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Abstract: Past studies have attempted to formulate the order decision-making 
behaviour of humans for inventory replenishment in dynamic stock 
management environments. This paper investigates whether a data-driven 
approach like machine learning can imitate the order size decisions of humans 
and consequently enhance supply chain performances. Accordingly, this paper 
proposes a supervised machine learning-based order size determination 
approach. The proposed approach is initially executed using the order decision 
data collected from a simulated stock management environment similar to the 
‘beer game’. Subsequent comparative analysis shows that the proposed 
approach successfully enhances all supply chain performance measures 
compared to other well-known ordering methods. Additionally, the proposed 
approach is validated on a retail case study to investigate its efficacy. This 
paper thus focuses on extending the past works reported in the literature by 
modelling human order decision-making as data-driven imitation learning and 
contributing to machine learning applications for order management. 
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1 Introduction 

The decision of ‘how much to order’ for inventory replenishment is one of the routine 
decisions made by the supply chain managers. The replenishment decisions are critical 
since they directly impact the supply chain performance. In fact, if the order size is large, 
then inventory piles up, resulting in an increased holding cost, and if the order size is 
small, then stockout risk surges. Moreover, a poor order size decision will lead to an 
inefficient outcome called the bullwhip effect (BWE). 

Despite its importance, the order size decision task for stock management, in reality, 
is complicated because managers are subjected to lagged feedbacks and the involvement 
of multiple interacting decision-makers in the supply chain system (Croson et al., 2014). 
Besides, the complexity of production and business process in organisations is increasing 
daily because of the global markets and uncertain environments. The decision process 
becomes more challenging when the supply chain managers are subjected to uncertain 
system parameters like customer demand and lead time (Ramaekers and Janssens, 2008). 

In this paper, we investigate whether a data-driven approach like machine learning 
(ML) can imitate the replenishment ordering decisions of the supply chain  
decision-makers and subsequently enhance the supply chain performance in a dynamic 
stock management environment. This paper thus focuses on extending the past works 
reported in the literature by modelling order decision-making as data-driven imitation 
learning and contributing to ML applications for order management. 
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This paper continues in Section 2 with a brief survey of the related literature.  
Section 3 describes an overview of the methodology. Section 4 discusses the description 
of data collection for training the ML models. Section 5 presents the data cleaning phase 
of the proposed approach. Section 6 discusses the implementation and assessment of the 
ML methods. Section 7 is dedicated to the performance analysis of supply chains 
operated using the proposed approach. Section 8 validates the proposed approach using 
practical retail case data. Finally, discussions and conclusions are presented in Sections 9 
and 10, respectively. 

2 Related literature 

Several studies have been carried out to investigate the ordering behaviour of humans 
operating in dynamic stock management environments. Almost all the studies related to 
stock management experiments were performed using the beer distribution game (BDG) 
or its variants (Yang et al., 2021). BDG is a role-play of four human players that 
simulates an industrial production and distribution system. At first, Sterman (1989) 
proposed an ordering rule based on the ‘anchoring and adjustment’ heuristic (Tversky 
and Kahneman, 1974), which imitates the decisions of the subjects exercising BDG. The 
proposed model (Sterman model, which we call from now onwards) follows a simple 
linear formula based on incoming order, expected demand, incoming and outgoing 
shipments, on-hand inventory, and current backorder to determine the order size. The 
principle behind the Sterman model is to: 

1 replenish inventory when the expected level decreases 

2 lessen the gap between target and on-hand inventory level 

3 uphold a sufficient supply line of unfilled orders. 

Following the footsteps of Sterman, several other researchers have revised the Sterman 
model for supply chain performance improvement. In one such research, Barlas and 
Özevin (2004) modified the linear Sterman model as a nonlinear formulation and showed 
that in many cases, the latter effectively accommodated the ordering dynamics of 
humans. Strozzi et al. (2007) and Liu et al. (2009) optimised the coefficients of the 
Sterman model using a genetic algorithm and particle swarm intelligence, respectively. 
They introduced minor variations to the classical demand pattern of BDG in their study 
and found that minimum supply chain cost is obtained when the Sterman model has 
optimised coefficients. Additionally, Rong et al. (2008) modified the Sterman model by 
incorporating a function that addressed a supply disruption and investigated the ordering 
behaviour of the players during the disruption. Similarly, Li and Yan (2015) have 
examined BWE variation and service level by including two more behaviour adjustments 
(to deal with uncertain demand and unsatisfied demand) in the Sterman model. On the 
other hand, Wright and Yuan (2008) investigated the effect of forecasting techniques in 
the Sterman model for alleviating the BWE. 

Several research studies have also been conducted to study the effect of different 
parameter combinations of the Sterman model (Mosekilde and Laugesen, 2007; 
Macdonald et al., 2013; Edali and Yasarcan 2016; Gonçalves and Moshtari, 2021). The 
change in order size when on-hand and supply line inventory levels deviate from the 
desired targets are characterised by the adjustment (or decision) parameters of the 
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Sterman model. The different parameter combinations portray a given player’s ordering 
behaviour in BDG. 

The Sterman model has also been effectively used to investigate the behavioural 
causes of the BWE. The findings from previous studies point out that the players of BDG 
tend to underweight their supply line (Sterman, 1989; Croson and Donohue, 2006; 
Croson et al., 2014; Sarkar and Kumar, 2015, Perera et al., 2020). That is, players do not 
consider the orders placed in the previous periods which are not yet arrived when placing 
the orders for the next period. 

A well-known industrial ordering rule commonly practised in multi-echelon supply 
chain systems is the order-up-to (OUT) policy (Costantino et al., 2015). Besides, the 
principle behind OUT policy, as per the Sterman model, is that OUT policy eases the 
discrepancy between target and on-hand inventory level by considering the supply line 
inventory (Tokar et al., 2012; Udenio et al., 2015). 

Collectively, the above literature highlights the critical role in examining Sterman’s 
ordering model in dynamic stock management environments. However, no research has 
been found in the literature that models human ordering behaviour by utilising the actual 
order decision data and investigating the subsequent supply chain performances. In the 
light of the stated research gap, this paper introduces data-driven imitation learning that 
aims to mimic human behaviour in a given order decision task. Imitation learning offers 
an implicit means of training an agent by sufficient demonstrations to map between 
observations and actions (Hussein et al., 2017). Recently, imitation learning principles 
have successfully been employed to a wide range of problems, including robotics 
(Tanwani et al., 2021), medical imaging (Kläser et al., 2021), power scheduling (Gao  
et al., 2021), logistics (Jothimurugan et al., 2021). Accordingly, this paper proposes a 
supervised ML-based order size determination (MLOD) approach that extends the 
Sterman model literature. The outcome of the proposed approach can perform as a  
data-driven decision support model for dynamic inventory replenishment systems. 

Recently, reinforcement learning (RL) methods have been employed to determine 
optimal/near-optimal ordering strategies (Chaharsooghi et al., 2008; Oroojlooyjadid  
et al., 2021). RL algorithm primarily deals with artificial agents that interact with an 
environment, and the agent learns to make optimal/near-optimal decisions based on the 
rewards received (Sutton and Barto, 1998). Ultimately, the learning mechanism of RL 
involves explicit programming of the preferred environment and requires the design of 
the intricate reward functions specific to the task. Besides, the implementation of RL to 
practical business applications is a tedious effort and has to ignore complex states for 
simulating the same in a controlled environment (Dulac-Arnold et al., 2021). However, 
the present scope of the study follows a supervised ML methodology where agents are 
trained based on labelled data containing both predictor (independent) and dependent 
variables (Cunningham et al., 2008). As the data, including the order size decisions for 
different instances, are sufficiently available in the organisational databases, supervised 
learning can be directly applied for building order size determination models. 

Like the Sterman model, the proposed order decision model does not optimise instead 
exercise control by determining the order size from a good order decision history. Since 
ML can learn and find hidden patterns from the data, an effectively trained ML model 
can determine the order size by imitating the best order size decisions of supply chain 
managers resulting in an improved supply chain performance. Therefore, this paper is 
different from previous studies as it does not follow a formula-based approach but instead 
follows a data-driven approach in determining the order size. 
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The contribution of this paper thus focuses on extending the Sterman model by 
modelling the human ordering behaviour as an ML approach. To the best of our 
knowledge, the application of supervised ML (using the order decision data) for order 
size determination has not been reported in the past literature. The MLOD will be a 
significant contribution for the managers of a stock management system as it can act as a 
decision support model in determining the order size. The present work also intends how 
a disruptive technology like ML can function in an application like order size 
determination. Organisations currently leverage the potential of data in various supply 
chain decision-making situations. 

3 Overview of the methodology 

This paper seeks to propose an MLOD approach for inventory management systems. 
Initially, the proposed approach is implemented on a traditional serial supply chain with 
four echelons similar to the experiment settings of the BDG. The data samples for 
training the ML models are collected from role-play experiments conducted during the 
past six years. The participants of the experiments are primarily students and scholars 
who have core knowledge in the particular domain. A detailed description of the 
experimentation and data collection are provided in Section 4. Once trained and tested, 
the supply chain operated based on the proposed approach is evaluated in terms of total 
supply chain cost (TSCC), BWE, and fill rate (FR). Furthermore, the proposed approach 
is applied to retail case data for checking its practical efficacy. A schematic diagram to 
illustrate the methodology is presented in Figure 1. 

The first phase is a prerequisite for the ML model building and focuses on data 
cleaning of the order decision data. The decision-making in stock management systems is 
typically affected by feedback complexity and time delay. As a result, order size 
decisions of the managers in certain instances might be ambiguous (Bolton and Katok, 
2008). Therefore, there is a need to eliminate those imprecise decision samples from the 
available data for delivering expert demonstrations for imitation learning. This paper 
adopts the inter quartile range (IQR) method, a univariate statistical technique to detect 
an outlier decision sample (Ilyas and Chu, 2019). 

According to the well-known ‘no free lunch theorem’, a single ML method cannot 
give a precise solution to all problems (Wolpert and Macready, 1997). Each method has 
its mathematical fitting property, and, therefore, it must try out more than one method to 
find out the best one that effectively solves a problem. Accordingly, in the second phase, 
three ML methods are employed for order size determination and select the best method 
based on its predictive performance. The three ML methods considered are random forest 
(RF), light gradient boosting machine (LightGBM) and artificial neural network (ANN). 
RF and LightGBM belong to the decision tree ensemble methods utilised by many 
researchers in recent years to solve practical supply chain prediction problems (Weng  
et al., 2019; Vairagade et al., 2019). Likewise, ANN can capture the nonlinear behaviour 
of complex processes like order size determination and has been widely used for 
developing supervised prediction models (Jaipuria and Mahapatra, 2014; Bousqaoui  
et al., 2017). Since no prior work has been reported for order size determination using 
supervised ML, the abovementioned methods are applied to check their efficacy. 
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Figure 1 Schematic diagram of the methodology (see online version for colours) 

 

Figure 2 Inventory distribution logic at each echelon with the proposed method  
(see online version for colours) 

 

Moreover, a proper hyper-parameter setting has considerable effects on the performance 
of any ML method. Consequently, in this paper, a Bayesian optimisation (BO) technique 
is employed to tune the hyper-parameters of RF, LightGBM and ANN. BO can 
effectively trade-off exploration and exploitation of the hyper-parameter space to 
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establish a configuration that best optimises a loss function (Snoek et al., 2012). Previous 
studies show that BO-based hyper-parameter tuning of ML methods is better than random 
search, grid search, and a manual search in terms of performance and speed (Hutter et al., 
2015; Xia et al., 2017). 

The best ML model identified in phase two is then embedded in the decision support 
systems of the supply chain echelons for order size determination. Figure 2 illustrates the 
inventory distribution logic at each supply chain echelon incorporating the proposed 
MLOD model. At any point in time, the ML model determines the replenishment order 
size based on the real-time inputs, and the determined order is subsequently placed to the 
upstream supplier. In addition, a comparative analysis of the supply chain performances 
is investigated. The performance analysis involves comparing supply chain operated by 
the MLOD model with supply chains operated by human decision-makers, supply chain 
operated by the Sterman model, and supply chain operated by the OUT policy. 

4 Experimentation and data collection 

The role-play experiments performed in this paper follow the standard procedure of 
conducting BDG similar to previous studies (Sterman, 1989; Croson and Donohue, 2006; 
Sarkar and Kumar, 2015) with few minor variations. The experiments are carried out on 
the Supply Chain Role-Play Game® (SCRPG) platform, an adaptation of BDG. The 
readers are recommended to refer to Pamulety and Pillai (2012), Pillai et al. (2014) and 
Pamulety and Pillai (2016) to know more about SCRPG and its background. 

4.1 Experiment design 

Consistent with BDG, we assume a serial supply chain with four echelons (i = 1 to 4) 
managed by human players. Each player in an echelon is assigned with the role of a 
retailer (i = 1), wholesaler (i = 2), distributor (i = 3) or a factory (i = 4) thereby forming a 
supply chain team. The players have to manage their assigned echelon independently by 
placing the orders upstream and meeting the demand from downstream over some 
specified game duration (t = 1, 2, …, T). The objective of each player is to minimise the 
accumulated inventory cost (IC) over the periods by maintaining inventory as low as 
possible while avoiding stockout situations. 

In SCRPG, all players experience the following sequence of activities during each 
period (week): 

1 delivery of allocated quantity from the upstream echelon (for factory, delivery from 
production plant) 

2 incoming order from the downstream echelon (for retailer, the order is customer 
demand) 

3 allocation to orders to fulfil the downstream demand with the available on-hand 
inventory (any shortage occurred is considered as lost sales) 

4 placement of new replenishment order to the upstream echelon. 

Before starting the actual experiments, players were briefed about the role-play 
environment. Additionally, a ‘role-specific’ trial game was performed to have a learning 
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experience for the players (Wu and Katok, 2006). The retailer echelon of the supply chain 
faces an unknown stationary customer demand, and it is not shared with other echelons. 
The customer demand for experiments is assumed from a normal distribution with a 
mean of 80 and a standard deviation of 10. The factory has an unlimited production 
capacity, and whatever quantity is demanded by the factory is replenished after 
production. Each player i places an order (Oi(t)) at the end of period t that will reach the 
upstream echelon i + 1 on (t + l + 1)th period (i.e., after an order lead time l). In contrast, 
each player i allocate Ai(t) units to an order at the beginning of period t that will reach the 
downstream echelon i – 1 on (t + k)th period (i.e., after a delivery lead time k). If the 
available inventory meets the incoming order, the allocated units will be the same as the 
incoming order. Otherwise, available inventory on-hand will be allocated. 

Furthermore, no communication between the players is allowed during the game, and 
each game is conducted for 25 weeks. An initial inventory of 190 units has been set for 
every echelon at the start of the game. A deterministic short lead time (l = 0 and k = 1 
week) was considered and kept the same across all echelons to maintain moderate supply 
uncertainty. Furthermore, an asymmetric nature of unit cost consistent with prior studies 
(Daniel and Rajendran, 2005; Pillai et al., 2014) is considered for IC calculation. The unit 
cost per week for holding and lost sales for each echelon is shown in Table 1. In addition, 
we have entirely displayed the information like on-order inventory, on-hand inventory, 
orders placed to upstream, and end period inventory. 
Table 1 Unit cost of holding and lost sales 

Cost (in $ per unit per week) Retailer Wholesaler Distributor Factory 

Holding cost ( )h
iC  5 4 3 1 

Lost sales cost ( )s
iC  10 8 6 2 

4.2 Supply chain performance measures 

A supply chain performance depends on the individual decisions of its members, and the 
quality of a supply chain is evaluated by analysing its performance measures. The present 
study uses the BWE, FR, and total supply chain IC as the performance measures to 
evaluate the supply chains and assess echelon performance. 

The BWE is the increase in order variability from downstream to upstream echelons 
in a supply chain. BWEi of echelon i is statistically quantified by taking the ratio between 
order variance of an echelon 2( )iσ  and variance of customer demand at retailer echelon 

2( )Dσ  and can be presented as in equation (1) (Chen et al., 2000). The order variance of 

echelon 2( )iσ  can be calculated as per equation (2), where iO  represents the mean of the 
order placed by the echelon i over the game duration T. BWE of the echelons should be 
as low as possible, and BWE4 (at factory) is considered as the quantified value of BWE 
for the whole supply chain. 

2

2
i

i
D

σBWE
σ

=  (1) 
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FR is an indication of the service level of supply chains. FRi of echelon i is computed as 
the ratio of the demand met on time to the demand that arose (Chopra et al., 2013) and 
can be presented as in equation (3). FR1 (at retailer) is considered as the supply chain FR 
(Zhao et al., 2001), and it should be as high as possible. 

1

1

( )

( )

T

i
t

i T

i
t

A t
FR

IO t

=

=

=



 (3) 

IOi(t) = Oi–1(t – l – 1) is the incoming order to an echelon i from the downstream i – 1, 
received after the order lead time l. For the retailer, incoming order is the customer 
demand. 

IC of an echelon i is the sum of the costs incurred for holding the inventory (Ii + (t)) 
and lost sales (Ii – (t)) suffered by the echelon over the game duration T [see  
equation (4)]. Every player aims to minimise the accumulated IC at each echelon. The 
sum of ICs of all the echelons is the TSCC presented in equation (5). 

[ ]
1

( ) ( )
T

h s
i ii i i

t

IC C I t C I t+ −

=

= × + ×  (4) 

4

1
i

i

TSCC IC
=

=  (5) 

{ }1( ) max 0, ( 1) ( ) ( )i ii iI t I t A t k IO t+ +
+= − + − −  (6) 

( ){ }1( ) max 0, ( ) ( 1) ( )i i iiI t IO t I t A t k− +
+= − − + −  (7) 

4.3 Data collection 

The order decision details represent a player’s order size decisions and related inventory 
information throughout the period of operation. Table 2 illustrates a typical order size 
decision detail of a retailer echelon. The order decision details for different players at 
each echelon are drawn from the role-play experiments conducted for the past six years 
(2014–2020). During this period, there was a total participation of 448 players forming 
112 supply chain teams. The participated players were primarily students from 
undergraduate, post-graduate, management studies, and PhD. Before participating in the 
game, they had undergone a course on ‘inventory and supply chain management’. 
According to the review carried out by Yang et al. (2021), it is noted that the performance 
of the ‘professional’ participants and ‘student’ participants in a BDG does not differ 
significantly, which support the authenticity of the data used in the current research. 
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Therefore, order decision details representing 112 retailer, 112 wholesaler, 112 
distributor, and 112 factory are available for the study. 

Though experiments have been carried out for 25 weeks, information from 1–22 
weeks is considered as order decision details for a particular player. The end periods are 
excluded from the evaluation to remove the end game effects (Sterman, 1989). In fact, 
lagged feedbacks are not reflected in the end periods in contrast to the beginning periods. 
These order decision details are then aggregated for four supply chain echelons producing 
2,464 (112 × 22) data points each. The performance measures described in the previous 
section, i.e., BWE (BWE1), FR (FR1), and IC (IC1) of the sample retailer echelon (i = 1) 
as mentioned above, are 26.63, 0.96, and 2,575, respectively. 
Table 2 Order decision detail of a retailer 

Week Received 
shipments 

Previous 
inventory 

Incoming 
order 

Expected 
demand 

Allocated 
quantity 

End 
inventory 

Lost 
sales 

On-order 
inventory 

Order 
placed 

1 0 190 81 81 81 109 0 0 2 
2 0 109 79 80 79 30 0 2 75 
3 2 30 72 78 32 0 40 75 80 
4 75 0 83 79 75 0 8 80 190 
5 80 0 65 75 65 15 0 190 55 
6 150 15 81 76 81 84 0 55 70 
7 55 84 76 76 76 63 0 70 60 
8 70 63 74 75 74 59 0 60 0 
9 60 59 82 76 82 37 0 0 90 
10 0 37 79 76 37 0 42 90 80 
11 90 0 80 77 80 10 0 80 80 
12 80 10 81 78 81 9 0 80 90 
13 80 9 83 79 83 6 0 90 80 
14 90 6 83 80 83 13 0 80 85 
15 80 13 85 81 85 8 0 85 82 
16 85 8 76 79 76 17 0 82 78 
17 82 17 87 81 87 12 0 78 80 
18 78 12 75 79 75 15 0 80 82 
19 80 15 71 77 71 24 0 82 80 
20 82 24 73 76 73 33 0 80 75 
21 70 33 93 80 93 10 0 75 80 
22 75 10 85 81 85 0 0 80 80 

5 Phase 1: data cleaning 

This section is a data cleaning/pre-processing step where imprecise order size decisions 
of the decision-makers are identified based on the IQR method. The IQR is defined as the 
difference between the third quartile (Q3) and first quartile (Q1) of the data. In the IQR 
method, an outlier is defined as those data points having values 1.5 of the IQR below the 
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first quartile (lower limit) or above the third quartile (upper limit) of the data, and 
constant factor 1.5 in the IQR method is determined statistically (Ilyas and Chu, 2019). 

For instance, a sudden rise in the order size on week 4 (refer to Table 2) caused a hike 
in the ending inventory at week 6. Besides, this unexpected increase in order size triggers 
demand amplification and affects upstream members suffering from stockout. In addition, 
an immediate drop in order decision on week eight has led to a substantial stockout at 
week 10. These particular order sizes are ambiguous decisions of humans that seriously 
impact supply chain performance and have to be removed before imitation learning. 

Figure 3 illustrates the box and whisker plot of the order size decisions placed by the 
respective supply chain echelons. Box and whisker plots graphically represent quartile 
ranges and spot potential outliers beyond the upper and lower limits as per the IQR 
method. The entire row samples of the imprecise order decisions are subsequently 
eliminated from the data set using the IQR method to lift the ML model’s predictive 
performance. Table 3 shows the consolidated data points available for training the ML 
models. Each data point thus represents predictor variables available at the time of 
decision-making (order size determination) and the dependent variable (order size). 

Figure 3 Box and whisker plot of the order placed data for different echelons (see online version 
for colours) 

 

Table 3 Total number of data points available for training the ML model 

 Retailer Wholesaler Distributor Factory 
Total number of data points collected 2,464 2,464 2,464 2,464 
Number of decision samples 
identified as outliers 

310 157 138 134 

Total number of available data points 
after outlier removal 

2,154 2,307 2,326 2,330 

6 Phase 2: implementation and assessment of ML methods 

This phase implements and evaluates three nonlinear ML methods to determine the order 
size for each echelon. Figure 1 provides the scheme followed for MLOD in phase 2. 
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Initially, predictor variables for determining the order size are identified. The best ML 
method for each echelon is then selected based on its predictive performance assessed 
from the outputs of a ten-fold cross-validation (CV) technique. 

6.1 Predictor variables 

The development of the MLOD model follows a supervised learning (regression) 
approach where dependent and predictor variables are well defined. Here, the dependent 
variable is order size (Oi(t)), determined based on a set of predictor variables. Predictor 
variables are variables used to predict another variable (dependent), and in this paper, 
they are identified from the previous literature that discusses on Sterman model and its 
variations. At any point of time, the participants of the stock management environment 
partially observe the available local inventory information for order placement (Chen, 
1999), and it includes the following predictor variables, 

1 Current period end inventory ( ( )).iI t+  

2 Current period lost sales quantity ( ( )).iI t−  

3 Previous period’s end inventory (PIi(t)) which is equal to ( 1).iI t+ −  

4 Allocation of shipments to the downstream echelon (Ai(t)). 

5 Shipments received from the upstream echelon (RQi(t)). For l = 0 and k = 1,  
RQi(t) = Ai+1(t – 1) and RQ4(t) = O4(t – 2). 

6 Incoming orders received from the downstream (IOi(t)). 

7 On-order inventory (OOIi(t)) is defined as an order placed in the previous periods but 
not yet received. For l = 0 and k = 1, OOIi(t) = Oi(t – 1). 

8 Expected incoming order for period t + 1 (EOi(t + 1)) which is calculated using 
simple exponential smoothing method [see equation (8)] with smoothing constant (θ) 
equal to 0.25. 

( 1) ( ) (1 ) ( )i i iEO t θ IO t θ EO t+ = × + − ×  (8) 

A descriptive summary of predictor variables is presented in Table 4. From the 
descriptive analysis, it is evident that the summary values of each predictor variable, like 
minimum, maximum, mean and standard deviation, differ widely across each echelon. 
For example, the mean value of end period inventory ( ( ))iI t+  varies from 28 at the 
retailer echelon to 133 at the factory echelon. Accordingly, order decision data of each 
echelon follows a distinct distribution, and ML models have to be built independently for 
each echelon. 

The correlation coefficient values indicate the strength of the linear relationship 
between the dependent and different predictor variables and are illustrated in Figure 4. 
The correlation plot in Figure 4 is developed in a Python library called Seaborn, and the 
readers are requested to view the online version to distinguish the colours. The 
correlation coefficient ranges from –1 to +1, and these values indicate a strong negative 
(red) relationship to a strong positive (green) relationship. The figure shows that the 
correlation coefficient ranges mostly between [–0.5, 0.5], indicating a weak relationship 
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between order size and other predictor variables. Since there is no strong linear 
relationship between the dependent variable and predictor variables, nonlinear ML 
prediction models are used for determining the order size instead of generalised linear 
models. 
Table 4 Descriptive summary of the predictor variables 

Variables 
Retailer  Wholesaler 

Minimum Maximum Mean Standard 
deviation  Minimum Maximum Mean Standard 

deviation 
RQ 0 175 64 30  0 200 59 38 
PI 0 231 35 45  0 280 61 70 
IO 55 99 80 8  0 250 76 32 
EO 55 98 79 4  0 178 66 27 
A 0 99 71 17  0 170 65 30 
I+ 0 231 28 32  0 280 54 66 
OOI 0 280 78 30  0 440 72 43 
I– 0 95 8 17  0 225 10 25 

Variables 
Distributor  Factory 

Minimum Maximum Mean Standard 
deviation  Minimum Maximum Mean Standard 

deviation 
RQ 0 300 57 50  0 300 58 62 
PI 0 424 84 79  0 485 135 91 
IO 0 400 73 43  0 356 67 53 
EO 0 227 62 34  0 243 58 37 
A 0 200 62 37  0 264 59 45 
I+ 0 424 79 77  0 520 133 92 
OOI 0 500 69 62  0 300 59 60 
I– 0 340 10 26  0 355 8 26 

6.2 ML methods 

RF is a tree-based parallel ensemble learning method for classification and regression 
(Breiman, 2001). RF method uses a collection of decision trees at the training stage and 
outputs the mean prediction of individual trees for regression. It utilises two key concepts 
rather than just averaging the prediction, viz., 

1 random sampling of training data points while building trees 

2 random subsets of variables while splitting decision tree nodes. 

This helps to produce a better predictive performance compared to constituent tree 
predictions. 

LightGBM is a recent ML algorithm introduced by Microsoft in 2017 (Ke et al., 
2017). LightGBM is used explicitly for classification and regression tasks of ML and 
operates based on the principle of gradient boosting decision tree (GBDT). Unlike RF, 
GBDT sequentially builds models until the minimisation of loss function becomes 
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limited. LightGBM mainly utilises two novel techniques that make it more efficient and 
faster than conventional GBDT, and they are: 

1 gradient-based one-side sampling (GOSS) 

2 exclusive feature bundling (EFB). 

GOSS reduces the number of data instances by focusing on under-trained instances (those 
with larger gradients) to estimate accurate information gain. Alternatively, as a result of 
EFB, exclusive features are bundled into a single feature, and the sparsity of the variable 
space is reduced. Consequently, LightGBM reduces the computational time for the 
training process and reduces memory consumption. 

Figure 4 Correlation plot between dependent and predictor variables (see online version  
for colours) 

 

ANN model is based on the structure and functions of a biological neural network and 
mimics the learning process performed by the brain (Bishop, 1995). ANN architecture 
typically contains one input layer, one or more hidden layers and an output layer. Each 
layer consists of a finite number of nodes/neurons, and adjacent layers are interconnected 
through nodes either partially or fully. Initially, data is fed into the input layer, which is 
then passed to the output layer through the nodes of different hidden layers (forward 
pass). The output of this pass is compared with the actual value, and a mean square error 
is calculated. The results are then passed back to the hidden layers to adjust the weight of 
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nodes through a process called back-propagation. The back-propagation algorithm 
optimises the weight of nodes by a series of forward and backward passes, thereby 
minimising the error between the forward pass output and the actual output. 

6.3 ML implementation and assessment 

A brief flow of the procedure explained in this section is illustrated in Figure 1 (phase 2). 
Initially, BO is performed to optimise the hyper-parameters of the ML methods. Out of 
the total available data points in each echelon dataset, 20% was chosen randomly for BO. 
For example, the retailer data set has 2,154 data points. Of which, 431 data points (20% 
of 2,154) are chosen randomly to find the optimal hyper-parameter combination based on 
BO. The hyper-parameter search space considered for three ML methods is shown in 
Table A1 of Appendix section. The final optimised hyper-parameter values after BO are 
shown in Table A2. Additionally, the hyper-parameter search space assumed in the study 
is intended to provide considerable model complexity to avoid high bias or underfitting 
phenomena. 

Afterwards, ten-fold CV is employed using the entire data set to evaluate the 
predictive performance of the three ML methods. The execution of ten-fold CV involves 
splitting the entire data set randomly into ten partitions of equal size. For example, if the 
ten-fold CV was performed on the retailer data set, then 2,154 data points are, initially, 
divided into ten equal subsets (216 each). Then, one subset is held as a test set, and the 
remaining subsets (216 × 9 = 1,944) are combined to form the training set. ML methods 
are trained using the training set, and the predictive performance of the trained ML 
models is tested on the test set. The predictive performance of the ML models is assessed 
based on two generally applied error measures – root mean square error (RMSE) and 
mean absolute error (MAE). 

( )2

1

N

j j
j

i

O O

RMSE
N

′

=

−

=


 (9) 
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i j j
j

MAE O O
N

′

=

= −  (10) 

where Oj and jO′  are the actual and predicted order size values, respectively. This 
validation process is repeated ten times, and each test set is used exactly once, giving ML 
methods an option to train on multiple train-test splits. Furthermore, the entire data sets 
corresponding to each supply chain echelon are initially standardised during the training 
process. The performance assessment of the ML methods is also performed based on the 
standardised values and rescaled to their original units after performance assessment. The 
training of ML methods, ten-fold CV, etc. are carried out with Sklearn, LightGBM and 
Keras packages on Python 3.7 and run on a machine with 3.70 GHz Intel Xeon CPU and 
32 GB memory. 

The mean and standard deviation of RMSE and MAE after ten-fold CV are the 
assessment values for comparing the final predictive performance of the trained ML 
models. To show the level of predictive performance variability of the ML models to its 
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mean performance, we define the coefficient of variation (cvi), which is the ratio of 
standard deviation and mean of predictive performance values: 

100i
standard deviation cv

mean
= ×  (11) 

The final predictive performances of three ML methods after ten-fold CV for each 
echelon are reported in Table 5. The basis of comparison is the coefficient of variation 
value of RMSE and MAE, and it should be as low as possible. For every echelon, the 
coefficient of variation values is least for LightGBM compared to RF and ANN. 
Although in some cases, the mean values of RMSE and MAE for RF and ANN are less 
than LightGBM, which has higher predictive variability than LightGBM. This indicates 
that predictive performance of RF and ANN is inconsistent in determining the order size, 
and the primary objective of CV, i.e., model generalisation (James et al., 2013), is 
achieved through the results of the LightGBM model. 
Table 5 Predictive performance of ML methods after ten-fold CV 

ML methods Mean 
RMSE 

Standard 
deviation cv Mean 

MAE 
Standard 
deviation cv 

Retailer 
RF 1.0252 0.0847 8.14 0.7516 0.0597 8.55 
LightGBM 0.9059 0.0377 4.16 0.6716 0.0278 4.14 
ANN 0.9008 0.0475 5.32 0.6647 0.0294 4.47 
Wholesaler 
RF 0.993 0.0596 5.97 0.7647 0.0493 6.47 
LightGBM 0.779 0.0449 5.76 0.5711 0.0323 5.66 
ANN 0.7666 0.072 9.37 0.5642 0.0496 8.98 
Distributor 
RF 0.7107 0.055 7.75 0.5181 0.0423 8.32 
LightGBM 0.7148 0.0535 7.48 0.5218 0.031 5.94 
ANN 0.7269 0.0616 8.47 0.5285 0.0344 6.56 
Factory 
RF 0.7596 0.044 5.83 0.5687 0.0295 5.15 
LightGBM 0.7083 0.0234 3.3 0.5139 0.0178 3.46 
ANN 0.7308 0.0443 6.21 0.5533 0.0331 6.06 

Furthermore, Figures 5–6 illustrate the learning curves that show the learning 
performance variation of the LightGBM model in terms of RMSE and MAE for the four 
echelons. It is observed that the learning curves also confirm the generalisability of the 
model’s predictive performance because the LightGBM can fit better on the validation/ 
test set as the training set size increases. The figures show that as the training set size 
increases, the training error and validation error gap becomes narrower. Therefore, it 
appears that order size determined using the LightGBM model does not experience any 
overfitting or underfitting phenomenon, and the application of the model might lead to an 
improved supply chain performance, which is investigated in the next section. 
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Figure 5 Learning curve of LightGBM for RMSE (see online version for colours) 

 

Figure 6 Learning curve of LightGBM for MAE (see online version for colours) 
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7 Comparative analysis 

After identifying the best ML method for order size determination, the LightGBM model 
is trained using all the available data points. The trained ML model (LightGBM) is then 
embedded in the decision support systems of the supply chain echelons for order size 
determination. As in Figure 2, the ML model determines the order size based on the  
real-time values of the predictor variables, and the determined order is placed to the 
upstream supplier. 

A comparative analysis of the supply chain performances is carried out to investigate 
the effectiveness of the MLOD model against the human decisions, Sterman model, and 
OUT policy. Accordingly, four-echelon serial supply chains are simulated for 25 weeks, 
with similar experimental assumptions and input conditions used for the role-play 
experiments. Supply chain performances and corresponding echelon performances are 
evaluated on four test problem instances with different customer demand samples 
(demand distribution remains the same) shown in Table 6. 
Table 6 Test problem instances 

Test problem 1 [82, 73, 92, 85, 90, 74, 83, 79, 85, 83, 91, 57, 72, 87, 77, 69, 74, 91, 84, 67, 
101, 82, 72, 83, 97] 

Test problem 2 [84, 92, 92, 77, 92, 73, 90, 90, 84, 84, 84, 72, 69, 84, 74, 84, 93, 81, 79, 55, 
78, 70, 74, 95, 65] 

Test problem 3 [61, 78, 62, 87, 81, 77, 78, 76, 74, 72, 69, 72, 56, 81, 77, 86, 58, 63, 88, 83, 
68, 77, 71, 65, 75] 

Test problem 4 [88, 86, 92, 70, 73, 74, 100, 82, 76, 89, 57, 79, 89, 67, 72, 94, 92, 82, 87, 70, 
75, 77, 78, 77, 90] 

The following four scenarios represent different order size determination approaches used 
for comparison: 

1 Supply chains operated by human players: SCRPG is used to simulate this scenario. 
More than one supply chain team has participated in the different test problems. Due 
to human behaviour, different order sizes are possible at ordering instances of 
various replications of the test problems. Hence, more than one supply chain team is 
considered for simulation. For test problems 1, 2, 3, and 4, the supply chain teams 
participated is 6, 8, 6, and 8, respectively. The mean performance measures for each 
test problem are reported in Table 7. The best performing supply chain (human best) 
results are also reported in Table 7 and Figures 7–9. 

2 Supply chain operated by the Sterman model: Microsoft Excel spreadsheet-based 
simulation is used to simulate this scenario. The order size calculated as per the 
Sterman model for echelon i is as follows: 

( ) ( ){ }( ) max 0, ( 1) ( ) ( )i i I O iiO t EO t I I t OOI OOI t∗ + ∗= + + − + −α α  (12) 

where αI and αO are the fractional adjustments for on-hand inventory and supply 
line, respectively. Also, I* and OOI* are the target or desired levels for on-hand and 
on-order inventory levels, respectively. The following are the parameter values used 
for the simulation of the Sterman model: αI = 0.5, αO = 0.5, I* = 80 and OOI* = 80 
(mean demand), and these are set by assuming the stability of the steady-state system 
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(Macdonald et al., 2013). For instance, during simulation, the retailer echelon at 
week 9 for the test problem 1 has the following details: customer demand = 85, 
expected incoming order (for week 10) = 81, current inventory level = 27, and  
on-order inventory = 95. Accordingly, the order placed by the retailer as per  
equation (12) is equal to 100. 

3 Supply chain operated by OUT policy: Microsoft Excel spreadsheet-based 
simulation is used to simulate this scenario. In OUT policy, an order is placed at each 
review period equal to the difference between the target (OUT level) inventory level 
and inventory position. Inventory position for lost sales order management 
environment is calculated as the sum of on-hand and on-order inventory (George and 
Pillai, 2021). Mathematically, the order size calculated as per the OUT policy for 
echelon i is as follows: 

0, if ( ) ( )
( )

( ) ( ), if ( ) ( )
i i

i
i i i i

IP t OUT t
O t

OUT t IP t IP t OUT t
≥

=  − <
 (13) 

where OUT level, OUTi(t) = 2 × EOi(t + 1) and inventory position, IPi(t) = ( )iI t+   
+ OOIi(t). For instance, during simulation, retailer echelon at week 9 for the test 
problem 1 has the following details: customer demand = 85, expected incoming 
order (for week 10) = 81, OUT level = 162, end inventory level = 7, on-order 
inventory = 64 and inventory position = 71. Accordingly, the order placed by the 
retailer as per equation (13) is equal to 91. 

4 Supply chain operated by MLOD model (LightGBM): The Python program of the 
scenario is used for the order decision in the simulation. The input settings are the 
same as the ones used in other scenarios. Unlike other scenarios, the trained 
LightGBM model determines the order size based on the eight input variables. For 
instance, during simulation, retailer echelon at week 9 for the test problem 1 has the 
following details: received shipments = 73, previous inventory = 27, customer 
demand = 85, expected incoming order (for week 10) = 81, allocated quantity = 85, 
end inventory level = 15, lost sales = 0 and on-order inventory = 78. Accordingly, 
the order placed by the retailer at week 9 is equal to 88, which is the output from the 
trained LightGBM model using the above inputs. 

Furthermore, supply chain performance measures are evaluated from the 4th week to the 
22nd week, and the remaining periods are excluded to avoid the influences of warm-up 
and end-game effects. The supply chain performances obtained for the four test problems 
are reported in Table 7. 

Upon investigating Table 7, it can be observed that the supply chain operated with the 
MLOD model has achieved the least TSCC compared to the other three scenarios. 
Similarly, the MLOD model has achieved to produce a low order rate variance ratio. 
Likewise, the supply chain FR obtained using the MLOD model is comparable with the 
highest FR of the Sterman model and the best human decision-makers. 

Echelon performances of four scenarios in terms of IC, FR, and BWE are also 
investigated for all the test problems, and they are presented in Figures 7–9. Accumulated 
IC and order variance ratio (BWE) of each echelon in most cases are least for the supply 
chain operated by MLOD. Likewise, echelons operated by the MLOD model have 
satisfied the respective downstream demand well compared to the other three scenarios, 
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as illustrated in Figure 8. On the whole, comparative analysis indicates that the MLOD 
model successfully enhances supply chain performance compared to human decision-
making or other analytical methods. 
Table 7 Performance analysis of supply chains 

 Supply chain 
performance measures Human Human 

best 
Sterman 
model 

OUT 
policy MLOD 

Test problem 1 Total supply chain cost 11,274 8,573 13,603 15,025 6,593 
Fill rate 0.98 0.99 1 0.63 0.99 

Bullwhip effect 19.62 6.64 8.46 23.1 6.6 
Test problem 2 Total supply chain cost 16,579 10,475 14,085 15,870 6,875 

Fill rate 0.92 0.96 0.99 0.62 0.99 
Bullwhip effect 24.7 12.37 9.88 30.23 8.03 

Test problem 3 Total supply chain cost 16,171 11,615 15,202 15,225 6,841 
Fill rate 0.91 0.99 1 0.61 0.99 

Bullwhip effect 23.2 2.42 11.16 24.2 7.88 
Test problem 4 Total supply chain cost 16,724 8,780 13,482 16,028 6,708 

Fill rate 0.88 0.98 1 0.6 0.98 
Bullwhip effect 44.63 9.32 5.96 17.12 5.7 

Figure 7 IC of each echelon under four scenarios for the four test problems (see online version 
for colours) 
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Figure 8 FR of each echelon under four scenarios for the four test problems (see online version 
for colours) 

 

Figure 9 BWE of each echelon under four scenarios for the four test problems  
(see online version for colours) 

 

Furthermore, Figure 10 illustrates the variation of orders placed by the different echelons 
under each scenario for test problem 1. In the case of the retailer echelon (see Figure 10 – 
retailer), orders determined by the MLOD model are almost closer to the incoming 
customer demand. Besides, compared to the other order management scenarios, the order 
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variability of the MLOD model is least across the echelons. Consequently, the application 
of imitation learning for order size determination produces lower and smoother 
oscillations, resulting in better performance of the MLOD method for order management. 
Similar observations could also be noted for other test problems. 

Figure 10 Order placement of each echelon under four scenarios for the test problem 1  
(see online version for colours) 

 

8 Case study 

This section tests the proposed approach on case data corresponding to an actual 
consumer durable available in a local retail hardware store. At present, order management 
at the retail store is entirely based on human decisions. As inferred in the previous 
section, our objective is to investigate any performance enhancement using the proposed 
approach. The weekly order decision details from 2015–2016 financial year (1st April of 
a year to 31st March of next year) till 2019–2020 are collected, and it constitutes a total 
record of 259 data samples. Data collected from 2015–2016 till 2018–2019 is considered 
as the training data set, and 2019–2020 financial year data is considered as the validation 
set. Furthermore, the data collected from the retail store have a mean weekly demand of 
2,268 units of the item with a standard deviation of 258, which is very much different 
from the demand parameters assumed in the previous sections. 

The retail store places an order at the end of every week, and it reaches the upstream 
Distributor without any delay (order lead time = 0). The upstream Distributor satisfies the 
store’s demand within one week (delivery lead time = 1 week). Additionally, the unit cost 
per week for holding and lost sales for the retail store is estimated to be $0.53 and $5, 
respectively. This problem is a single echelon order management problem. 
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As a first step, the data cleaning phase of the proposed approach is introduced on the 
training set. The application of the IQR method discovered 16 ambiguous  
decision-making samples, and they are eliminated from the training data set. The three 
ML methods (RF, LightGBM, and ANN) are trained using the training data set in the 
second phase. Similar to experimental simulation, the predictive performance of the 
LightGBM model was observed to have the least RMSE and MAE values, which is then 
operated as the MLOD model. 

Furthermore, a comparative performance analysis of the different decision-making 
scenarios is carried out on the 2019–2020 financial year data (validation set). Results of 
the performances are reported in Table 8. It can be observed that the implementation of 
the proposed MLOD model on real case data has also successfully reduced the IC and 
order variability as well as improved the service level. Consequently, it can be inferred 
that a significant reduction of 19.6% in IC could have been achieved in the 2019–2020 
financial year at the retail store when the MLOD model is used instead of the present 
order management method. 
Table 8 Performance analysis on case data 

 Fill rate 
Order variance (customer 

demand variance  
= 18,183.71) 

Annual 
holding 

cost 

Annual 
lost sales 

cost 

Annual 
inventory 

cost 
Human 0.9888 26,134.95 4,189.65 6,625 10,814 
Sterman model 0.9884 5,400.04 2,284.5 6,850 9,134 
OUT policy 0.9882 37,857.40 3,092.55 7,000 10,092 
MLOD 0.9945 11,010.46 5,469.6 3,225 8,694.6 

9 Discussion 

This paper has focused on an imitation learning approach to model human  
decision-making in a dynamic stock management environment. More specifically, this 
paper proposes a supervised ML methodology for inventory order size determination. 
The outcome of the proposed approach is that it can perform as a data-driven decision 
support model that assists managers in dynamic inventory replenishment systems. 

The investigation of our results proves that the trained MLOD model (LightGBM) 
produces or replicates orders that result in consistent echelon performance. This 
establishes the model generalisation characteristic of the ML algorithm (James et al., 
2013). In addition, if the trained LightGBM model were experiencing any overfitting or 
underfitting, then the value of the performance measures would have deviated 
considerably across the test problems leading to inconsistent results. In brief, the MLOD 
model has learnt to place best order size decisions of the decision-makers in the dynamic 
stock management environments. 

From a system point of view, supply chain performance measures are enhanced when 
expert decision-makers manage each echelon since supply chain performance depends on 
the ordering behaviour of the individual decision-makers (Bolton and Katok, 2008). 
Likewise, it can be realised that when the supply chain echelons are operated by the 
MLOD model, as in scenario 4, the replicated order size at each echelon is good enough 
to produce a better supply chain performance. Furthermore, results reported in the study 
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have practical implications so that the proposed approach can be used independently by 
each echelon where information is not transparent. 

The supply chain performance measures found in Table 7 and echelon performance 
measures illustrated in Figures 7–9 demonstrate that the supply chain operated by MLOD 
has consistent performance over the other three approaches in all the test problems. For 
example, the TSCC of the proposed MLOD approach across the four test problems 
obtained in our simulation experiment is in the range [6,593, 6,875]. In fact, the range of 
this performance measure is minimal compared to the other three approaches. 
Meanwhile, performance measures of human ordering, the Sterman model, and OUT 
policy differ considerably across the test problems making those approaches less reliable 
than the MLOD model. For example, the mean TSCC of the human decision-makers 
across the four test problems is in the range [11,274, 16,724]. Furthermore, the 
application of the proposed approach in the retail case data also shows its practical 
efficacy. 

Concerning BWE results, it can be noted that BWE persists in supply chains. The 
demand amplification is visible across the echelons in all the scenarios (see Figure 10), 
and its severity is more at the upstream factory echelon (see Figures 9 and 10). This is 
similar to the typical supply chain nature described in the literature (Croson and 
Donohue, 2006). However, BWE severity in supply chains operated using the proposed 
method is less than humans, Sterman model and OUT policy (see Table 7 for 
comparison). It can be inferred that the MLOD model tries to smooth the replenishment 
order dynamically, as seen in Figure 9, without over-ordering or under-ordering as it 
learns the best order size pattern of the decision-makers suitable for each time-step. 
Meanwhile, the Sterman model and OUT policy at each time-step follow a fixed ordering 
rule [see equations (12) and (13)] without learning any smoothing pattern that resulted in 
demand amplification at the upstream echelons. 

Furthermore, the incoming customer demand at each time-step is satisfied more or 
less entirely in supply chains operated using the MLOD model (refer to Tables 7–8 and 
Figure 8). The supply chain FR values of the proposed scenario across the four test 
problems range 98%–99%, comparable to scenario two and best human decision-makers, 
and are better than scenario three. As mentioned previously, the trained ML model makes 
replenishment orders based on the order size pattern of the decision-makers who can 
satisfy the incoming demands completely. Additionally, the variation of the FR across the 
echelons (as in Figure 8) is minimal, confirming the ML model’s consistency in different 
test problem instances. The supply chains operated by the humans and the Sterman model 
has a comparatively higher FR than the OUT policy since these scenarios tend to place 
orders more than required. This validates the typical ordering behaviour of humans to 
keep an increased inventory in stock to avoid the risk of stockout (Nienhaus et al., 2006). 

10 Conclusions 

This paper has reported the entire process of ML model building, including data cleaning, 
model training, performance assessment, and its application in order management. The 
proposed approach is a generic methodology that can be applied to any stock 
management environment with a good amount of order decision history. Nowadays, as 
the data containing the order size decisions for different instances are sufficiently 
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available in the organisational databases, the imitation learning principles can be directly 
applied to build order size determination models. 

The data considered in this study represent human decision-making behaviour that 
has biases and judgments in order decision-making. The implementation of ML has 
successfully captured specific trends and patterns in these data, thereby arriving at a 
model for well-ordered behaviour. From the performance analysis, it can be concluded 
that rather than following a fixed ordering rule like the Sterman model, the proposed 
approach has learnt to imitate the best order size decisions of the decision-makers and 
subsequently resulted in an enhanced supply chain performance. This paper thus extends 
the Sterman model by modelling the human ordering behaviour as an imitation learning 
approach. The outcome of the proposed approach is a data-driven model that 
organisations prefer these days as they can leverage the potential of data. This is the key 
idea put forth through this paper. 

The scope of this paper is limited by training the ML model only to a single demand 
distribution and the application of the proposed model to a single retail case. This 
limitation also suggests the directions for future research by experimenting and training 
the ML models for different demand distributions and seasonal changes since the present 
work proves how ML models can be deployed for order size determination based on the 
underlying data. The present work also assumes that the order decision data of humans 
have cognitive biases. That means the order size determined from the proposed approach 
is still not optimal since it has not been trained on correct input/output pairs. 
Additionally, this paper has used the order decision data of humans to train the ML 
models. The comparative analysis shows that the Sterman model and OUT policy provide 
a better performance, at least in some echelons, than the echelons operated by humans. 
Therefore, an implication for the future study is that imitation learning can be applied to 
order decision data obtained from the simulated samples of the Sterman model and OUT 
policy. The present work thus has thrown a prospect of using ML for order size 
determination in dynamic stock management environments. It provides contributions to 
the literature with opportunities for future research. 

References 
Barlas, Y. and Özevin, M.G. (2004) ‘Analysis of stock management gaming experiments and 

alternative ordering formulations’, Systems Research and Behavioral Science: The Official 
Journal of the International Federation for Systems Research, Vol. 21, No. 4, pp.439–470. 

Bishop, C.M. (1995) Neural Networks for Pattern Recognition, Clarendon Press, Oxford. 
Bolton, G.E. and Katok, E. (2008) ‘Learning by doing in the newsvendor problem: a laboratory 

investigation of the role of experience and feedback’, Manufacturing & Service Operations 
Management, Vol. 10, No. 3, pp.519–538. 

Bousqaoui, H., Achchab, S. and Tikito, K. (2017) ‘Machine learning applications in supply chains: 
an emphasis on neural network applications’, in IEEE 2017: 3rd International Conference of 
Cloud Computing Technologies and Applications, Rabat, Morocco, pp.1–7. 

Breiman, L. (2001) ‘Random forests’, Machine Learning, Vol. 45, No. 1, pp.5–32. 
Chaharsooghi, S.K., Heydari, J. and Zegordi, S.H. (2008) ‘A reinforcement learning model for 

supply chain ordering management: an application to the beer game’, Decision Support 
Systems, Vol. 45, No. 4, pp.949–959. 

Chen, F. (1999) ‘Decentralized supply chains subject to information delays’, Management Science, 
Vol. 45, No. 8, pp.1076–1090. 



   

 

   

   
 

   

   

 

   

   404 D.S. Kurian et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Chen, F., Drezner, Z., Ryan, J.K. and Simchi-Levi, D. (2000) ‘Quantifying the bullwhip effect in a 
simple supply chain: the impact of forecasting, lead times, and information’, Management 
Science, Vol. 46, No. 3, pp.436–443. 

Chopra, S., Meindl, P. and Kalra, D.V. (2013) Supply Chain Management: Strategy, Planning, and 
Operation, Pearson, Boston, MA. 

Costantino, F., Di Gravio, G., Shaban, A. and Tronci, M. (2015) ‘The impact of information 
sharing on ordering policies to improve supply chain performances’, Computers & Industrial 
Engineering, Vol. 82, pp.127–142. 

Croson, R. and Donohue, K. (2006) ‘Behavioral causes of the bullwhip effect and the observed 
value of inventory information’, Management Science, Vol. 52, No. 3, pp.323–336. 

Croson, R., Donohue, K., Katok, E. and Sterman, J. (2014) ‘Order stability in supply chains: 
coordination risk and the role of coordination stock’, Production and Operations 
Management, Vol. 23, No. 2, pp.176–196. 

Cunningham, P., Cord, M. and Delany, S.J. (2008) ‘Supervised learning’, in Machine Learning 
Techniques for Multimedia, pp.21–49, Berlin, Heidelberg. 

Daniel, J.S.R. and Rajendran, C. (2005) ‘A simulation‐based genetic algorithm for inventory 
optimization in a serial supply chain’, International Transactions in Operational Research, 
Vol. 12, No. 1, pp.101–127. 

Dulac-Arnold, G., Levine, N., Mankowitz, D.J., Li, J., Paduraru, C., Gowal, S. and Hester, T. 
(2021) ‘Challenges of real-world reinforcement learning: definitions, benchmarks and 
analysis’, Machine Learning, Vol. 110, pp.2419–2468. 

Edali, M. and Yasarcan, H. (2016) ‘Results of a beer game experiment: should a manager always 
behave according to the book?’, Complexity, Vol. 21, No. S1, pp.190–199. 

Gao, S., Xiang, C., Yu, M., Tan, K.T. and Lee, T.H. (2021) ‘Online optimal power scheduling of a 
microgrid via imitation learning’, IEEE Transactions on Smart Grid, Vol. 13, No. 2,  
pp.861–876. 

George, J. and Pillai, V.M. (2021) ‘Evaluation of inventory replenishment policies on supply chain 
performance with grey relational analysis’, International Journal of Integrated Supply 
Management, Vol. 14, No. 2, pp.197–227. 

Gonçalves, P. and Moshtari, M. (2021) ‘The impact of information visibility on ordering dynamics 
in a supply chain: a behavioral perspective’, System Dynamics Review, Vol. 37, Nos. 2–3, 
pp.126–154. 

Hussein, A., Gaber, M.M., Elyan, E. and Jayne, C. (2017) ‘Imitation learning: a survey of learning 
methods’, ACM Computing Surveys (CSUR), Vol. 50, No. 2, pp.1–35. 

Hutter, F., Lücke, J. and Schmidt-Thieme, L. (2015) ‘Beyond manual tuning of hyperparameters’, 
KI-Künstliche Intelligenz, Vol. 29, No. 4, pp.329–337. 

Ilyas, I.F. and Chu, X. (2019) Data Cleaning, ACM Books, New York. 
Jaipuria, S. and Mahapatra, S.S. (2014) ‘An improved demand forecasting method to reduce 

bullwhip effect in supply chains’, Expert Systems with Applications, Vol. 41, No. 5,  
pp.2395–2408. 

James, G., Witten, D., Hastie, T. and Tibshirani, R. (2013) An Introduction to Statistical Learning, 
Springer, New York. 

Jothimurugan, K., Andrews, M., Lee, J. and Maggi, L. (2021) Learning Algorithms for 
Regenerative Stopping Problems with Applications to Shipping Consolidation in Logistics, 
arXiv preprint arXiv:2105.02318. 

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q. and Liu, T.Y. (2017) 
‘LightGBM: a highly efficient gradient boosting decision tree’, Proceedings of the 31st 
International Conference on Advances in Neural Information Processing Systems, CA, USA, 
December, Vol. 30, pp.3146–3154. 

Kläser, K., Varsavsky, T., Markiewicz, P., Vercauteren, T., Hammers, A., Atkinson, D. and 
Ourselin, S. (2021) ‘Imitation learning for improved 3D PET/MR attenuation correction’, 
Medical Image Analysis, Vol. 71, p.102079. 



   

 

   

   
 

   

   

 

   

    Data-driven imitation learning-based approach 405    
 

    
 
 

   

   
 

   

   

 

   

       
 

Li, Z. and Yan, G. (2015) ‘Exploring different order decision behaviors with bullwhip effect and 
service level measures in supply chain system’, Discrete Dynamics in Nature and Society, 
Vol. 2015, pp.1–8. 

Liu, H., Howley, E. and Duggan, J. (2009) ‘Optimisation of the beer distribution game with 
complex customer demand patterns’, in IEEE 2009: Proceedings of the Congress on 
Evolutionary Computation, Trondheim, Norway, pp.2638–2645. 

Macdonald, J.R., Frommer, I.D. and Karaesmen, I.Z. (2013) ‘Decision making in the beer game 
and supply chain performance’, Operations Management Research, Vol. 6, Nos. 3–4,  
pp.119–126. 

Mosekilde, E. and Laugesen, J.L. (2007) ‘Nonlinear dynamic phenomena in the beer model’, 
System Dynamics Review: The Journal of the System Dynamics Society, Vol. 23, Nos. 2–3, 
pp.229–252. 

Nienhaus, J., Ziegenbein, A. and Schönsleben, P. (2006) ‘How human behaviour amplifies the 
bullwhip effect. A study based on the beer distribution game online’, Production Planning & 
Control, Vol. 17, No. 6, pp.547–557. 

Oroojlooyjadid, A., Nazari, M., Snyder, L.V. and Takáč, M. (2021) ‘A deep q-network for the beer 
game: deep reinforcement learning for inventory optimization’, Manufacturing & Service 
Operations Management, Vol. 24, No. 1, pp.285–304. 

Pamulety, T. and Pillai, V. (2012) ‘Performance analysis of supply chains under customer demand 
information sharing using role play game’, International Journal of Industrial Engineering 
Computations, Vol. 3, No. 3, pp.337–346. 

Pamulety, T. and Pillai, V.M. (2016) ‘Effect of customer demand information sharing on a  
four-stage serial supply chain performance: an experimental study’, Uncertain Supply Chain 
Management, Vol. 4, No. 1, pp.1–16. 

Perera, H.N., Fahimnia, B. and Tokar, T. (2020) ‘Inventory and ordering decisions: a systematic 
review on research driven through behavioral experiments’, International Journal of 
Operations & Production Management, Vol. 40, Nos. 7/8, pp.997–1039. 

Pillai, V.M., Lavanya, K. and Pamulety, T.C. (2014) ‘Bullwhip effect analysis using supply chain 
role play game and ranking of supply chains’, International Journal of Procurement 
Management, Vol. 7, No. 3, pp.299–315. 

Ramaekers, K. and Janssens, G.K. (2008) ‘On the choice of a demand distribution for inventory 
management models’, European Journal of Industrial Engineering, Vol. 2, No. 4,  
pp.479–491. 

Rong, Y., Shen, Z.J.M. and Snyder, L.V. (2008) ‘The impact of ordering behavior on  
order-quantity variability: a study of forward and reverse bullwhip effects’, Flexible Services 
and Manufacturing Journal, Vol. 20, No. 1, pp.95–124. 

Sarkar, S. and Kumar, S. (2015) ‘A behavioral experiment on inventory management with supply 
chain disruption’, International Journal of Production Economics, Vol. 169, pp.169–178. 

Snoek, J., Larochelle, H. and Adams, R.P. (2012) ‘Practical Bayesian optimization of machine 
learning algorithms’, Proceedings of the 25th International Conference Advances in Neural 
Information Processing Systems, NY, USA, December, Vol. 25, pp.2951–2959. 

Sterman, J.D. (1989) ‘Modeling managerial behavior: misperceptions of feedback in a dynamic 
decision making experiment’, Management Science, Vol. 35, No. 3, pp.321–339. 

Strozzi, F., Bosch, J. and Zaldívar, J.M. (2007) ‘Beer game order policy optimization under 
changing customer demand’, Decision Support Systems, Vol. 42, No. 4, pp.2153–2163. 

Sutton, R.S. and Barto, A.G. (1998) Introduction to Reinforcement Learning, MIT Press, 
Cambridge. 

 
 
 



   

 

   

   
 

   

   

 

   

   406 D.S. Kurian et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Tanwani, A.K., Yan, A., Lee, J., Calinon, S. and Goldberg, K. (2021) ‘Sequential robot imitation 
learning from observations’, The International Journal of Robotics Research, Vol. 40,  
Nos. 10–11, pp.1306–1325. 

Tokar, T., Aloysius, J.A. and Waller, M.A. (2012) ‘Supply chain inventory replenishment: the 
debiasing effect of declarative knowledge’, Decision Sciences, Vol. 43, No. 3, pp.525–546. 

Tversky, A. and Kahneman, D. (1974) ‘Judgment under uncertainty: heuristics and biases’, 
Science, Vol. 185, No. 4157, pp.1124–1131. 

Udenio, M., Fransoo, J.C. and Peels, R. (2015) ‘Destocking, the bullwhip effect, and the credit 
crisis: empirical modeling of supply chain dynamics’, International Journal of Production 
Economics, Vol. 160, pp.34–46. 

Vairagade, N., Logofatu, D., Leon, F. and Muharemi, F. (2019) ‘Demand forecasting using random 
forest and artificial neural network for supply chain management’, in International Conference 
on Computational Collective Intelligence, Lecture Notes in Computer Science, Springer, 
Cham, Switzerland, pp.328–339. 

Weng, T., Liu, W. and Xiao, J. (2019) ‘Supply chain sales forecasting based on LightGBM and 
LSTM combination model’, Industrial Management & Data Systems, Vol. 120, No. 2, 
pp.265–279. 

Wolpert, D.H. and Macready, W.G. (1997) ‘No free lunch theorems for optimization’, IEEE 
Transactions on Evolutionary Computation, Vol. 1, No. 1, pp.67–82. 

Wright, D. and Yuan, X. (2008) ‘Mitigating the bullwhip effect by ordering policies and 
forecasting methods’, International Journal of Production Economics, Vol. 113, No. 2, 
pp.587–597. 

Wu, D.Y. and Katok, E. (2006) ‘Learning, communication, and the bullwhip effect’, Journal of 
Operations Management, Vol. 24, No. 6, pp.839–850. 

Xia, Y., Liu, C., Li, Y. and Liu, N. (2017) ‘A boosted decision tree approach using Bayesian  
hyper-parameter optimization for credit scoring’, Expert Systems with Applications, Vol. 78, 
pp.225–241. 

Yang, Y., Lin, J., Liu, G. and Zhou, L. (2021) ‘The behavioural causes of bullwhip effect in supply 
chains: a systematic literature review’, International Journal of Production Economics,  
Vol. 236, p.108120. 

Zhao, X., Xie, J. and Lau, R.S.M. (2001) ‘Improving the supply chain performance: use of 
forecasting models versus early order commitments’, International Journal of Production 
Research, Vol. 39, No. 17, pp.3923–3939. 

Appendix 

Hyper-parameters of ML methods 

The ML methods employed in this paper involve multiple hyper-parameters and have 
distinct search space. The hyper-parameters corresponding to the ML methods RF, 
LightGBM and ANN are defined according to the Python packages, Sklearn, LightGBM 
and Keras, respectively. Table A1 provides the search space of hyper-parameters used in 
the present study. BO is then employed to find the best hyper-parameters that result in 
maximum predictive performance. Table A2 provides the optimised values of  
hyper-parameters after BO, and these values are used for training the ML models. 
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Table A1 Search space for hyper-parameter optimisation 

RF  LightGBM  ANN 
Hyper-parameters Range  Hyper-parameters Range  Hyper-parameters Range 
n_estimators (50, 

500) 
 num_leaves (5, 

500) 
 learning_rate (0.001, 

0.5) 
max_depth (1, 

150) 
 max_depth (2, 50)  no_of_hidden_layers (1, 4) 

min_samples_leaf (2, 10)  learning_rate (0.001, 
0.5) 

 no_of_nodes_in_ 
hidden_layers 

(1, 10) 

max_features (2, 7)  min_data_in_leaf (10, 
200) 

 dropout (0, 0.8) 

max_leaf_nodes (2, 50)  bagging_fraction (0.01, 
1) 

 batch_size (8, 128) 

   feature_fraction (0.01, 
1) 

 epochs (10, 
250) 

Table A2 Optimized values of hyper-parameters after BO 

Hyperparameters Retailer Wholesaler Distributor Factory 
Optimised hyper-parameters of RF after BO 
n_estimators 489 459 422 349 
max_depth 40 35 38 42 
min_samples_leaf 6 9 10 10 
max_features 2 4 2 2 
max_leaf_nodes 49 49 50 50 
Optimised hyper-parameters of LightGBM after BO 
num_leaves 463 420 380 440 
max_depth 47 50 50 25 
learning_rate 0.48 0.45 0.5 0.38 
min_data_in_leaf 19 10 12 20 
bagging_fraction 0.58 0.5 0.45 0.42 
feature_fraction 0.69 0.65 0.62 0.58 
Optimised hyper-parameters of ANN after BO 
learning_rate 0.001 0.001 0.001 0.001 
no_of_hidden_layers 1 1 1 1 
no_of_nodes_in_hidden_layers 10 10 10 10 
dropout 0 0 0 0 
batch_size 24 24 24 24 
epochs 250 250 250 250 

 


