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Abstract: This research aims to identify and model the reverse logistics (RL) 
risk variables to estimate the risks associated with their deployment. 
Furthermore, it suggests risk management techniques to execute the RL 
implementation effectively. The Delphi technique, interpretive structural 
modelling (ISM), and fuzzy cross-impact matrix multiplication applied to 
classification (F-MICMAC) create a hybrid research framework in this study. 
Delphi determines the RL risk factors and ISM creates a structural model to 
examine the contextual connection between them, followed by F-MICMAC 
classification. The key risk elements connected with RL implementation 
include government policy risk and management policy risk. Major RL risk 
management strategies include collaboration with network partners,  
risk-sharing with stakeholders, strong mutual trust among collaborators, 
improved forecasting techniques and continuous information sharing. The 
current evaluation is extremely beneficial in identifying the driving and 
dependence power and the efficacy of a certain risk, which helps in segregating 
them for RL implementation. 

Keywords: reverse logistics; risks; reverse supply chain; risk management; 
Delphi; interpretive structural modelling; ISM; F-MICMAC. 



   

 

   

   
 

   

   

 

   

   20 H. Prajapati et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Reference to this paper should be made as follows: Prajapati, H., Kant, R. and 
Shankar, R. (2023) ‘A modelling and management approach to risks in reverse 
logistics implementation’, Int. J. Business Continuity and Risk Management, 
Vol. 13, No. 1, pp.19–48. 

Biographical notes: Himanshu Prajapati is a research scholar at the 
Department of Mechanical Engineering, Sardar Vallabhbhai National Institute 
of Technology, Surat, India and Assistant Professor at Department of 
Mechanical Engineering, Maharishi Markandeshwar (Deemed to be 
University), Mullana-Ambala, India. He has published several research articles 
in reputed international journals and conferences. His area of interest includes 
reverse logistics, supply chain management, circular supply chain management 
and Industry 4.0. 

Ravi Kant is an Associate Professor at the Department of Mechanical 
Engineering, Sardar Vallabhbhai National Institute of Technology, Surat, India. 
His areas of research interest include operations and supply chain, knowledge 
management, and Lean and Six Sigma. He has about 12 years of experience in 
industry, teaching and research. He has co-authored more than 200 research 
papers in international journals and conferences and three books. 

Ravi Shankar is an ‘Amar S. Gupta Chair Professor of Decision Science’ and 
Professor of Operations and Supply Chain Management in the Department of 
Management Studies (DMS), Indian Institute of Technology (IIT) Delhi, India. 
He is also an Honorary Visiting Professor of Decision Science at the School of 
Economics and Management, Loughborough University, UK. He has a rich 
industry and teaching experience of over 37 years. His areas of interest include 
operations and supply chain management, decision sciences, business analytics 
and big data, sustainable freight transportation, project management, total 
quality management and Six Sigma, strategic technology management, etc. He 
has co-authored more than 400 research papers and six books. 

 

1 Introduction 

Reverse logistics (RL) maintains the efficient flow of goods. RL is defined as  
“The process of planning, implementing and controlling the efficient, cost-effective flow 
of raw materials, in-process inventory, finished goods and related information from the 
point of consumption to the point of origin to recapture value or proper disposal” (Rogers 
and Tibben-Lembke, 2001). 

The need for implementing RL arises due to the environmental degradation by 
enormous waste generation and the product returns in the new world of e-business.  
E-businesses build customers’ trust by allowing product returns that are recycled or 
refurbished and then resold. The world’s largest e-commerce company Amazon said that 
India has got the highest product return rate in the world compared to all the places they 
operate (Entrackr, 2018). The total amount of solid waste produced in India is around  
62 million tonnes per year (Government, 2020), with this figure anticipated to rise to  
165 million tonnes by 2030 (Godrej Industries, 2017). Many countries’ governments, 
including India, have enacted laws and regulations to protect the environment, but their 
ground implementation is poor. This is demonstrated by the net rise in waste generated 
each year. RL is one of the critical operational ways to reduce waste, and as a result, the 
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environmental effect. It covers various product recovery procedures such as recycling, 
reuse, remanufacturing, repair and refurbishment (Prajapati et al., 2019a). 

The adoption of RL in a company provides a chance to grow its business. An efficient 
RL practice increases profitability (Senthil et al., 2018). However, RL implementation is 
a complicated process. Depending on how a business perceives it, it might damage the 
firm or a chance for profit (Meng, 2010). The vulnerability in the implementation of RL 
leads to adverse consequences (Biehl et al., 2007). The RL implementation is 
complicated, and there are several risks involved. Knowledge of different related risks is 
critical for effective RL project execution (Dandage et al., 2018). The existence of 
hazards disrupts the execution of the RL; therefore, a company must have thorough 
information on the risk elements involved before implementation. Identifying and 
addressing all of the various RL risk sources helps shape our perceptions towards threats 
and opportunities (Ward and Chapman, 2003). Risk management often entails 
identifying, assessing, assigning and controlling risks. Risk identification is usually the 
foundation of all other procedures, and the risk factors are generally not autonomous but 
interrelated (Han et al., 2019). Therefore, this article aims to the following objectives: 

1 Identify the RL risk factors for assessing associated risks during its implementation. 

2 Modelling the interrelationships between identified risk factors of RL 
implementation. 

3 Suggest the risk management strategies so that firms can effectively execute the RL 
implementation. 

To fulfil the goal of this research, a two-stage research framework is presented. The first 
stage is to identify the risk factors associated with RL implementation, and the second is 
to determine the hierarchical level and interdependence of the identified risk variables. 
Through literature review, this study creates a list of risks in RL implementation, and 
with the assistance of the Delphi approach, merges relative risks and adds if overlooked. 
Interpretive structural modelling (ISM) is used to create a structural model that 
distinguishes between source, intermediate, and result RL risks and determines the 
contextual link between the RL implementation risks chosen. ISM, which Warfield 
developed in 1974, is a systematic, efficient, and straightforward technique of 
recognising relationships among particular items that describe an issue. It gives results 
direction and aids in creating an easy-to-understand graphical model (Attri et al., 2013). 
The fuzzy cross-impact matrix multiplication applied to classification (F-MICMAC) 
analysis (French acronym: Matriced’ Impacts Croise’s Multiplication Appliquée a  
UN Classement; English acronym: cross-impact matrix multiplication applied to 
classification) is designed to determine the most critical factors within a model among 
many factors based on its effectiveness. F-MICMAC categorises the selected risks into 
four groups based on their driving and dependence power. This study also includes risk 
management techniques as well as managerial implications. 

The article is structured as follows: Section 2 summarises the prior literature on RL, 
particularly related to risk, and frames the research gap and necessity for this study. The 
suggested framework for this study is described in Section 3. Section 4 describes how the 
planned research technique was put to use. Section 5 discusses the ISM, and F-MICMAC 
model results, gives insight into the RL risk management techniques and evaluates the 
managerial implications. The study’s conclusions are presented in Section 6. 
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2 Literature review 

Many studies regarded risks as a negative potential, while others argued about the 
opportunities they provide (Ward and Chapman, 2003). According to Narkhede et al. 
(2019), the risk is “the presence of prospective or real threats or opportunities that have 
an influence on the project’s aim during the life cycle.” It may provide opportunities and 
prospects that are beneficial to the organisation (Pfohl et al., 2010). Ward and Chapman 
(2003) stress the word uncertainty rather than risk. The terms uncertainty, disruption, and 
disturbance are used interchangeably in the risk literature. Risk identification and 
subsequent analysis in RL are critical concepts to understand 

2.1 RL and risk 

RL adoption provides several opportunities, particularly in nations where this technique 
is still in its early stages (Prajapati et al., 2019a). Agrawal et al. (2015) underlined the 
need to conduct independent research on RL risk assessment. A systematic review was 
conducted to identify previous work and research gaps for hazards in RL deployment. 
Prajapati et al. (2019a) provided the procedures for material selection and refining, which 
were followed. To get an initial selection of 2,277 articles, the Scopus database was 
searched using the keywords ‘RL’ + ‘risk’ and ‘RL’ + ‘disruption’. After applying 
different criteria, the list was narrowed down to 92 items. These 92 publications were 
evaluated using their abstracts and full texts (if needed) to choose papers that focused on 
hazards in RL implementation. There were 26 publications identified that studied risks in 
RL. 

Most of the articles study RL risk as a factor in their mathematical model such as, 
risks to population in location inventory model (Rabbani et al., 2020), supplier selection 
in demand supply risks using conditional value at risk (CVaR) (Rezaei et al., 2020), 
maximise profit and minimise cost in presence of risks (Gooran et al., 2020), designing a 
RL network using CVaR (Zamani et al., 2020; Babazadeh et al., 2015; Soleimani and 
Govindan, 2014), develop sustainable business model using triple bottom line and risk 
elements (Wit and Pylak, 2020), build RL design to manage end of life returns and 
associated risks (Krug et al., 2020), multi-period RL network design under uncertainty 
for construction waste (Rahimi and Ghezavati, 2018) and for the transportation of 
hazardous material and facility location under risk (Yanik, 2015), multi-product RL 
network design considering both risk-seeking and risk-averse decision-makers (Gooran  
et al., 2018; Yu and Solvang, 2017), designing location routing model with inventory 
risks (Zhao and Ke, 2017), risk-averse multi-echelon multi-product RL model under 
uncertainty (Yu and Solvang, 2017), designing multi-objective model to identify supplier 
under demand and supply risk (Moghaddam, 2015), designing forward-reverse network 
design under partial or complete facility disruption (Hatefi and Jolai, 2015; El-Sayed  
et al., 2010), and developing RL model to minimise environment risk (Ahluwalia and 
Nema, 2006). 

Few authors have considered MCDM-based frameworks for studying RL risks are, 
prioritising the risks in RL network (Senthil et al., 2018), evaluation and selection of third 
party RL provider (Zarbakhshnia et al., 2018), considering sustainable and risk factors to 
evaluate and select sustainable third party RL provider (Mavi et al., 2017), assess optimal 
downstream collection strategy for RL using the related benefits, opportunities, costs and 
risks (BOCR) criteria and sub-criteria (Hsueh and Lin, 2017), and construct a network 
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BOCR model (Hsueh and Lin, 2015). Panjehfouladgaran and Lim (2020) studied RL risk 
management clustering and mitigation strategies. Several risks factor such as financial 
and economic risks, inventory risks, disruption risks, data management risks, and return 
product quantity risks are pretty common in RL literature. Financial risks encompass all 
monetary risks (operational, market, liquidity, etc.) associated with the industry’s 
investment in RL implementation. Inventory risk is related to the management and 
storage of returns. The risk of return product quantity is associated with the variable 
amount of returns. Several risks factors such as process design risk, information and 
communication risks (ICT), strategy risk, return forecasting risk, return product quality 
risk, and social risks are quite less reported in the literature. Process design risk is related 
to a process’s design to manage a wide range of returns and quality. ICT and risk 
forecasting are inextricably intertwined since effective ICT leads to a reliable forecast. 
End-of-life returns always include a quality risk since they define the remaining value in 
the product. The return handling agency must directly carry the risk of return product 
quality and is inextricably tied to gatekeeping design risk. We select 19 RL 
implementation risks for this study, which will be described later. 
Table 1 Review of risk management strategies in literature 

Reference Outcome 
Ghadge et al. (2012) Risk sharing, multi-sourcing, risk sharing, vendor managed 

inventory, incentive contracts, product variety, delivery 
management, postponement, real time coordination, agility in 
options, strategic management, supply chain rebuilding, proper 
resource management, rerouting, dynamic pricing. 

Wang and Yang (2012) Merge managerial flexibility/agility with the research project for risk 
management. 

Singhal et al. (2011) Proper capacity and inventory management, reliability, relate 
demand to supply, outsourcing, information sharing and forecasting, 
risk calculation, assessment of risk, developing collaborative 
performance index, maintaining optimal inventory. 

Tang and Musa (2011) Multiple sourcing, resilience supply chain, outsourcing, dependable 
partners, supplier involvement, in-house manufacturing, hedging, 
postponement, better information technology, lean manufacturing. 

Wang et al. (2010) Synchronise corporate strategy with risk, align performance 
measurement system with risk. 

Pfohl et al. (2010) Capital market theory, new institutional economics theory for base 
of supply chain risk management, also they put other 17 principle for 
risk management. 

Manuj and Mentzer 
(2008) 

Avoidance, postponement, control, transfer, security, hedging, 
supply chain flexibility, set desired cost saving. 

Kwak and Dixon (2008) Use flexible and analytical tool for risk management, design risk 
averse decision making model, involve stakeholders, outsourcing, 
follow regulations, take help from risk experts, benchmark, merge 
risk with project timeline. 

Tang (2006) Information sharing, vendor managed inventory, collaborative 
forecasting, robust product management strategy, robust demand 
management strategy, robust information management strategy. 

Jüttner et al. (2003) Avoidance, control, cooperation, flexibility. 
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Figure 1 Proposed research methodology 

 

Although there are numerous publications in the literature on RL’s mathematical 
modelling for diverse activities with risk as one of its components. Senthil et al. (2018) 
use analytical hierarchy process (AHP) coupled with the fuzzy technique for order 
preference by similarity to ideal solution (TOPSIS) and preference ranking organisation 
method for enrichment evaluations (PROMETHEE) to prioritise the RL network risk. 
They rank nine RL risks depending on a few parameters. Although they looked at  
nine risk variables, there are many more. Furthermore, research on the interconnectivity 
of risk in RL implementation is still lacking. Therefore, there is a need to investigate 
various risk variables in RL implementation and understand their interdependence. 

The literature was also searched for studies on RL risk management strategies, but 
only one paper was found. The scope of the search was broadened to include supply 
chain management and green supply chain management. Table 1 lists a few publications 
that only cover the risk management approach. 
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3 The proposed framework 

This study provides a two-step approach for risk identification and risk structuralisation. 
The method for identifying and selecting hazards is referred to as risk identification. The 
Delphi technique is used in this study to determine the hazards associated with RL 
implementation. The method for organising risk variables into a well-defined framework 
is risk structuralisation. Due to its appropriateness, ISM-F-MICMAC is used to determine 
an identified risk’s interrelationship, driving and dependency power. The suggested 
research framework for this project is depicted in Figure 1. 

4 Application of the proposed research framework 

4.1 Risk identification 

The risks in RL implementation are identified with the help of the Delphi method. 

4.1.1 The Delphi method 

The Delphi method is one of the oldest techniques for administrative decision-making 
that takes into account the opinions of a panel of experts. It was created in the 1950s by 
the RAND Corporation in the USA (Han et al., 2019). Delphi is a structured group 
discussion technique used to manage (or solve) a complicated issue (Okoli and 
Pawlowski, 2004). It eliminates face-to-face squabbling amongst experts (Barrios et al., 
2021). Previously, the Delphi approach has been used in studies on healthcare research 
(Nasa et al., 2021), solar energy in smart cities (Ghadami et al., 2021), Industry 4.0 
(Culot et al., 2020), information systems (Lee and Park, 2020), Brownfield (Han et al., 
2018, 2019), e-commerce (Okoli and Pawlowski, 2004), forest management (Filyushkina 
et al., 2018), sustainable ecotourism (Ocampo et al., 2018) and in many others. The  
five step Delphi method is as follows: 

Step 1 Factor selection: A list of semi-structured criteria is prepared based on existing 
literature. 

Step 2 Remove duplicates: The prepared list is rechecked to remove the duplicates 
present if any. 

Step 3 Selection of experts: A group of experts is chosen from a target system for this 
study. The number of experts in Delphi is not limited and can be chosen based 
on the study aim (Nasa et al., 2021). An expert panel in this research consists of 
ten professionals, two of whom are academics with extensive experience in 
supply chain management and RL research, three consultants dealing with RL 
implementation, and five industry experts from an Indian electrical 
manufacturing company that is already implementing RL in their organisation. 
These experts assist in the identification of RL risk factors and the following 
iterations. 
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Table 2 RL risks 
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Table 2 RL risks (continued) 
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Step 4 Iteration of pre-prepared list: The semi-structured list is distributed to each 
expert, who updates it based on their knowledge. The replies are gathered, ideas 
are combined, and the second set of criteria is created. It is forwarded to the 
same experts for revisions and recommendations. The procedures can be 
continued until a state of shared consciousness is attained. 

Step 5 Finalisation of factors: A completed set of criteria is created for future study 
based on the replies gathered and iterations performed. 

The extensive literature analysis finds 22 risk variables for RL. The expert panel 
combines four RL risk variables and recommends one new RL risk factor. As a result, 
this study highlights 19 risk factors for RL adoption for future investigation. Table 2 
contains a full list of the RL risk variables, along with a definitive description based on 
the Delphi approach. 

4.2 Risk structuralisation 

Risk structuralisation involves the evaluation of interrelationship between the risk, its 
driving and dependence power and dividing it into the four clusters of driving, dependent, 
linkage and autonomous variables. 

4.2.1 Interpretive structural modelling 
The ISM is the most commonly utilised structural analysis method (Han et al., 2019). The 
ISM model includes level-by-level information for locating a criterion (Trivedi et al., 
2021). Its basic idea is to leverage experts’ relevant knowledge and information to break 
down a complicated framework into a few sub-components and build a multilayer model 
(Kumar et al., 2021). The ISM approach transforms vague and ineffectively articulated 
frameworks into a clear and well-defined framework (Shanker and Barve, 2021). ISM is 
deployed in many research areas such as supply chain management (Gorane and Kant, 
2015; Shanker and Barve, 2021), inland waterways as a sustainable transportation mode 
(Trivedi et al., 2021), Industry 4.0 and circular economy (Kumar et al., 2021), green 
supply chain management (VenkatesaNarayanan and Thirunavukkarasu, 2021), supply 
chain performance measurement (Katiyar et al., 2018) and many more. ISM typically 
causes managers to reconsider obvious demands and enhance their understanding of the 
relationships between critical elements (Mishra et al., 2017). 

Step 1 Identification of criteria: Table 1 shows the criteria for which the 
interrelationship is to be modelled. 

Step 2 Finding contextual relationship: A brainstorming session was held among the 
experts (described in Section 4.1.1) to discover a contextual link between 
criteria and to create a structural self-interaction matrix (SSIM) based on 
pairwise comparisons. The comparison is based on qualitative ratings expressed 
as V, A, X and O, where 
V indicates ith criterion influence jth criterion and not vice-versa 
A indicates jth criterion influence ith criterion and not vice-versa 
X indicates ith criterion and jth criterion influence each other 
O indicates ith criterion and jth criterion are unrelated. 
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The SSIM for risks in RL implementation is developed using the response from 
the experts (Table 3). 

Table 3 Structural self-interaction matrix 

 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 
R1 A A A A A A A A A A A A O A A A A A 
R2 V X X A V V V V V V V A A X V V V  
R3 X A A A A X V A A A A A A A X A   
R4 V A A A X V V O O O X A A A V    
R5 X A A A A X V A A A A A A A     
R6 V X X A V V V V V V V A A      
R7 V V V X V V V V V V V V       
R8 V V V A V V V V V V V        
R9 V A A A X V V O O O         
R10 V A A A O V V X X          
R11 V A A A O V V X           
R12 V A A A O V V            
R13 A A A A A A             
R14 X A A A A              
R15 V A A A               
R16 V V V                
R17 V X                 
R18 V                  

Table 4 Initial reachability matrix 

 1 2 3 … … 17 18 19 
R1 1 0 0 … … 0 0 0 
R2 1 1 1 … … 1 1 1 
R3 1 0 1 … … 0 0 1 
… … … … … … … … … 
… … … … … … … … … 
R17 1 1 1 … … 1 1 1 
R18 1 1 1 … … 1 1 1 
R19 1 0 1 … … 0 0 1 

Step 3 Develop initial reachability matrix: The SSIM is converted to a binary digit 
matrix known as initial reachability matrix (Table 4) by replacing the above 
qualitative terms (V, A, X and O) to binary numbers (0 and 1) according to the 
following rule: 
• If i to j value is V, replace (i, j) to 1 and (j, i) to 0. 
• If i to j value is A, replace (i, j) to 0 and (j, i) to 1. 
• If i to j value is X, replace both (i, j) and (j, i) to 1. 
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• If i to j value is O, replace both (i, j) and (j, i) to 0. 

Step 4 Convert initial reachability matrix to final reachability matrix: The transitivity 
rule transforms the initial reachability matrix to the final reachability matrix, 
which states that if a criteria P is linked to a criterion Q and a criterion Q is 
connected to a criterion R, then P must be connected to R. 

This matrix also displays the driving and dependence power of each RL risk 
variable. The driving force of a variable reflects the number of elements 
(including self) that may aid in achieving a goal. The driving power is 
determined by summing the entries in the final reachability matrix’s rows. The 
dependence power reflects the number of elements (including self) that may aid 
to achieve it. The dependence power is calculated by adding the entries in the 
columns of the final reachability matrix. Table 5 presents the final reachability 
matrix. 

Step 5 Finding the hierarchical level of criterion: The levels of each criterion are 
determined through several iterations based on reachability and antecedent set 
through level partitioning. The final reachability matrix leads to the 
development of reachability and antecedent set for each risk factor. The 
reachability set M(xi) of the variable x is the set of variables defined in the 
columns that contained 1 in row xi. Similarly, the antecedent set N(xi) of the 
variable xi is the set of variables defined in the rows that contained 1 in column 
xi (Mishra et al., 2017). The intersections of these sets are found for each risk 
variable. Those variables which have the same reachability and intersection set 
are assigned top-level in the ISM model. The top-level variables would not 
impact the other variables below in the hierarchy. Now, the variables which are 
assigned at some level are removed, and the next iterations are performed to find 
out the prominence for other variables. 

In the present research, six iterations were performed to find the level of selected 
19 RL risk variables. In Table 6, risk variables R1 and R13 have the same 
reachability and intersection set; therefore, they are assigned level 1 in the ISM 
model. 

Now, level 1 is not carried for further iterations and is discarded. In the second 
iteration (Appendix: Table A2), the risk variables R3, R5, R14, and R19 are 
assigned at the second level in the ISM model. Similarly, the process of 
removing the variables (assigned levels) and performing the iterations is 
repeated to assign the level to each variable in the system. In third iteration 
(Appendix: Table A3), variables R4, R9, R10, R11, R12, and R15 are assigned 
at level 3. In the fourth iteration (Appendix: Table A4), variables R2, R6, R17, 
and R18 are assigned at level 4. In fifth iteration (Appendix: Table A5),  
variable R8 is assigned at level 5. In the sixth iteration, variables R7 and R16 are 
assigned the bottom level, i.e., level 6 (Appendix: Table A6). The bottom level 
variables are the key drivers of the system that changes in these have an overall 
impact on the entire system. 
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Table 5 Final reachability matrix 
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Table 6 Level partition of levels of RL risk – first iteration 

 Reachability set Antecedent set Intersection set Level 
R1 1, 13 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 

12, 13, 14, 15, 16, 17, 18, 19 
1, 13 1 

R2 1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 
13, 14, 15, 17, 18, 19 

2, 6, 7, 8, 16, 17, 18 2, 6, 17, 18  

R3 1, 3, 5, 13, 14, 19 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 
14, 15, 16, 17, 18, 19 

3, 5, 14, 19  

R4 1, 3, 4, 5, 9, 13, 14, 15, 19 2, 4, 6, 7, 8, 9, 15, 16, 17, 18 4, 9, 15  
R5 1, 3, 5, 13, 14, 19 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 

14, 15, 16, 17, 18, 19 
3, 5, 14, 19  

R6 1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 
13, 14, 15, 17, 18, 19 

2, 6, 7, 8, 16, 17, 18 2, 6, 17, 18  

R7 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 
12, 13, 14, 15, 16, 17, 18, 19 

7, 16 7, 16  

R8 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 
12, 13, 14, 15, 17, 18, 19 

7, 8, 16 8  

R9 1, 3, 4, 5, 9, 13, 14, 15, 19 2, 4, 6, 7, 8, 9, 15, 16, 17, 18 4, 9, 15  
R10 1, 3, 5, 10, 11, 12, 13, 14, 19 2, 6, 7, 8, 10, 11, 12, 16, 17, 18 10, 11, 12  
R11 1, 3, 5, 10, 11, 12, 13, 14, 19 2, 6, 7, 8, 10, 11, 12, 16, 17, 18 10, 11, 12  
R12 1, 3, 5, 10, 11, 12, 13, 14, 19 2, 6, 7, 8, 10, 11, 12, 16, 17, 18 10, 11, 12  
R13 1, 13 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 

12, 13, 14, 15, 16, 17, 18, 19 
1, 13 1 

R14 1, 3, 5, 13, 14, 19 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 
14, 15, 16, 17, 18, 19 

3, 5, 14, 19  

R15 1, 3, 4, 5, 9, 13, 14, 15, 19 2, 4, 6, 7, 8, 9, 15, 16, 17, 18 4, 9, 15  
R16 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 

12, 13, 14, 15, 16, 17, 18, 19 
7, 16 7, 16  

R17 1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 
13, 14, 15, 17, 18, 19 

2, 6, 7, 8, 16, 17, 18 2, 6, 17, 18  

R18 1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 
13, 14, 15, 17, 18, 19 

2, 6, 7, 8, 16, 17, 18 2, 6, 17, 18  

R19 1, 3, 5, 13, 14, 19 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 
14, 15, 16, 17, 18, 19 

3, 5, 14, 19  

Step 6 Developing the ISM model: Now, with the help of the levels assigned to each 
RL risk variables, the ISM model is developed. A six level ISM model is given 
in Figure 2. The risks in RL implementation are arranged according to the levels 
assigned in Step 5. The variables R7 and R16 acquiring level 6 is kept at the 
bottom of the model while the variables R1 and R13 acquiring level 1 is kept at 
the top. 
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Figure 2 The ISM model 

 

4.2.2 Fuzzy cross-impact matrix multiplication applied to classification 
The F-MICMAC analysis aids in determining the degree of connection between the 
criteria. The MICMAC approach, created in 1973 by Duperrin and Godet, is an aberrant 
grouping technique that evaluates the degree of each ISM criteria (Raval et al., 2018). 
The MICMAC examines the criterion in terms of its driving power (the number of 
criteria it may affect) and dependency power (i.e., the number of criteria that can 
influence it) (Shanker and Barve, 2021). The requirements are divided into four groups: 
autonomous (weak driving – weak dependency), dependent (weak driving – strong 
dependence), linkage (strong driving – high dependence), and driver (strong driver – 
weak dependence). A driver-dependence matrix is formed to present all the criteria at a 
place. To show all of the requirements in one location, a driver-dependence matrix is 
created. The MICMAC technique only examines binary digits to identify the relationship, 
i.e., a ‘0’ indicates no link and a ‘1’ indicates a relationship between the two variables. It 
never demonstrates the quality of the link between the variables (Abbas et al., 2021). The 
F-MICMAC analysis handles this shortcoming by classifying the connection as having 
no impact, very low influence, low influence, medium influence, high influence, very 
high influence and complete influence. The F-MICMAC additionally improves the 
MICMAC analysis’s sensitivity (Ramos et al., 2021). The F-MICMAC technique is 
described in detail below: 
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Step 1 Developing the binary direct reachability matrix (BDRM): The BDRM is 
developed from the final reachability matrix by making all the diagonal 
elements 0 and removing all the transitivity in it (Table 7). 

Table 7 The BDRM 

 1 2 3 … … 17 18 19 
R1 0 0 0 … … 0 0 0 
R2 1 0 1 … … 1 1 1 
R3 1 0 0 … … 0 0 1 
… … … … … … … … … 
… … … … … … … … … 
R17 1 1 1 … … 0 1 1 
R18 1 1 1 … … 1 0 1 
R19 1 0 1 … … 0 0 0 

Step 2 Developing fuzzy direct reachability matrix (FDRM): The triangular fuzzy set is 
defined by a set (i, j, k), where i is the lower limit and k is the upper limit. The 
value j is such that, i < j < k and is valued between [0, 1]. The F-MICMAC 
analyses the interrelationships between the variable by using the linguistic scale. 
First, the linguistic assessment direct reachability matrix (LADRM) is developed 
(Table 8) from the BDRM matrix by rating the quality of the relationship 
between the two variables on a linguistic scale (Appendix: Table A1). 

Table 8 The LADRM 

 1 2 3 … … 17 18 19 
R1 O O O … … O O O 
R2 H O H … … H M VL 
R3 H H O … … O O L 
… … … … … … … … … 
… … … … … … … … … 
R17 M H L … … O H L 
R18 L M L … … H O H 
R19 H O H … … O O O 

Again, the judgement of the same experts as in ISM was taken to rate the 
relationship between two variables using the linguistic scale. Using the best  
non-fuzzy performance value, the fuzzy values are defuzzified to crisp values 
for further calculations [equation (1)] (Bhosale and Kant, 2016). 

[ ]( ) ( )
- ( )

3
k i j i

Best non fuzzy performance value BNP i
− + −

= +  (1) 

The FDRM matrix (Table 9) is obtained from the LADRM by replacing the 
linguistics values by the respective quantitative term. 
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Table 9 The FDRM 

 1 2 3 … … 17 18 19 
R1 0 0 0 … … 0 0 0 
R2 0.7 0 0.7 … … 0.7 0.5 0.1 
R3 0.7 0 0 … … 0 0 0.3 
… … … … … … … … … 
… … … … … … … … … 
R17 0.5 0.7 0.3 … … 0 0.7 0.3 
R18 0.3 0.5 0.3 … … 0.7 0 0.7 
R19 0.7 0 0.7 … … 0 0 0 

Step 3 Obtaining fuzzy stabilised matrix: After obtaining the FDRM, the multiplication 
concept of the fuzzy set theory is utilised to get the stabilised matrix (Table 10) 
(Mishra et al., 2017). The matrix multiplication follows the following rule 
[equation (2)]: 

( ) [ ] [ ]. max min ;  where  and ik kj ik ikX A B k a b A a B b= =   = =   (2) 

The driving and dependence power of each risk variable is obtained by adding 
the rows and columns entries separately. 

Step 4 Classification of categories: Based on the driving and dependence power of 
each risk variable, they are classified into four clusters, i.e., autonomous, 
dependent, linkage and driver variables (Figure 3). A higher value of 
dependence power shows that many variables are required to be addressed to 
address a given variable. On the other hand, a higher value of driving power 
indicates that these variables have to be addressed first compared to others. 
• Autonomous RL risks: This cluster of risks in RL implementation has a low 

dependency as well as a low driving power. These hazards are not impacted 
by other risks and have little impact on other risks. The autonomous hazards 
are generally detached from the system and are located close to the origin. 
The lack of components in this category implies that all of the risk factors 
considered are substantial and have some effect while adopting RL. 

• Dependent RL risks: The risks in RL implementation, which fall under this 
cluster, have high dependence and low driving power. These risks are 
highly dependent on other risks in the system. Financial and economic risk 
(R1), inventory and capacity design (R3), process design risk (R4), 
gatekeeping design risk (R5), machine/facility failure risk (R9), returns 
forecasting risk (R10), return product quality risk (R13), return product 
quantity risk (R14), scarcity of skilled labour risk (R15), and market 
demand risk (R19) are in the second cluster of F-MICMAC analysis. Except 
for R5, the management cannot control the remaining other risks and 
depend on them. 
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• Linkage risks: The risks falling in this category have high driving and 
dependence power. These are the most unstable risks as any change in them 
has a high impact on the system, and they also affect themselves (either 
positively or negatively). Derived from the driving barrier, the linkage 
barrier results in an absolute dependent barrier. Information flow and data 
managing risk (R11) is the only risk in RL implementation that falls in this 
category. Trust becomes a critical issue when it comes to risks (Khurana  
et al., 2010). Information flow and data management is the heart of RL 
management. It smoothen the RL process from the bottom level till the top. 

• Driving risks: The fourth region belongs to the driving risks, which have 
low dependence and high driving power. These are the critical risks in the 
system and generally placed at the ISM model’s bottom level. Handling the 
driving risk factors may help in managing other risk factors in the system as 
well. Network design risk (R2), information and communication technology 
risk (R6), management policy risk (R7), strategy risk (R8), outsourcing risk 
(R12), government policy risk (R16), litigation risk (R17), and social risk 
(R18) are the risk factors that falls in this category. 

Figure 3 Results of F-MICMAC analysis (see online version for colours) 
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Table 10 The fuzzy stabilised matrix 
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A new ISM-FMICMAC model may be developed by utilising the effectiveness of risks in 
RL implementation, which is calculated by subtracting the dependence power from the 
corresponding driving power of the variable (Table 11). Generally, the driving variables 
have a higher value of effectiveness. The risks having higher effectiveness are placed at 
the bottom level, while those having lower effectiveness are placed at the top level of this 
model. Based on the effectiveness, the ranking of the risks in RL implementation is also 
calculated. 
Table 11 Effectiveness, ranking and level of risk variables by F-MICMAC analysis 

Risk factor Driving power Dependence power Effectiveness Ranking Level 
R1 0 13.5 –13.5 18 1 
R2 12.6 4.7 7.9 5 11 
R3 2.4 12.7 –10.3 16 3 
R4 6.3 7.2 –0.9 11 7 
R5 4.4 12.7 –8.3 14 4 
R6 13 5.1 7.9 4 11 
R7 12.2 0.1 12.1 2 13 
R8 13.2 1.2 12 3 12 
R9 5.3 7.2 –1.9 13 5 
R10 6.7 7.6 –0.9 10 7 
R11 7.9 7.2 0.7 8 8 
R12 7.7 7 0.7 9 8 
R13 0 12.7 –12.7 17 2 
R14 4.2 12.5 –8.3 15 4 
R15 5.9 7.6 –1.7 12 6 
R16 13.8 0.7 13.1 1 14 
R17 11.2 4.9 6.3 6 10 
R18 11.2 5.1 6.1 7 9 
R19 4.2 12.5 –8.3 15 4 

5 Discussion 

Stringent government laws and regulations and diminishing natural raw material sources 
have heightened the need for RL implementation. Nonetheless, a significant amount of 
risk is involved with RL implementation, which the industry must efficiently manage. 
This study uses the Delphi method, ISM, and F-MICMAC to create a hybrid research 
framework. The Delphi technique identifies the nineteen RL risk variables, and ISM 
creates a structural model for each discovered component to examine the contextual 
connection. However, the model does not offer information on the link between the 
variables’ degree (or quality). Hence, it uses F-MICMAC for categorising RL risk 
factors, which elements the shortcomings of the ISM model. F-MICMAC organises these 
RL risk factors into four clusters based on its driving and dependence power. Further, the 
results of ISM and F-MICMAC are compared to enhance the model’s sensitivity. 
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5.1 The ISM model 

The management policy risk (R7) and government policy risk (R16) are at the ISM 
model’s bottom level. The policies are the basis for the initiation of any RL project 
activity. Every industry planning is required to fulfil the condition of laws stated by the 
government and follow the industry guidelines. Strategy risk (R8) is at the fifth level in 
the model, which implies that strategic planning is of utmost importance. Proper strategy 
planning reduces the impact of other risks present in the system towards minimisation. 
Network design risk (R2), information and communication technology risk (R6), 
litigation risk (R17), and social risk (R18) are at the fourth level in the model. A good RL 
network helps for efficient collection of returns and flow of information. Adoption of 
relevant technology and processes is required for effective RL deployment. The absence 
of these influences other RL risk variables such as predicting returns, process design, etc. 
The lack of customer understanding of return benefits is a social RL risk. It influences the 
quality and amount of product returns, which in turn has an impact on inventory and 
capacity planning. The management could do nothing except educate people about the 
detrimental effects of waste generation, the benefits of RL adoption, and their 
participation in its effective implementation. The above all are the driving factors in the 
F-MICMAC analysis, which implies that these risks are to be addressed first before 
considering other risks. Process design risk (R4), machine/facility failure risk (R9), return 
forecasting risk (R10), information flow and data managing risk (R11), outsourcing risk 
(R12), and scarcity of skilled labour risk (R15) are at the third level in the model. These 
risks are in the dependence cluster but have a reasonably high driving power, impacting 
the risks at level 1 and level 2 of the ISM model. R10, R11 and R12 are interlinked as 
valuable data provides better forecasting, which creates more data to be analysed and 
further enhances the return forecasting values. Outsourcing also offers data to improve 
the return forecasting further. R4, R9 and R15 are also interrelated. 

Machines’ life depends upon their proper maintenance and handling, requiring skilled 
labour. Design the return handling process according to the skills of the available labours. 
Therefore, the scarcity of skilled labours creates a significant risk to RL implementation. 
Inventory and capacity design (R3), gatekeeping design risk (R5), return product quantity 
risk (R14), and market demand risk (R19) is at the second level in the ISM model. The 
gatekeeping decides the return product quantity, which, in turn, decides the organisation’s 
inventory handling capacity. Senthil et al. (2018) prioritised nine RL risk factors,  
seven risk factors lies at level 2 or 3 of our ISM model. The other two top-ranking criteria 
in their findings are consistent with ours and turn out to be critical risks. 

Financial and economic risk (R1) and Return product quality risk (R13) are at the top 
level of the ISM model and is dependent on all the other factors in the system. The 
quality of returns decides the value (revenue) from the product the organisation will get 
(Meng et al., 2017). The RL implementation requires a high initial investment, which 
ultimately creates a financial risk for the organisation implementing it. 

5.2 The ISM-F-MICMAC results 

The ISM model places the RL risk factors at six different levels. Many risks are at the 
same level due to the calculation based on binary numbers. It does not show the quality 
of the relationship the factors have between them. The F-MICMAC analysis enhances the 
model’s sensitivity by rating the quality of the relationship on the seven-point scale.  
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The placement of risks at a particular level shows its effectiveness, expanding the  
ISM-FMICMAC model to 14 levels (Table 11). Government policy risk (R16) is at the 
bottom, acting as the base for the model and is the critical driving risk factor for the RL 
implementation. All the other things depend on the government’s policies to implement 
RL. Most industries think that implementing RL is an extra burden on the company, but 
this is not so (Prajapati et al., 2019a). Government policies play a significant role in 
changing this thinking and promoting RL implementation. Strategy risk (R8) has a higher 
driving power than management (policy) risk (R7) but has lower effectiveness. 
Therefore, R7 is at level thirteenth, and R8 is at level 12th in the ISM-F-MICMAC 
model. Network design risk (R2) and information and communication technology risk 
(R6) are at the same level, but unlike ISM results, litigation risk (R17) and social risk 
(R18) are at different levels. Similar is the case with process design risk (R4), 
machine/facility failure risk (R9), and scarcity of skilled labour risk (R15). 

Information flow and data managing risk (R11) and outsourcing risk (R12) are at the 
eighth level, whereas return forecasting risk (R10) shifts to level 7 of this model. Return 
forecasting requires proper collection and analysis of past data. R11 and R12 bring 
together accurate data from the market, which helps in precise returns forecasting. 
Gatekeeping design risk (R5), return product quantity risk (R14), and market demand risk 
(R19) stay at the fourth level similar to the ISM model, but Inventory and capacity design 
(R3) shifts to the third level. RL risk factors R5, R14 and R19, will collectively decide 
the organisation’s capacity design; hence, R3 is dependent on these factors. Financial and 
economic risk (R1) is the only risk at the top level of the ISM-F-MICMAC model as it is 
the ultimately driven variable in the system. Any change in the system’s risk factor 
affects the organisation’s financial status. 

5.3 RL risk management strategies 

Risk management is a collaborative effort by stakeholders to detect and communicate 
concerns to eliminate data inconsistencies and avoid negative repercussions for company 
performance. The following steps should be included in risk management: identification, 
assessment, mitigation methods and control of risks (Pfohl et al., 2010). There are  
two types of risk mitigation strategies: proactive and reactive risk mitigation. The 
decision to select the appropriate risk strategy is essential, and it is widely seen as being 
driven by the decision-makers behavioural side. Discussion with our experts reveal that 
major RL risk management strategies includes collaboration with network partners, risk 
sharing with stakeholders, strong mutual trust among collaborators, improved forecasting 
technique, continuous information sharing, considering sustainability factors while 
designing RL network and Integrating product life cycle with RL network. Tang (2006) 
suggested the risks management strategies, namely information sharing, vendor managed 
inventory, and collaborative forecasting as the measures to tackle supply chain risks, are 
equally applicable to manage RL risks. Few risk mitigation strategies such as strong 
mutual trust among collaborators (Ghadge et al., 2012), integrated management of RL 
and its risks, prioritising risks rank, quantifying risk factors, developing risk averse RL 
network (Singhal et al., 2011), avoidance and dodging, and developing new theories, 
found from the literature were approved by the experts to tackle various risk in RL 
implementation. 
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5.4 Managerial implications 

RL will play a crucial part in achieving the goals of the Indian Government’s initiatives 
such as ‘Clean India, Green India’, ‘Swachh Bharat Mission’ and others. The government 
has established several rules and ordinances that compel industries to adopt RL in their 
present supply chain (Prajapati et al., 2019b). The application of RL may help society 
maintain cleanliness by reducing trash going to landfills, limiting the usage of virgin raw 
materials, and financially benefiting industries. It is difficult for management to identify 
the risks connected with RL deployment and the relationships between them. The current 
study reveals many risk variables related to RL adoption. There is a contextual 
connection between the RL risk variables. As a result, this study aims to discover the link 
that exists between the risk variables. The present study shows that all 19 RL risks are 
substantial; hence, management must manage each risk throughout RL implementation. 
Understanding the driving and reliance power and the efficacy of a specific risk  
factor aids in separating the variables that demand prompt attention. To ease RL 
implementation, the ABC analysis may also be performed based on the efficacy of the 
risk variables. This research provides valuable information and helps set the guidelines 
for the industries willing to implement RL. 

6 Conclusions 

The advantages of the reverse supply chain are offset by the various risks and 
uncertainties that a company may encounter during implementation. Understanding 
hazards and managing them in the reverse supply chain is critical, and it is a primary 
focus for both academics and business. A business must view risk management as an 
integrated management strategy to be successful. The Delphi approach was used in this 
study to determine the 19 most relevant hazards in RL deployment. To select the 
contextual connection among the risks, a six-level ISM model was constructed. The ISM 
model was validated using F-MICMAC analysis based on its driving and dependent 
power. The strength of the link between the components and its new levels was also 
calculated based on the effectiveness of individual risks. The risk variables were 
classified into four groups depending on their driving and dependent power. There are no 
risk variables in the autonomous risk cluster, ten risk factors in the dependent risk cluster, 
one risk in the linkage risk cluster, and eight risk factors in the driving risk cluster. The 
ISM-MICMAC and ISM-F-MICMAC findings were compared in order to get insight  
into the efficacy of particular risk factors during RL implementation. Finally, the 
understanding of RL risk management techniques and managerial implications were 
explored to control the risks associated with RL deployment. 

The current investigation is quite beneficial for identifying risks in RL deployment 
and understanding the relative efficacy of various hazards. On the other hand, the 
developed model is a hypothetical model produced by requesting expert advice and 
conducting a literature review. ISM provides an organised, directed model for 
complicated situations and reasonably represents the risk variables involved, but the 
model’s accuracy suffers as the number of variables increases. The model is subjective 
and solely based on the expert’s opinion. A more significant number of experts may 
result in disagreements (arguments) that impact model building. Statistical analysis might 
be used to test the ISM-F-MICMAC model for real-world applications. Structural 
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equation modelling (SEM) or system dynamics (SD) modelling might be utilised to 
validate the proposed model further. The analytic hierarchy process, analytic network 
process, and step-wise weight assessment ratio analysis methods might be used to 
quantitatively assess the variables. 

To summarise, the current study effectively offers companies preliminary guidelines 
for assessing risks associated with RL adoption. This research assists companies in  
taking preventative actions to avoid becoming trapped in some issues during RL 
implementation. This research also aids in the formulation of management (strategic) 
policies by taking into account the different risks involved with execution. 
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Appendix 

Table A1 Fuzzy linguistic scale 

Linguistic value Fuzzy value 
No influence (O) (0, 0, 0) 
Very low influence (VL) (0, 0.1, 0.3) 
Low influence (L) (0.1, 0.3, 0.5) 
Medium influence (M) (0.3, 0.5, 0.7) 
High influence (H) (0.5, 0.7, 0.9) 
Very high influence (VH) (0.7, 0.9, 1.0) 
Complete influence (C) (1.0, 1.0, 1.0) 

Table A2 Level partition of levels of RL risk – second iteration 

 Reachability set Antecedent set Intersection set Level 
R2 2, 3, 4, 5, 6, 9, 10, 11, 12, 

14, 15, 17, 18, 19 
2, 6, 7, 8, 16, 17, 18 2, 6, 17, 18  

R3 3, 5, 14, 19 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 
14, 15, 16, 17, 18, 19 

3, 5, 14, 19 2 

R4 3, 4, 5, 9, 14, 15, 19 2, 4, 6, 7, 8, 9, 15, 16, 17, 18 4, 9, 15  
R5 3, 5, 14, 19 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 

14, 15, 16, 17, 18, 19 
3, 5, 14, 19 2 

R6 2, 3, 4, 5, 6, 9, 10, 11, 12, 
14, 15, 17, 18, 19 

2, 6, 7, 8, 16, 17, 18 2, 6, 17, 18  

R7 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 
12, 14, 15, 16, 17, 18, 19 

7, 16 7, 16  

R8 2, 3, 4, 5, 6, 8, 9, 10, 11, 
12, 14, 15, 17, 18, 19 

7, 8, 16 8  
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Table A2 Level partition of levels of RL risk – second iteration (continued) 

 Reachability set Antecedent set Intersection set Level 
R9 3, 4, 5, 9, 14, 15, 19 2, 4, 6, 7, 8, 9, 15, 16, 17, 18 4, 9, 15  
R10 3, 5, 10, 11, 12, 14, 19 2, 6, 7, 8, 10, 11, 12, 16, 17, 18 10, 11, 12  
R11 3, 5, 10, 11, 12, 14, 19 2, 6, 7, 8, 10, 11, 12, 16, 17, 18 10, 11, 12  
R12 3, 5, 10, 11, 12, 14, 19 2, 6, 7, 8, 10, 11, 12, 16, 17, 18 10, 11, 12  
R14 3, 5, 14, 19 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 

14, 15, 16, 17, 18, 19 
3, 5, 14, 19 2 

R15 3, 4, 5, 9, 14, 15, 19 2, 4, 6, 7, 8, 9, 15, 16, 17, 18 4, 9, 15  
R16 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 

12, 14, 15, 16, 17, 18, 19 
7, 16 7, 16  

R17 2, 3, 4, 5, 6, 9, 10, 11, 12, 
14, 15, 17, 18, 19 

2, 6, 7, 8, 16, 17, 18 2, 6, 17, 18  

R18 2, 3, 4, 5, 6, 9, 10, 11, 12, 
14, 15, 17, 18, 19 

2, 6, 7, 8, 16, 17, 18 2, 6, 17, 18  

R19 3, 5, 14, 19 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 
14, 15, 16, 17, 18, 19 

3, 5, 14, 19 2 

Table A3 Level partition of levels of RL risk – third iteration 

 Reachability set Antecedent set Intersection set Level 
R2 2, 4, 6, 9, 10, 11, 12, 15, 17, 

18 
2, 6, 7, 8, 16, 17, 18 2, 6, 17, 18  

R4 4, 9, 15 2, 4, 6, 7, 8, 9, 15, 16, 17, 18 4, 9, 15 3 
R6 2, 4, 6, 9, 10, 11, 12, 15, 17, 

18 
2, 6, 7, 8, 16, 17, 18 2, 6, 17, 18  

R7 2, 4, 6, 7, 8, 9, 10, 11, 12, 
15, 16, 17, 18 

7, 16 7, 16  

R8 2, 4, 6, 8, 9, 10, 11, 12, 15, 
17, 18 

7, 8, 16 8  

R9 4, 9, 15 2, 4, 6, 7, 8, 9, 15, 16, 17, 18 4, 9, 15 3 
R10 10, 11, 12 2, 6, 7, 8, 10, 11, 12, 16, 17, 18 10, 11, 12 3 
R11 10, 11, 12 2, 6, 7, 8, 10, 11, 12, 16, 17, 18 10, 11, 12 3 
R12 10, 11, 12 2, 6, 7, 8, 10, 11, 12, 16, 17, 18 10, 11, 12 3 
R15 4, 9, 15 2, 4, 6, 7, 8, 9, 15, 16, 17, 18 4, 9, 15 3 
R16 2, 4, 6, 7, 8, 9, 10, 11, 12, 

15, 16, 17, 18 
7, 16 7, 16  

R17 2, 4, 6, 9, 10, 11, 12, 15, 17, 
18 

2, 6, 7, 8, 16, 17, 18 2, 6, 17, 18  

R18 2, 4, 6, 9, 10, 11, 12, 15, 17, 
18 

2, 6, 7, 8, 16, 17, 18 2, 6, 17, 18  
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Table A4 Level partition of levels of RL risk – fourth iteration 

 Reachability set Antecedent set Intersection set Level 
R2 2, 6, 17, 18 2, 6, 7, 8, 16, 17, 18 2, 6, 17, 18 4 
R6 2, 6, 17, 18 2, 6, 7, 8, 16, 17, 18 2, 6, 17, 18 4 
R7 2, 6, 7, 8, 16, 17, 18 7, 16 7, 16  
R8 2, 6, 8, 17, 18 7, 8, 16 8  
R16 2, 6, 7, 8, 16, 17, 18 7, 16 7, 16  
R17 2, 6, 17, 18 2, 6, 7, 8, 16, 17, 18 2, 6, 17, 18 4 
R18 2, 6, 17, 18 2, 6, 7, 8, 16, 17, 18 2, 6, 17, 18 4 

Table A5 Level partition of levels of RL risk – fifth iteration 

 Reachability set Antecedent set Intersection set Level 
R7 7, 8, 16 7, 16 7, 16  
R8 8 7, 8, 16 8 5 
R16 7, 8, 16 7, 16 7, 16  

Table A6 Level partition of levels of RL risk – sixth iteration 

 Reachability set Antecedent set Intersection set Level 
R7 7, 16 7, 16 7, 16 6 
R16 7, 16 7, 16 7, 16 6 

 


