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Abstract: Selective catalyst reduction systems are the popular and efficient 
post-combustion nitrogen oxides reduction techniques utilised in the 
automotive and power generating industries. They involve a chemical reaction 
in which vaporised ammonia is gathered from the mixture of urea and purified 
water. Conversion of nitrogen oxide to nitrogen and water is the main target. In 
this NOx reduction system, costlier reductants have been utilised, which 
increases the operating cost of the vehicle. The methodologies adopted in this 
research work are the use of natural resources as a catalyst. Production of a 
modified selective catalyst reduction device was conducted in the first process. 
Secondly, the collection and preparation of diesel exhaust solution using 
various pure urea and urine (cow and sheep urines) with varying concentrations 
was carried out to inject the tailpipe via the selective catalyst reduction 
system’s feed pump to assist in reducing the oxide of nitrogen. In a conclusion, 
there can be an important improvement in the oxide of nitrogen emissions using 
urea, cow, and sheep urines in the modified selective catalyst reduction. The 
urine-based solution shows a 2.3% reduction in NOx emission as compared to 
the urea-based solution. 

Keywords: CI engine; SCR; NOx; catalyst; cow urine; sheep urine. 
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1 Introduction 

With high torque and thermal performance, diesel engines are commonly used in many 
industries, such as vehicles, locomotives, marine engines, steam generators, etc. While 
diesel engines deliver more advantages, these engines’ pollutant emissions create more 
human discomfort. 

Diesel engines’ principal pollutants include particulate matter, hydro fuel, smoke, and 
nitrogen oxides (NOx). NOx is the most hazardous contaminant of these pollution 
discharges to human health, plants, and the atmosphere. NOx emissions have been 
steadily increasing over the last 150 years over the world. The ecosystems of the earth 
and human welfare have been significantly impacted by their growing involvement in the 
atmosphere. The burning of fossil fuels and biomass is the main anthropogenic source of 
these emissions. The most common pollutants from engines are nitric oxide (NO), NO2, 
and NO2, with NO being the most significant of these (NO). Most of the NOx reduction 
effort is concentrated on reducing NO produced during combustion since more than 90% 
of NOx produced by combustion is in the shape of NO, which effectively transforms into 
NO2 when reacting with ambient oxygen. 

Mono NOx, also known as NO and NO2, are referred to as NOx. They are created 
during combustion, especially at high temperatures, when nitrogen and oxygen gases 
mix. The quantity of NOx released into the environment is crucial in metropolitan areas 
with heavy truck traffic. No matter where fuel combustion takes place, NOx gases are 
created. Fossil fuel combustion and biomass production account for almost 90% of the 
world’s energy production. Photochemical smog, acid rain, tropospheric ozone 
formation, and stratospheric ozone depletion are all primarily caused by elevated 
atmospheric NOx (Praveen and Natrajan, 2014). Human activity, including combustion 
activities, accounts for approximately 66% of all NOx emissions. Natural causes such as 
lightning, forest fires, and field fires account for roughly 16% of NOx emissions, while 
microbiological activities account for approximately 18% of NOx emissions. 50% of all 
combustion-related NOx emissions come from stationary sources such as power plants 
with the remaining 40% coming from the transportation sector (Praveen and Natrajan, 
2014). 

Numerous studies have been conducted in the literature on reducing NOx emissions. 
In some of these studies, NOx emissions were reduced by using new and environmentally 
friendly fuel instead of conventional fuel. Below are some studies carried out with the use 
of new and environmentally friendly fuels. The palm methyl ester was employed as fuel 
and functions similarly to diesel, and reductions in NOx emissions were seen, according 
to Hashimoto et al. (2008). When contrasted to clean diesel service with bio-fuel additive 
blends, Swaminathan and Sarangan (2012) found that employing diethylene glycol 
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monomethyl ether and diethylene glycol as fuel resulted in a 10 to 30% reduction in NOx. 
2-ethylhexyl nitrate (EHN) was used as engine fuel by Ileri and Koçar (2014) who found 
that a 1,000 ppm concentration of EHN addition was effective for lowering NOx levels. 
Roy et al. (2014) investigated the effect of biodiesel-diesel, biodiesel-diesel-additive, and 
kerosene-biodiesel on engine performance. They concluded that biodiesel-diesel additive 
had an impact on NOx reduction. In their study of Jatropha biodiesel and  
N-diphenyl-1,4-phenylenediamine (DPPD) antioxidants on an engine, Palash et al. (2014) 
found that adding 0.15% DPPD additives to JB20 resulted in a maximum drop of 
16.54%. 

On the other hand, some researchers have improved the combustion process in their 
works. NOx emissions were reduced by a maximum of 62% in high-load duty, according 
to research conducted on fuel at the top dead centre in Okude et al.’s (2004) work. Using 
homogeneous charge compression ignition (HCCI) technology, Kumar and Rehman 
(2016) discovered a 5 to 10% improvement in NOx reduction. Abuelnuor et al. (2014) 
studied flameless combustion and they found that NOx emissions were minimised using 
the flameless combustion technique. Singh et al. (2014) studied HCCI technology with 
biodiesel fuel and an important decrease in NOx emission was observed. Ogunkoya et al. 
(2015) studied a stabiliser made from carboxymethylated wood lignin and they observed 
a dramatic reduction in NOx emissions. Some researchers have carried out studies on 
after-treatment systems to control the amount of NOx. Kumbhar et al. (2021, 2022) 
studied the RCCI combustion strategy for emission reduction by using the single cylinder 
engine. There was a reduction in NOx emission but also an increase in HC emission in 
comparison with original engine performance. In Wang et al.’s (2007) work, SCR’s 
experiments with ammonia N-agents resulted in a 60% reduction in NOx and an 81.3% 
reduction in NOx, respectively. NOx emissions significantly decreased in Chi and 
DaCosta’s (2005) study using SCR-urea. Schmieg and Lee (2005) examined the impacts 
of SCR on diesel engines between 150 and 550°C for the reduction of urea and NOx. 
Thanks to SCR, Servati et al. (2005) were able to achieve that 70% average reduction in 
NOx emissions. Working with the urea-SCR system, Acharya et al. (2006) significantly 
reduced NOx emissions. Ishii et al.’s (2007) use of urea-SCR led to a major decrease in 
NOx emissions. By Murata et al. (2008), employing a urea SCR device at 158°C for the 
inlet gas temperature could reduce NOx emissions by 75%. After conducting experiments 
with biodiesel and the urea-SCR system, Mehregan and Moghiman (2020) concluded that 
the addition of nanoparticles significantly improved the system’s ability to reduce 
pollutants. To evaluate the urea SCR systems for reducing NOx emissions, Liu and Tan 
(2020) conducted experiments. They concluded that the NOx emission having the urea 
SCR application was much greater than that of solid SCR. In Keskin et al.’s (2020) work, 
NOx reduction tests were conducted using a variety of catalysts, including the HC-SCR 
system, tetraamin palladium (II) nitrate solution, TiO2-based catalyst, and silver nitrate 
(AgNO3)-based catalyst. When the engine was running at 4 kW with 100% 2-propanol 
spraying, the highest NOx conversion rate that was 68.1%. Additionally, it was 
demonstrated that 2-propanol, as opposed to abBluereluctant, had a favourable impact on 
the NOx conversion rate. 

Numerous methods for reducing emissions have been examined by researchers 
including modifying the fuel, changing the way of the exhaust is currently treated, 
altering the engine’s structure, and changing the fuel delivery system. These systems’ 
complexity and expense are their main drawbacks. This study is novel since it examined 
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the feasibility of using inexpensive, straightforward systems and aqueous solutions of 
different natural resources as catalysts. In this study, unlike many publications in the 
literature, the impact of sheep urine and cow urine on emissions in the modified SCR 
system was studied. Also, the conditions that do not use urea and SCR and the use of 
sheep urine and cow urine in the modified SCR system were compared. In this way, the 
effect of the green method of sheep urine and cow urine on NOx emissions with the 
modified SCR system has been extensively investigated by engine experiments. Finally, 
this paper should be evaluated with authors previous publication (Tirpude et al., 2022) in 
the literature. 
Table 1 Property of urea-water solution 

Density (kg/m3) 1,089 
Thermal conductivity [W/mK] 0.57 
Boiling point temperature (°C) 104 
Surface tension [N/m] 0.0717 
Specific heat (kJ/kg K] 3.4 
Concentration (wt %) 32.5 
Latent heat of vaporisation (kJ/kg] 2.258 
Freezing point (°C) –11 
pH 8.8 
Odour Odourless 
Colour Colourless 

Source: Arand et al. (1982) 

2 Experimental study 

Experimentation is done in two phases. In the first phase, the different aqueous solutions 
are prepared which are used to inject exhaust gas. In the second phase, performance and 
emission testing are measured. Many experiments involving the use of chemicals call for 
their use in solution form by mixing two or more substances in known proportion. 
Preparation of solutions accurately will improve the safety of the experimental 
investigation and lead to success. Basic three components are considered for the 
preparation of aqueous solutions, i.e., urea, cow urine, and sheep urine. In various 
quantities and arrangements, experiments are done, and the optimum solution is found. 
The properties are these components are given in Table 1. Urea is a chemical organic 
compound with the chemical formula CO(NH2)2. It is a compound of non-protein 
nitrogen used as an inexpensive nitrogen source in ruminant feeding. There is around  
42–46% nitrogen in feed-grade urea, which corresponds to 260 to 288% crude protein 
equivalent. In Table 1, the detailed properties of the urea-water solution are given. Cow 
urine contains male, citric, tartaric, and calcium salts, as well as the vitamins A, B, C, D, 
and E, as well as minerals, lactose, enzymes, creatinine, hormones, nitrogen, sulphur, 
phosphate, sodium, manganese, iron, silicon, chlorine, and magnesium (Gulhane et al., 
2017). Cow urine contains the same substances that make up human urine. Table 2 details 
the chemical makeup of the cow-urine solution. To better understand the reactions that 
urinary N experiences, the distribution of urinary nitrogen (N) was examined in five 
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samples of sheep urine. The amount of nitrogen (N) in sheep urine ranged from 3.0 to  
13–7 gm/litre, with urea making up 83% of that amount, creatine coming in at 53%, 
hippuric acid and allantoin coming in at 4.3%, and the other elements making up less 
than 1% of the total. Table 3 details the chemical composition of the sheep-urine. 
Table 2 Chemical composition of cow urine 

Ammonia nitrogen 1–1.7 ml/kg/day 
Allantoin 20–60 ml/kg/day 
Calcium 0.1–1.4 ml/kg/day 
Chloride 0.1–1.1 mmol/kg/day 
Creatinine 15–20 mg/kg/day 
Magnesium 3.7 mg/kg/day 
Potassium 0.08–0.15 mmol/kg/day 
Sodium 0.2–1.1 mmol/kg/day 
Sulphate 3–5 mg/kg/day 
Uric acid 1.4 mg/kg/day 
Leucocyte <15 micro lt 

Source: Gulhane et al. (2017) 

Table 3 Chemical composition of sheep urine 

Urea 15.29 gm/litre 
Hippuric acid 5.24 gm/litre 
Allantoin 1.08 gm/litre 
Uric acid 0.06 gm/litre 
Xanthine/hypoxanthine 0.19 gm/litre 
Creatinine 0.12 gm/litre 
Creatine 1.48 gm/litre 
Free amino acids 0.06 gm/litre 
Ammonia 0.01 gm/litre 

Source: Bristow et al. (1992) 

Table 4 Specification of measuring equipment 

Digital fuel rate 
indicator 

Digital torque 
indicator 

Digital speed 
indicator 

Exhaust gas temperature 
indicator 

Range 0–15,000 
gms 

Torque 
range 

0–32  
N-M 

Speed 
range 

30–3,000 
rpm 

Temperature 
range 

0–800°C 

Weighing 
resolution 

1 gm Torque 
resolution 

0.1 N-M Speed 
resolution 

1 rpm Resolution 1°C 

Sensor 
load cell 

20 kg Load cell 35 kg Speed 
sensor 

Inductive 
proximity,  
N-type 18 

mm dia 

Type of 
sensor 

K-type 
thermocouple 
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Diesel engine, eddy current dynamometer, fuel measuring system, speed measurement 
system, temperature measurement system, catalytic converter, AVL analyser, and 
denoxation injection system (Tirpude et al., 2022) are all used during tests. Also, the 
specification of measuring equipment is given in Table 4. All tests were performed on an 
air-cooled, four-stroke, direct injection engine. The tests were done in the variable speed 
diesel engine, for the speed of 800, 1,600, and 2,400 rpm for the 0 to 100% loading 
conditions in the increment of 20%. The tests are performed at room temperature and 
pressure while keeping the fuel injector and pump settings unchanged. The engine 
specification is given in Table 5. In this investigation, an eddy current dynamometer is 
evaluated as a loading device. The dynamometer can be operated in two different modes. 
They are fixed torque mode and constant speed mode. In this selection, the torque is kept 
fixed and hence the overall power output will be proportional to the speed of the engine. 
During this one, the speed remains fixed and, hence, the torque varies, the resultant 
power output also varies proportionally to the torque. A load cell is used to measure the 
force applied to the eddy current dynamometer. Torque value is indicated in digital 
indicator in nm. Initial adjustment and calibration are as follows: 

a At no load condition, adjust the zero value of torque using the tare pot on the 
instrumental panel. 

b After the initial adjustment of torque, torque can be measured directly from the 
metre. 

c For calibration, initially, the load cell is kept load free by turning the loading arm to 
display zero reading. 

d Keep the calibrated weight of known mass ranging from 10–40 kg. See the reading 
on the digital indicator, if it is correct, calibration is completed. Otherwise, the span 
trim pot is adjusted to show the correct reading. 

Table 5 Specification of engine 

Type Air cooled, four stroke 
Bore, d (mm) 87.6 
Stroke length, 1 mm 110 
Compression ratio, r 17.5:1 
Capacity, cc (cm3) 661.5 
Max. power (kw) 4.4 
Fuel injection Direct injection 
Dynamometer types Electrical dynamometer 

Source: Tirpude et al. (2022) 

For calibration of the thermocouples, a millivolt source output is applied to them as input. 
The trim pot is adjusted from the backside of the instrumental panel to adjust zero value 
for 0 mV as input of the thermocouple. Then 333.27 mV is applied as input to the 
thermocouple, which shows 800°C on display. Again, the input is adjusted to zero value, 
and the trim pot is adjusted to show ambient temperature. The proximity sensor is used to 
measure the speed. The proximity sensor calculates the speed as the inverse of the period. 
To confirm the accuracy of speed measurement, speed is also measured with a digital 
tachometer. 



   

 

   

   
 

   

   

 

   

    Experimental investigation of selective catalytic reduction system 25    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 1 Photo of catalytic converter (storage tank, PWM controller, catalytic converter, exhaust 
gas, solenoid injector, and feed pump) (see online version for colours) 

 

The fuel measurement system consists of a load cell to measure the weight loss for one 
minute. The stopwatch is used to measure the time in seconds. The fuel measurement 
system is separate from emulsion samples. For each sample, fuel containing vessel is 
clean to avoid measurement errors. The differential manometer is used to measure 
airflow. It can measure the flow rate up to 50 m3/hr. The resolution is 0.1 m3/hr. 

The exhaust gas analyser measures the CO, HC, CO2, and NOx emissions. After, 
starting of exhaust analyser, it takes 14 minutes for sensor stabilisation. After sensor 
stabilisation, a leak check is done. If there is no leak, then readings are taken for various 
emissions by inserting a probe into the exhaust to sample. Various filters are mounted to 
remove moisture and other impurities. After stabilising, readings are noted. The 
specification and principle of measurement of the gas analyser and smoke metre are 
given in Tables 6 and 7, respectively. The calibration of the exhaust gas analyser is 
carried out as per the company. 
Table 6 Specification of AVL DiGas exhausts gas analyser 

Parameters Measurement principle Measurement range Resolution 
Carbon monoxide (CO) Infrared 0–10% by vol. 0.01% by vol. 
Hydrocarbon (HC) Infrared 0–20,000 ppm vol. 1 ppm vol. 
Carbon dioxide (CO2) Infrared 0–20% by vol. 0.1% by vol. 
NOx Electrochemical 0–4,000 ppm vol. 1 ppm vol. 

Source: Tirpude et al. (2022) 

Table 7 AVL 437 C smoke metre 

Parameters Measurement principle Measurement range Accuracy and reproducibility 
Smoke opacity Extinction of light 0–99.99 opacity in % +/– 1% full scale reading 

Source: Khond et al. (2020) 
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Table 8 Experimental plan 

Concentration of DES 
Engine speed 800 rpm 

Urea Cow urine Sheep urine 
Without DES √ √ √ 
250 ml/750ml water √ √ √ 
500 ml/500ml water √ √ √ 
750 ml/250 ml water √ √ √ 

A smoke metre measures the smoke opacity in the exhaust gas. The details of the smoke 
metre are given in Table 7. The smoke metre is calibrated as per the AVL method. 
Initially, a heater is started to remove the moisture from the measurement system. After 
reaching the temperature above 700°C, the reading was noted down by inserting the 
probe into the exhaust pipe. 

The aqueous solution storage tank, pump, and SCR are described in detail in Tirpude 
et al. (2022). Two catalytic converters one with a TiO2 catalyst and the other with a 
vanadium-coated catalyst are part of the updated SCR system. These two catalysts are 
connected in the exhaust pipeline, as illustrated in Figure 1. Between these two catalysts, 
there is an injection system for injecting an aqueous solution of diesel exhaust. To 
automate the complete injection system, a PWM circuit is created and linked. The 
injection system is needed to supply the diesel exhaust system to the catalytic converter. 
The denoxation injection system is used in this experiment. It consists of a feed pump, 
connecting pipe, injector, and electrical circuit. The complete working of the system is 
electronically controlled. A detailed view of the system can be seen in the related figure. 

The exhaust gas treatment system consists of an aqueous solution storage tank, a 
pump to maintain solution pressure and circulate the solution to the nozzle injector which 
is located closer to the engine in the exhaust pipe. To manage the flow of solution to the 
injector nozzle, a three-way flow control valve is fitted between the pump and the 
injector, as well as a piping line to return the surplus solution to the storage tank (Tirpude 
et al., 2022). After solution injection, the exhaust pipeline’s two SCRs one with a TiO2 
catalyst and one with a vanadium-coated catalyst are linked together. The NH3 mixture 
and NOx effluent are then permitted to flow through two different series-connected 
catalysts after the solution injection. The modernised SCR system has two catalytic 
converters, one with a titanium dioxide catalyst and the other with a catalyst coated with 
vanadium. As seen in Figure 1(b), these two catalysts are connected via the exhaust 
pipeline. An injection system for injecting aqueous diesel exhaust solution is installed. 
PWM circuit is built and wired to automatically run the entire system. 

3 Result and discussion 

The results of experiments performed on a selective catalytic reduction diesel engine with 
distinct fluids made from animal urine (cow and sheep) have been reviewed. The results 
were compared with and without SCR for various pollutants. The test was performed at 
an engine speed of 800 rpm with three stages of varying diesel exhaust fluid 
concentrations (250, 500, and 750 ml). It also evaluated fuel economy and braking 
performance. 
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Figure 2 Effect of reluctant at 800 rpm on, (a) NOx (b) CO emissions (see online version  
for colours) 

  
(a)     (b) 

The NOx was the main constituent of emission generated during combustion. In a diesel 
engine, Smoke and NOx are major emissions and these emissions always have a trade-off 
between each other. The SCR technology has shown the ability to reduce NOx without 
affecting other emissions (Tirpude et al., 2019). The experimentation was carried out 
using SCR and without SCR using various reluctant prepared from a natural waste fluid. 
Cow and sheep urine was used as a DES. Different concentrations of diesel exhaust fluid 
(250, 500, and 750 ml) at constant engine speed (800 rpm) were tested and the results 
were shown in Figure 2(a). It was depicted from related figures that; NOx emission was 
reduced due to the rise in the concentration of all types of reductants. However, the 
maximum reduction of NOx was observed in cow urine containing diesel exhaust 
solution. The NOx emission formation relies on the combustion chamber temperature, 
availability of oxygen, and the time required completing the reaction. The urine-based 
diesel exhaust solution has lower NOx emission than the urea-based solution due to more 
stable and catalytic activity due to other components in urine like magnesium, iron, etc., 
and ammonia. The maximum reduction at 800 rpm engine speed was 73.67% in the 
CU750 sample. 

CO emission was the output of the unfinished combustion of the hydrocarbon.  
Figure 2(b) depicts the CO emission under 800 rpm speed for U, CU, and SU-based 
solution. It can be observed that CU and SU solutions showed similar trends, but the U 
solution showed higher at 800 rpm. Higher CO emission in U might be due to solid urea 
present with water causing some back pressure and resulting from low oxygen available 
for combustion. The unavailability of oxygen decreased the conversion rate of CO into 
CO2. However, the other two solutions were naturally mixed, and no solid component 
was present. Therefore, concentration does not affect the CO emission as such. 

Hydrocarbon emission was generated due to incomplete combustion. This emission 
was in a cylinder. Figure 3(a) shows the effect of variation of hydrocarbon emission for 
U, CU and SU-based solutions. The hydrocarbon emission was higher in the engine 
without SCR, but reduction of HC was obtained in SCR fitted engine with all solutions. 
The CU and SU have shown better performance in terms of HC emission. This may 
happen due to the presence of another oxidation promoter in CU and SU. Figure 3(b) 
shows the effect of SCR with various diesel exhaust solutions U, CU and SU with 
different concentrations ranging from 250 to 750 ml under 800 rpm constant engine 
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speed. It was depicted that marginal reduction of CO2 was obtained with SCR. However, 
SCR was not affecting the CO2 significantly. The maximum value of CO2 emission was 
6.2% at 2,400 rpm without SCR and the minimum value was 4.1% in U750 and SU250. 

Figure 3 Effect of reluctant at 800 rpm on, (a) HC (b) CO2 emissions (see online version  
for colours) 

  
(a)     (b) 

Figure 4 Effect of reluctant at 800 rpm on, (a) smoke (b) SFC (c) BTH (see online version  
for colours) 
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Smoke emission was a result of the low quantity of oxygen available for combustion of 
carbon and hydrogen in fuel as well as the quality of the charge since the premixed and 
mixing controlled strategies lead to generating the higher smoke emission resulting in the 
PM emission. The fuel injection application employed for this engine was a low-pressure 
fuel injection system which affected the homogeneity of the charge and resulted in smoke 
formation. It was seen from Figure 4 that smoke emission was lower without SCR in 
comparison with SCR. The Increase in smoke emission in SCR fitted conditions might be 
due to back pressure generated on a diesel engine. The maximum value of smoke was  
4.6 ppm in U750 and the lower one was 4.1 ppm in W/O. It was inferred that urea-based 
solutions have more smoke emissions than urine-based ones. The SFC was described as 
the mass flow rate of fuel per unit of power developed by the engine. Figure 4(b) shows 
the variation of SFC for various DES with different concentrations ranging from 250 to 
750 ml. It was obvious from the figures that SFC values were lower without SCR 
compared with SCR. The urea-based solution showed higher SFC due to slight high back 
pressure that might be developed due to solid urea. The BTH of the engine was described 
as brake power developed per unit of heat supplied. It is a measure of how much fuel 
energy is converted into power. Figure 4(c) indicates the variation of BTH for various 
DES for different concentrations at 800 rpm constant engine speed. The BTH was higher 
when SCR was not fitted on the engine. However, a slight decrease in SCR was observed 
with SCR that might be due to slight back pressure on the engine. The maximum 
efficiency (30%) was observed in CU500 and SU250, respectively. Even though, SCR 
decreased BTH slightly, urea-based solution showed a lower value of BTH than the 
urine-based solution. Hence, CU and SU could be used as DES for SCR. 

4 Conclusions 

In the current study, the impact of natural urine-based DES in an SCR unit was 
investigated. The conclusions from the practical results are as follows: 

a The SCR was the most successful NOx reduction method. On the other hand, there 
was less impact of SCR on the performance and emission. 

b Research on diesel engines was carried out at the SCR experimental facility. It can 
be determined that urine-based solutions reduced NOx more effectively than  
urea-based ones. NOx levels were reduced by over 2.3% as compared to urea-based 
solutions. Among the two urine-based solutions, cow urine and sheep urine, the  
CU-based solution reduced NOx the most. 

c The greatest NOx reduction was reported to be 73.67% for cow urine at 750 ml CU 
and 250 ml water evaluated at an 800 rpm speed. 

d CO emissions were measured to be somewhat higher in SCR-equipped diesel 
engines. The urea-based solution produced more CO than the urine-based solution, 
which could be attributed to a minor growth in back pressure on the engine caused 
by urea settling into a solid. CU750 emitted the least amount of CO (0.01% by 
volume). 

e All DES solutions demonstrated decreased HC emission when compared to those 
without SCR. Among all samples, the CU750 sample had the lowest HC emission. 
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f CO2 emissions followed virtually identical patterns in urine-based and urea-based 
solutions. 

g Smoke emission in urea-based DES was found to be greater than in urine-based 
DES. 

h It was determined that SCR somewhat enhanced SFC owing to engine back pressure. 
However, SFC results were quite similar for all samples. 

i Developments in BTH were quite similar to trends in SFC. In all DES samples, the 
BTH was slightly lower. 
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Nomenclatures 

AVL AVL gas analyser 
BSFC Brake-specific fuel consumption 
BTH Brake thermal efficiency 
CO Carbon monoxide 
CO2 Carbon dioxide 
CU Cow urine 
DES Diesel exhaust solution 
DPPD N0-diphenyl-1,4-phenylenediamine 
EHN 2-ethylhexyl nitrate 
H2O Water 
HC Hydrocarbon 
HCCI Homogeneous charge compression ignition 
N Urinary nitrogen 
NO Nitric oxide 
NOx Oxide of nitrogen 
N2 Nitrogen 
NH3 Ammonia 
PWM Pulse width modulation 
rpm Revolution per minute 
SCR Selective catalyst reduction 
SFC Specific fuel consumption 
SU Sheep urine 
TiO2 Titanium dioxide 
U Urea 

 


