2018.10.033. 

Leonard, D. (2005) ‘The only lifeline was the Wal-Mart’, Fortune, Vol. 152, No. 7, pp.74–80. 
Leuveano, A., Jafar, F. and Muhamad, M. (2012) ‘Development of genetic algorithm on  

multi-vendor integrated procurement-production system under shared transportation and just-
in-time delivery system’, Proceedings of the 2nd International Conference on Uncertainty 
Reasoning and Knowledge Engineering, IEEE Xplore Press, Jakarta, 14–15 August, pp.78–81, 
DOI: 10.1109/URKE.2012.6319589. 

Linton, J.D., Klassen, R. and Jayaraman, V. (2007) ‘Sustainable supply chains: an introduction’, 
Journal of Operations Management, Vol. 25, No. 6, pp.1075–1082. 

Listeş, O. and Dekker, R. (2005) ‘A stochastic approach to a case study for product recovery 
network design’, European Journal of Operational Research, Vol. 160, No. 1, pp.268–287. 

Mahmudy, W., Marian, R. and Luong, L. (2012) ‘Solving part type selection and loading problem 
in flexible manufacturing system using real coded genetic algorithms: part I: modelling’, 
World Academy of Science, Engineering and Technology, Vol. 6, pp.695–701, 
https://doi.org/10.5281/zenodo.1328896. 



   

 

   

   
 

   

   

 

   

   22 A. Al-Zuheri and I. Vlachos    
 

    
 
 

   

   
 

   

   

 

   

       
 

Mari, S.I., Lee, Y.H. and Memon, M.S. (2014) ‘Sustainable and resilient supply chain network 
design under disruption risks’, Sustainability, Vol. 6, No. 10, pp.6666–6686. 

Meixell, M.J. and Gargeya, V.B. (2005) ‘Global supply chain design: a literature review and 
critique’, Transportation Research Part E: Logistics and Transportation Review, Vol. 41,  
No. 6, pp.531–550. 

Norrman, A. and Jansson, U. (2004) ‘Ericsson’s proactive supply chain risk management approach 
after a serious sub supplier accident’, International Journal of Physical Distribution and 
Logistics Management, Vol. 34, No. 5, pp.434–456. 

Olhager, J., Pashaei, S. and Sternberg, H. (2015) ‘Design of global production and distribution 
networks’, International Journal of Physical Distribution and Logistics Management, Vol. 45, 
Nos. 1–2, pp.138–158. 

Özceylan, E. and Paksoy, T. (2013) ‘A mixed integer-programming model for a closed-loop 
supply-chain network’, International Journal of Production Research, Vol. 51, No. 3,  
pp.718–734. 

Peng, Y., Ablanedo-Rosas, J.H. and Fu, P. (2016) ‘A multiperiod supply chain network design 
considering carbon emissions’, Mathematical Problems in Engineering, pp.1–11,  
ID: 1581893, http://dx.doi.org/10.1155/2016/1581893. 

Rebs, T., Brandenburg, M. and Seuring, S. (2019) ‘System dynamics modeling for sustainable 
supply chain management: a literature review and systems thinking approach’, Journal of 
Cleaner Production, Vol. 208, pp.1265–1280, https://doi.org/10.1016/j.jclepro.2018.10.100. 

Reeves, C.R. and Rowe, J.E. (2003) Genetic Algorithms: Principles and Perspectives: A Guide to 
GA Theory, Kluwer, New York. 

Rose, A. (2011) ‘Resilience and sustainability in the face of disasters’, Environmental Innovation 
and Societal Transitions, Vol. 1, No. 1, pp.96–100. 

Rotaru, K., Wilkin, C. and Ceglowski, A. (2014) ‘Analysis of SCOR’s approach to supply chain 
risk management’, International Journal of Operations and Production Management, Vol. 34, 
No. 10, pp.1246–1268. 

Saffar, M.M., Shakouri, H.G. and Razmi, J. (2015) ‘A new multi objective optimization model for 
designing a green supply chain network under uncertainty’, International Journal of Industrial 
Engineering Computations, Vol. 6, No. 1, pp.15–32. 

Samson, D. and Gloet, M. (2018) ‘Integrating performance and risk aspects of supply chain design 
processes’, Production Planning and Control, Vol. 29, No. 15, pp.1238–1257. 

Scheel, C. (2016) ‘Beyond sustainability. Transforming industrial zero-valued residues into 
increasing economic returns’, Journal of Cleaner Production, Vol. 131, pp.376–386, 
https://doi.org/10.1016/j.jclepro.2016.05.018. 

Seuringa, S. and Müller, M. (2008) ‘From a literature review to a conceptual framework for 
sustainable supply chain management’, Journal of Cleaner Production, Vol. 16, No. 15, 
pp.1699–1710. 

Smith, M.H. (2013) ‘A fundamental approach to facilities location risk assessment and its relevance 
to supply chain network design: using the Thai floods of 2011 as an example’, International 
Journal of Trade, Economics and Finance, Vol. 4, No. 5, pp.300–303. 

Sodhi, M.S., Son, B.G. and Tang, C.S. (2012) ‘Researchers’ perspectives on supply chain risk 
management’, Production and Operations Management, Vol. 21, No. 1, pp.1–13. 

Speier, C., Whipple, J.M., Closs, D.J. and Voss, M.D. (2011) ‘Global supply chain design 
considerations: mitigating product safety and security risks’, Journal of Operations 
Management, Vol. 29, Nos. 7–8, pp.721–736. 

Srivastava, S.K. (2007) ‘Green supply‐chain management: a state‐of‐the‐art literature review’, 
International Journal of Management Reviews, Vol. 9, No. 1, pp.53–80. 

Tang, C.S. (2006) ‘Robust strategies for mitigating supply chain disruptions’, International Journal 
of Logistics: Research and Applications, Vol. 9, No. 1, pp.33–45. 



   

 

   

   
 

   

   

 

   

    A genetic algorithm-based optimisation model 23    
 

    
 
 

   

   
 

   

   

 

   

       
 

Thomas, A., Byard, P., Francis, M., Fisher, R. and White, G.R.T. (2016) ‘Profiling the resiliency 
and sustainability of UK manufacturing companies’, Journal of Manufacturing Technology 
Management, Vol. 27, No. 1, pp.82–99. 

Tsao, Y.C., Thanh, V.V., Lu, J.C. and Yu, V. (2018) ‘Designing sustainable supply chain networks 
under uncertain environments: fuzzy multi-objective programming’, Journal of Cleaner 
Production, Vol. 174, pp.1550–1565, https://doi.org/10.1016/j.jclepro.2017.10.272. 

Wai, L.C. and Wongsurawat, W. (2013) ‘Crisis management: Western digital’s 46-day recovery 
from the 2011 flood disaster in Thailand’, Strategy and Leadership, Vol. 41, No. 1, pp.34–38. 


