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Abstract: This review evaluates the existing studies of blue, green, and grey
interventions based on field measurements and modelling aiming to quantify
the cooling impact that reduces outdoor heat stress. Based on findings from
literature, it is concluded that water bodies can reduce the mean air temperature
(Tu) by 3.4°C and universal thermal climate index (UTCI) by 10.7°C, while
natural vegetation can improve 7, by 2.3°C and physiological equivalent
temperature (PET) by 10.3°C during summer. Vertical greenery systems (VGS)
provide cooling effect of 7, up to 4°C, whereas architectural shades reduce it
by approximately 3.8°C and PET up to 6.9°C under shade structure.
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1 Introduction

Large-scale urbanisation and the rapid population growth in big cities are contributing
significantly to locally experienced impacts of climate change. A number of heat-related
issues have been reported globally, especially in Europe, and all countries have begun to
pay attention to this problem and the adverse effects associated with it. One example is
the urban heat island (UHI) effect, a significant issue in hot summers, that affects the
microclimate of the urbanised city, increasing the potential for warmer temperatures and
where the air temperature (7,) in big cities remains higher with reference to the rural
surroundings (Memon et al., 2009).

Human health is adversely affected by the increase in heat driven by climate change
(McMichael et al., 2006). These effects are especially serious in summer for vulnerable
groups such as the elderly, people with cardiovascular disease, and young children (Reid
et al., 2009). There have been particular events where the intensity of extreme heat has
proven disastrous to human health, causing an increase in the mortality rate. The most
common effects on the human health of the UHI and urban heat stress (UHS) are
heatstroke, dehydration, fainting, asthma, heat cramps, rash, skin allergies, physical and
mental stress, and respiratory issues (Luber and McGeehin, 2008).

The urban infrastructure has a high thermal capacity allowing absorption of solar
energy, causing a low evaporation rate and adversely affecting air quality for inhabitants
(Madlener and Sunak, 2011). The rapidly growing urban population has increased energy
consumption by 75% resulting in energy dissipation as heat, which is further intensified
by solar radiation. Surfaces such as roofs, pavements, and roads are composed of
impervious, low albedo materials which tend to absorb and re-radiate a high amount of
solar radiation in the infrared part of the spectrum. Air pollution and climate change are
interlinked. The rapid growth in vehicle uses and fuel consumption is an additional
contributor to the increase in temperature, with pollution from exhaust emissions
increasing the adverse effects of UHI (Alsalama et al., 2021). All these risk factors have
focused the attention of researchers, urban planners, and society on developing
appropriate strategies for mitigating UHS. Recent studies have evaluated the techniques
for mitigating the UHI effect. These have mostly focused on the implementation and
effectiveness of green roofs and cool materials (Gagliano et al., 2015), urban vegetation,
watered cool pavements, water bodies, and canopies (Battista et al., 2019). There is an
ongoing debate on the relative effectiveness of different interventions and this paper
reviews both natural and built approaches by surveying peer-reviewed papers and
evaluating them to identify the best strategies to mitigate UHS, particularly in summers
when the heat island effect is greatest.

The objectives of this review are:
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1 to provide an overview of UHS mitigation strategies

2 to quantify the cooling effect of natural and constructed features based on different
indicators, mainly 7,

3 to analyse the results to determine the most efficient method to reduce UHS
4 identify the co-benefits associated with these interventions.

The methodology of this review paper is explained in Section 2. The scientific works on
which this article is based are summarised in the tables in Section 3. The energy demand
and costs/benefits of UHS and the UHI mitigation measures are briefly explained in
Section 4 and the results are discussed in Section 5. Finally, a conclusion given in
Section 6.

Figure 1 Methodological framework of this review study (see online version for colours)
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2 Methodology and indicators of cooling effect

This paper is a review of peer-reviewed articles on the cooling effect of various
strategies. Among these, 24 articles studied water features, 31 green technologies, 13
shadings and 25 green vegetation. These studies were analysed and frequency of different
indicators such as 7,, universal thermal climate index (UTCI), physiological equivalent
temperature (PET), predicted mean vote (PMV), urban heat island intensity (UHII), mean
radiant temperature (7,:), universal effective temperature (ETU), surface temperature of
land and soil (7}), pavement heat flux (PH)), building heat flux (H;), Mediterranean
outdoor comfort index (MOCI), wet bulb globe temperature (WBGT), relative humidity
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(RH), skin temperature (7y), Facade Temperature (77), Park Cooling Intensity (PCI),
human comfort index (HCI), globe temperature (75), black globe temperature (7,) and
wall temperature (7,,) have been used to measure the cooling effect of blue, green and
grey interventions that are graphically represented in the following sections. Among the
numerous indicators used in past studies, this review is focused on the cooling difference
in 7, because this was the most frequently used indicator for measuring the cooling
effect.

The papers were selected on a random basis from across the world and published
between 2006 and 2021. These studies involved field experiments, simulations, and
modelling and most experimentally validated their simulations and models. The
methodology is illustrated graphically in Figure 1.

3 Interventions to mitigate heat stress

Water features, vegetation, and constructed shade are also referred to as blue, green, and
grey infrastructure respectively, and are among the most effective ways to provide
cooling by evaporation and shading, and so improving the urban microclimate. Blue and
green features have multiple additional environmental benefits, for instance ameliorating
air quality and increasing biodiversity, particularly by means of urban vegetation, and are
potent ways to combat UHS (Xue et al., 2015) and UHI. They are also beneficial in
increasing thermal comfort in open spaces as well as compact and dense urban areas (Lai
et al., 2019). This paper presents a review of interventions from across the globe, with the
three categories, water features, green spaces, and constructed shade, described separately
in the following sections.

Figure 2 Measuring parameters used to evaluate cooling effect of water features

3.1 Blue infrastructure

Water areas, such as ponds, rivers, and lakes are known to significantly mitigating heat
stress although cooling effect depends on the surrounding environment and atmospheric
conditions (Zuvela-Aloise et al., 2016). This has led scientists to study interventions
using water in different ways to reduce the environmental temperature (Gunawardena
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et al., 2017). Figure 2 graphically represents the frequency of different indicators were
used to evaluate the cooling effect of water features in selected papers.

3.1.1 Misting systems

One of the most attractive cooling methods is misting (Desert et al., 2020). The effect has
been measured by checking skin temperature (7) (Oh et al., 2020). The majority of
studies concerned with water features were carried out in an outdoor environment; the
only exceptions where one installed on a station, and another installed indoors. This
review has found two different types of misting systems; water misting (Desert et al.,
2020) and dry misting (Ishii et al., 2009). The greatest cooling effect from a water mist
cooling system was observed in a study from Atacama (Chile) which reduced 7, by 15°C
(Desert et al.,. 2020).

3.1.2 Water fountains, water pavements, and water sprays

Fountains not only minimise the effect of heat but also add aesthetic value to the
surroundings, making them more pleasant and refreshing. Pavement watering has been
studied for the past three decades and is considered one of the most effective techniques
to improve thermal comfort. Watering surfaces can cool them to a certain extent, for
instance watering pervious concrete material can reduce the 7, up to 2 °C, while watering
porous bricks can reduce the 7, by 20 °C. If green areas in the urban landscape are
combined with watering pavements this is particularly helpful in reducing the
temperature during both the day and night (Daniel et al., 2018).

Most research is conducted via simulations using Envi-met and computational fluid
dynamics (CFD) on models of water fountains along with water droplets, water jets, and
water bodies. The addition of water jets showed a greater effect at night than during
daytime. Fountains installed along with water bodies have been found to decrease the 75,
T by increasing the humidity and cooling of the air (Barakat, Ayad and El-Sayed,
2017).

3.1.3 Water bodies

According to research undertaken in Phoenix, Arizona (USA), the cooling effect of
wetting streets, pond surfaces, and lakes was directly proportional to their surface areas,
the larger the water body, the greater the cooling effect. The UHI mitigation depends
upon the amount of water being used for the purpose (Gober et al., 2010). Similarly,
another study shows that the 7, of the asphalt surface was much higher as compared to
the temperature of the water body with significant cooling effect extending for around 0.5
metres. In contrast, other studies have found that open water surfaces can influences
temperature causing it to rise. One author from the Netherlands concluded that water
bodies can increase the daily maximum UHII by 95 percent at night and as, despite
seasonal change water temperature remains high (Steeneveld et al., 2014) due to the
absorption of heat throughout the day. Other researchers also support this seasonal
variation which has a high impact on warmer days, with water remaining warm in lakes
and rivers which influences the surrounding temperature (Hathway and Sharples, 2012).
The papers reviewed regarding the outdoor cooling effects of blue infrastructure are
summarised in Table 1.



65

offect of urban heat stress interventions

ing e

Quantifying the cool

Literature reviewed regarding blue infrastructure

Table 1

'y £q Surids ur 5oy pue ~ AQ pajesIpur o1 JOJUIM Ul UOXE) OS[e ASOY) “IOUWILUNS ) UT S20dS JOOPINO UI PIPIOIAT SeM PAJUSSAId SUOTIUIAIDIUL JSOU JO SSOUIAIIOISIJO AU} ‘MOIADI SIY) U] :SAJON

(AN
J0A uBdU PARIPAI/DH ] 1/00§°5/%9
(L107) T8 19 18RIRg “OHY/ Do L 9SBAIOUL/D),T Kep-pru (1d£37) eupuexaly pare[nwirs 1PW-1Aug $3IPO( 19JeM PUR SUIBIUNO | o
sisATeue (.10
(8007) ‘T8 19 UOO & %HY/Do" L %S 1 dseAIOUL/ D€ Keq ueder pue SIUSWAINSBIW PJAI] st K1 u
(0207) ‘T 12 payeq Do L D65 01 Dob PUB DT 1yStu pue Leq uoueqa| pare[nuwils JoW-1AUg syol I19jeM puB SUTEIUNOJ JOJBA\ w
seare o3
(8107) "I 12 [erueq DL 69T PUB Do [ ySiu pue Keq (oouery) sued suone[nuwIs pue Jurj[OpojA ueqan + urdjem juowased i
(ueder)
(6002) T8 1 1ys] A Mo6'1 01 Mo€9'T Aeq ofyo] ‘emesiewein,g SIUBWIDINSEIN st A1 f
(L102)
‘Ie 12 sLnowejues S Sol'L0rdn Kep Ajurepy (31N) uopuo SJUSWRINSBIIA spuod pue sjood 13jep 1
(s3urpiodar
"L pue L “(1DLN)
Xapul djewWi[d [RULIdY) Sw)SAS
(0207) "1 12 1eseg [BSISATUN SSOIOR) [[BIOAQ) DoS1 Keq (ar1yD) ewreseyy SJUSWIRINSBIIA Surjooo jstwr 103em 2dK103014 q
suone[nuIs syordoap
(8007) ‘1812 U0O & oL Dol Aeq (ueder) okyo], 4D pue SIUWAINSEIA 12JEM OIOTW 1O SUNSIW JOJBAN 3
(z107) sapdieys
pue Kemyieq A D0$°1 (v) Leq (3IN) prewyRYS SJUSLUAINSEIIN ToArg J
(1107) 221 Do"L 0050 - ©oI0Y] suone[nuIg surejunoj punoie s)a[doip 1ajepm E)
(S1020)
oeyz pue Sue x %HYU/Do"L 249 ASLAIOUI/D S | Keq (eury) yynos) noyz3uensy S)USLIRINSEAW PAI] puod 1ep P
suone[nuIs Soye| pue ‘s1021s
(0102) 'Te 12 19900 /06" 14/0678°0 0 S1°0 WIIN (Vsn) xtueoyq PUE SJUSLIAINSEAW P[AL] Sumom ‘spuod jo saoeping B
(L102) suogeaus 410
‘[& 19 LIOZRIUO A Do1DLN/D6 "L Dol/DoS Keq (SpUBIOYIAN) WepIoy PUB SJUSWAINSEAW P[oL] Keids 101eM JO UTRIUNOY Y/ q
(3o1doxp
(6107) e 10 weldin D.I01LN D06'L 01T’ Keq (ATe11) UOSUY puk SWOY S)udWIRINSBAW PAI] PNOJo) WoIsAs Sunsiur 1jep ®
Sy A0IDIIpUT 122ffo Bu1j00) (douiuins) uoypI0T POYI2UL JUDWDANSDIP 2.4mpaf 4210m Jo adA j0qudg

ut1) SuLLoJIUOP




66 A.M. Qureshi et al.

3.2 Green infrastructure

Green infrastructure refers to vegetation, such as trees, grass, and other plants and these
interventions may be supported by constructed frameworks, for example, green fagades
and pergolas, which provide shade, or grown in containers, as in green walls.

Figure 3 Frequency of measuring parameters used to evaluate cooling effect of (a) vegetation
(natural green infrastructure), (b) supported green infrastructure
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Trees can trap long-wave radiation significantly enabling pedestrians to walk comfortably
in their shade. Grass and shrubs lower the 7, compared to other surface materials.
Climate measurements made in the centre of Athens (Greece) showed that the T, of the
green area is lower than the surroundings in the early morning (Georgakis and
Santamouris, 2017). Vertical green walls or green facades, are approaches that can also
ameliorate the thermal effect of urban areas.

This paper reviews research into the cooling effect of naturalistic greenery that is
cheaper than constructed alternatives and can be implemented with less effort. During the
screening of research articles, it was observed that different indicators have been used to
quantify the cooling effect. The frequency of these indicators is graphically represented
in Figure 3.

3.2.1 Types of natural green interventions
3.2.1.1 Grass

Researchers in Manchester (England) measured the difference in 7, 7, and demonstrated
the cooling effect of grass (Armson, Stringer and Ennos, 2012). Urban parks often
combine dense vegetation along with water facilities (Motazedian, Coutts and Tapper,
2020). Increasing the proportion of trees increases the cooling effect and humidity
(Shahidan et al., 2012). Grass alone can increase the RH (Amani-Beni et al., 2018) but
this effect is greater when combined with trees (Grilo et al., 2020). A similar effect is
observed with green or vegetated parking areas, where grass is grown in holes in paving
or in a reinforcing mesh to create a stable surface, but this provides less cooling
compared to other vegetative paved surfaces due to the convention effect when cars are
parked, and thermal energy is transferred, leading to 7, drop. Thus, vegetated pavement
in parking areas lessens discomfort but not as much as installed at other situations.

3.2.1.2 Trees

Trees are effective at absorbing and reflecting thermal radiation with the cooling effect
depending on tree species and the planting pattern. The cooling effect of small leaved
lime (Tillia cordata) was measured and an improvement in 7, was recorded during both
day and night (Rahman et al., 2017). This suggests that an appropriate configuration of
trees could provide a good cooling effect. Strategic placement of trees and green
infrastructure has been found to not only reduce the UHI and UHS but also reduce
premature human death during high temperature events (Doick and Hutchings, 2014).

Parks with a high density of trees experience reduced temperature and increased RH
particularly during summer and can influence temperature and RH as far as 60 metre
away (Grilo et al., 2020). Different numbers of trees have been compared and the most
effective daytime cooling results were found with 50% tree cover (Aboelata and Sodoudi,
2019). In a study in Kaohsiung (Taiwan) five strategies were tested, the results showing
that increasing the green coverage ratio (GCR) in the street up to 60%, in the park up to
80%, and GCR on the roof of building up to 100% can reduce 7, (Huang and Chen,
2020). The papers reviewed on the cooling effect of vegetation in outdoor spaces are
given in Table 2.
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Literature review of natural green infrastructure

Table 2
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Literature review of constructed green infrastructure
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Literature review of constructed grey (shades) infrastructure
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3.2.2 Green interventions involving support
3.2.2.1 Vertical greening

Vegetation that is supported by constructed frameworks or built structures to grow are
referred to as vertical greenery systems (VGS). In this study we considered two types of
VGS; green fagades, comprising climbing plants growing in the ground but supported on
the walls of buildings (Lepp, 2008), and green walls, which are vertical built structures
consisting of containers of growth medium, such as soil or substitute substrate, in which
the plants are grown, as well as an integrated hydration system. These types of greening
offer numerous co-benefits, including aesthetics and biodiversity. An attractive solution
is the application of vegetated facades, which help reduce heat by the phenomenon of
evapotranspiration as well as mixing air vertically, lowering the temperature in the
surroundings and reducing UHI by providing fresh air (Johnston et al., 2004).

3.2.2.2 Plant species in vertical greening systems

Different plants showed different efficiency, plants with woody branches and the smallest
leaves appeared to be the most efficient in cooling effect during summer (Charoenkit and
Yiemwattana, 2017).

The efficiency in reducing 75 and T, of species ranged from 1°C to 5.6°C, with
Sword bean (Canavalia gladiate) the most efficient plant. In the UK, the cooling effect
was considerable when the outdoor 7, evaluated with the extent to which temperature
was affected different according to species (Cameron et al., 2014).

Below are some reviewed studies for constructed greenery referring to cooling effects
in outdoor spaces given below in Table 3.

Figure 4 Measuring parameters used to evaluate the cooling effect of constructed grey
infrastructure
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3.3 Grey infrastructure (Constructed shading)

Thermal stress in hot weather can limit outdoor activities. Outdoor spaces can be shaded
in different ways; via shading devices (Yildirim, 2020), sun sails (Garcia-Nevado et al.,
2021), architectural shading (McRae et al., 2020), shade pavillons or optimised awnings
(Rossi et al., 2020), parasols, deep canyons (Johansson, 2006), textile canopys, and other
overhead shade structures Lee et al., 2020). Figure 4 graphically represents the number of
times different parameters have been used to evaluate the cooling effect of constructed
shading in papers.

The papers reviewed s referring to cooling effects of shade structures in outdoor
spaces is given in Table 4.

4 Energy-saving benefits of interventions

Nowadays, energy consumption is an important issue and the focus of attention for many
scientists and researchers. For both cooling and heating, different technologies and
electronic appliances are used, and various methods are applied by different countries in
order to balance demand and consumption. The natural and constructed options discussed
in this paper to improve thermal comfort in urban areas can reduce energy consumption,
cost and ultimately lead to sustainable city planning. Natural greenery reduces PET,
particularly when combined with shading in summers (Miiller et al., 2014). Trees can
decrease outdoor T, and building cooling load by 29% (Shahidan et al., 2012) which
ultimately reduces indoor air conditioning cost by around 25 Egyptian pounds, equivalent
to 1.25 euro/day (Aboelata and Sodoudi, 2019). Another study showed that there was an
annual saving of about 1.5 million US dollars because the urban forest, of about 100,000
trees, decreased the demand for energy and water (Moore, 2016). Specifically in July, at
the peak of summer, the installation of green facades can reduce building energy demand
by up to 20% (Haggag et al., 2014).

There are other shading technology options that not only provide pedestrian thermal
comfort but also reduce energy demand. For an instance, the installation of sun sails in
Mediterranean city streets can reduce cooling demand up to 46% (Garcia-Nevado et al.,
2021). Other shading devices in street canyons can reduce yearly heating load up to 18%
during winter (Evins et al., 2014). These interventions include green walls, suburban
parklands and ceiling sprays (Narumi et al., 2009) not only effective outdoor but also for
the indoor environment.

5 Results and discussion

The overheating of urban areas has negative impacts on human health and contributes to
increased morbidity and mortality in cities. Different interventions have been the subject
of experiments and found to contribute to improving thermal comfort in outdoor open
spaces, with most research conducted during the daytime in summer, as shown in
[Figures 5(a) and 5(b)].
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Figure 5 No. of studies were monitored in (a) season and (b) measurements time
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The literature on all four categories of interventions (water features, naturalistic and
constructed green infrastructure, and shading) were carefully analyzed, and cooling
estimation for all categories of interventions are discussed as follows:

Blue infrastructure: It has been found that mist nozzles are effective but need to be
combined with fans to provide cooling relief. Spraying water on the pavement can
cool by 628 W/m? for Imm/h of sprinkled water due to evaporation, and 12—18
W/m? of cooling for Imm/h due to advection. Water misting systems are effective in
reducing UHS by decreasing mean 7, by around 3°C and UTCI by up to 10°C.
Thermal comfort achieved by different methods can be seen in Figure 6(a).

Natural vegetation: This can create have significant — and multiple— impacts on the
environment. For example, measurements taken over grass alone were beneficial, but
when combined with trees, showed a greater cooling effect. Grass contributed
significantly to mitigating the UHS by reducing PET by at least 10°C while making a
slight decrease in the 7, of approximately 2°C. Outdoor cooling effects of different
type of natural vegetation are plotted in Figure 6(b).

Supported green infrastructure: Green walls and facades improve both indoor and
outdoor thermal comfort. The average air temperature (7,) can decrease by up to 4°C
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during the daytime in the summer season. Results of air cooling obtained by different
studies are illustrated in Figure 7(a).

e  Qrey infrastructure: Sun sails and other shading device are beneficial due to their
maximum cooling effect. Most studies support the idea that people prefer to walk on
the streets because of overhead shading as it reduces the heat intensity (Nam-Hyong
and Chun-Seok, 2018). The shades enhance pedestrian comfort in summer but during
winter it causes cold stress and increases the heating requirement. Overall artificial
shading structures provide a cooling effect with a decrease of the T, by
approximately 4°C and PET by 7°C. Results obtained with different types of shading
are presented in Figure 7(b).

Figure 6 Cooling effect of (a) blue interventions and (b) natural green interventions achieved by
different studies (see online version for colours)
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Figure 7 (a) Cooling effect of built-in green interventions achieved by different studies
(b) Cooling effect of built-in shades achieved by different studies (see online version
for colours)
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6 Conclusions

The reviewed interventions not only contribute to the physiological health of citizens but
also have a psychological impact. When the environmental conditions are extreme with
intense solar radiation, and heat levels rise, one must consider preventive actions and
resources to implement cooling interventions in urban settings. When selecting the most
appropriate heat resilience strategy, important criteria should be considered such as
cooling effect, cost, maintenance, and public acceptance.

All the types of mitigation measures that are reviewed in this study provide cooling,
but the effect depends on the local climate and geography. Future investigations should
focus on developing a practical decision support tool that can help decision-makers to
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select an adaptation measure based on the characteristics of the proposed site, local social
and economic circumstances, and constraints.
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