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Abstract: This research aims to identify and model the reverse logistics (RL)
risk variables to estimate the risks associated with their deployment.
Furthermore, it suggests risk management techniques to execute the RL
implementation effectively. The Delphi technique, interpretive structural
modelling (ISM), and fuzzy cross-impact matrix multiplication applied to
classification (F-MICMAC) create a hybrid research framework in this study.
Delphi determines the RL risk factors and ISM creates a structural model to
examine the contextual connection between them, followed by F-MICMAC
classification. The key risk elements connected with RL implementation
include government policy risk and management policy risk. Mgor RL risk
management  dtrategies include collaboration with network partners,
risk-sharing with stakeholders, strong mutual trust among collaborators,
improved forecasting techniques and continuous information sharing. The
current evaluation is extremely beneficial in identifying the driving and
dependence power and the efficacy of a certain risk, which helpsin segregating
them for RL implementation.
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1 Introduction

Reverse logistics (RL) maintains the efficient flow of goods. RL is defined as
“The process of planning, implementing and controlling the efficient, cost-effective flow
of raw materials, in-process inventory, finished goods and related information from the
point of consumption to the point of origin to recapture value or proper disposal” (Rogers
and Tibben-Lembke, 2001).

The need for implementing RL arises due to the environmental degradation by
enormous waste generation and the product returns in the new world of e-business.
E-businesses build customers' trust by allowing product returns that are recycled or
refurbished and then resold. The world’s largest e-commerce company Amazon said that
India has got the highest product return rate in the world compared to al the places they
operate (Entrackr, 2018). The total amount of solid waste produced in India is around
62 million tonnes per year (Government, 2020), with this figure anticipated to rise to
165 million tonnes by 2030 (Godrej Industries, 2017). Many countries governments,
including India, have enacted laws and regulations to protect the environment, but their
ground implementation is poor. This is demonstrated by the net rise in waste generated
each year. RL is one of the critical operational ways to reduce waste, and as a result, the
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environmental effect. It covers various product recovery procedures such as recycling,
reuse, remanufacturing, repair and refurbishment (Prajapati et al., 2019a).

The adoption of RL in acompany provides a chance to grow its business. An efficient
RL practice increases profitability (Senthil et al., 2018). However, RL implementation is
a complicated process. Depending on how a business perceives it, it might damage the
firm or a chance for profit (Meng, 2010). The vulnerahility in the implementation of RL
leads to adverse consequences (Biehl et a., 2007). The RL implementation is
complicated, and there are several risks involved. Knowledge of different related risks is
critical for effective RL project execution (Dandage et al., 2018). The existence of
hazards disrupts the execution of the RL; therefore, a company must have thorough
information on the risk elements involved before implementation. Identifying and
addressing all of the various RL risk sources helps shape our perceptions towards threats
and opportunities (Ward and Chapman, 2003). Risk management often entails
identifying, assessing, assigning and controlling risks. Risk identification is usually the
foundation of al other procedures, and the risk factors are generally not autonomous but
interrelated (Han et al., 2019). Therefore, this article aims to the following objectives:

1 Identify the RL risk factors for assessing associated risks during its implementation.

2 Modéelling the interrelationships between identified risk factors of RL
implementation.

3 Suggest the risk management strategies so that firms can effectively execute the RL
implementation.

To fulfil the goa of this research, a two-stage research framework is presented. The first
stage is to identify the risk factors associated with RL implementation, and the second is
to determine the hierarchical level and interdependence of the identified risk variables.
Through literature review, this study creates a list of risks in RL implementation, and
with the assistance of the Delphi approach, merges relative risks and adds if overlooked.
Interpretive structural modelling (ISM) is used to create a structural model that
distinguishes between source, intermediate, and result RL risks and determines the
contextual link between the RL implementation risks chosen. 1SM, which Warfield
developed in 1974, is a systematic, efficient, and straightforward technique of
recognising relationships among particular items that describe an issue. It gives results
direction and aids in creating an easy-to-understand graphical model (Attri et al., 2013).
The fuzzy cross-impact matrix multiplication applied to classification (F-MICMAC)
analysis (French acronym: Matriced Impacts Croise's Multiplication Appliquée a
UN Classement; English acronym: cross-impact matrix multiplication applied to
classification) is designed to determine the most critical factors within a model among
many factors based on its effectiveness. F-MICMAC categorises the selected risks into
four groups based on their driving and dependence power. This study also includes risk
management techniques as well as managerial implications.

The article is structured as follows. Section 2 summarises the prior literature on RL,
particularly related to risk, and frames the research gap and necessity for this study. The
suggested framework for this study is described in Section 3. Section 4 describes how the
planned research technique was put to use. Section 5 discusses the ISM, and F-MICMAC
model results, gives insight into the RL risk management techniques and evaluates the
managerial implications. The study’s conclusions are presented in Section 6.
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2 Literaturereview

Many studies regarded risks as a negative potential, while others argued about the
opportunities they provide (Ward and Chapman, 2003). According to Narkhede et al.
(2019), the risk is “the presence of prospective or real threats or opportunities that have
an influence on the project’s aim during the life cycle.” It may provide opportunities and
prospects that are beneficial to the organisation (Pfohl et al., 2010). Ward and Chapman
(2003) stress the word uncertainty rather than risk. The terms uncertainty, disruption, and
disturbance are used interchangeably in the risk literature. Risk identification and
subsequent analysisin RL are critical concepts to understand

2.1 RLandrisk

RL adoption provides severa opportunities, particularly in nations where this technique
is still in its early stages (Prajapati et al., 2019a). Agrawal et al. (2015) underlined the
need to conduct independent research on RL risk assessment. A systematic review was
conducted to identify previous work and research gaps for hazards in RL deployment.
Prajapati et a. (2019a) provided the procedures for material selection and refining, which
were followed. To get an initial selection of 2,277 articles, the Scopus database was
searched using the keywords ‘RL’ + ‘risk’ and ‘RL’ + ‘disruption’. After applying
different criteria, the list was narrowed down to 92 items. These 92 publications were
evaluated using their abstracts and full texts (if needed) to choose papers that focused on
hazards in RL implementation. There were 26 publications identified that studied risksin
RL.

Most of the articles study RL risk as a factor in their mathematical model such as,
risks to population in location inventory model (Rabbani et al., 2020), supplier selection
in demand supply risks using conditional value at risk (CVaR) (Rezagi et a., 2020),
maximise profit and minimise cost in presence of risks (Gooran et al., 2020), designing a
RL network using CVaR (Zamani et a., 2020; Babazadeh et al., 2015; Soleimani and
Govindan, 2014), develop sustainable business model using triple bottom line and risk
elements (Wit and Pylak, 2020), build RL design to manage end of life returns and
associated risks (Krug et al., 2020), multi-period RL network design under uncertainty
for construction waste (Rahimi and Ghezavati, 2018) and for the transportation of
hazardous material and facility location under risk (Yanik, 2015), multi-product RL
network design considering both risk-seeking and risk-averse decision-makers (Gooran
et a., 2018; Yu and Solvang, 2017), designing location routing model with inventory
risks (Zhao and Ke, 2017), risk-averse multi-echelon multi-product RL model under
uncertainty (Yu and Solvang, 2017), designing multi-objective model to identify supplier
under demand and supply risk (Moghaddam, 2015), designing forward-reverse network
design under partial or complete facility disruption (Hatefi and Jolai, 2015; El-Sayed
et a., 2010), and developing RL model to minimise environment risk (Ahluwalia and
Nema, 2006).

Few authors have considered MCDM-based frameworks for studying RL risks are,
prioritising therisksin RL network (Senthil et a., 2018), evaluation and selection of third
party RL provider (Zarbakhshnia et al., 2018), considering sustainable and risk factors to
evauate and select sustainable third party RL provider (Mavi et a., 2017), assess optimal
downstream collection strategy for RL using the related benefits, opportunities, costs and
risks (BOCR) criteria and sub-criteria (Hsueh and Lin, 2017), and construct a network
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BOCR model (Hsueh and Lin, 2015). Panjehfouladgaran and Lim (2020) studied RL risk
management clustering and mitigation strategies. Several risks factor such as financial
and economic risks, inventory risks, disruption risks, data management risks, and return
product quantity risks are pretty common in RL literature. Financial risks encompass all
monetary risks (operational, market, liquidity, etc.) associated with the industry’s
investment in RL implementation. Inventory risk is related to the management and
storage of returns. The risk of return product quantity is associated with the variable
amount of returns. Severa risks factors such as process design risk, information and
communication risks (ICT), strategy risk, return forecasting risk, return product quality
risk, and social risks are quite less reported in the literature. Process design risk is related
to a process's design to manage a wide range of returns and quality. ICT and risk
forecasting are inextricably intertwined since effective ICT leads to a reliable forecast.
End-of-life returns always include a quality risk since they define the remaining value in
the product. The return handling agency must directly carry the risk of return product
quality and is inextricably tied to gatekeeping design risk. We select 19 RL
implementation risks for this study, which will be described later.

Tablel Review of risk management strategiesin literature

Reference Outcome

Ghadge et d. (2012) Risk sharing, multi-sourcing, risk sharing, vendor managed
inventory, incentive contracts, product variety, delivery
management, postponement, real time coordination, agility in
options, strategic management, supply chain rebuilding, proper
resource management, rerouting, dynamic pricing.

Wang and Yang (2012)  Merge managerial flexibility/agility with the research project for risk
management.

Singhal et al. (2011) Proper capacity and inventory management, reliability, relate
demand to supply, outsourcing, information sharing and forecasting,
risk calculation, assessment of risk, developing collaborative
performance index, maintaining optimal inventory.

Tang and Musa (2011) Multiple sourcing, resilience supply chain, outsourcing, dependable
partners, supplier involvement, in-house manufacturing, hedging,
postponement, better information technology, lean manufacturing.

Wang et d. (2010) Synchronise corporate strategy with risk, align performance
measurement system with risk.
Pfohl et a. (2010) Capital market theory, new institutional economics theory for base

of supply chain risk management, also they put other 17 principle for
risk management.

Manuj and Mentzer Avoidance, postponement, control, transfer, security, hedging,
(2008) supply chain flexibility, set desired cost saving.

Kwak and Dixon (2008) Useflexible and analytical tool for risk management, design risk
averse decision making model, involve stakeholders, outsourcing,
follow regulations, take help from risk experts, benchmark, merge
risk with project timeline.

Tang (2006) Information sharing, vendor managed inventory, collaborative
forecasting, robust product management strategy, robust demand
management strategy, robust information management strategy.

Jittner et al. (2003) Avoidance, control, cooperation, flexibility.
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Figurel Proposed research methodology
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Although there are numerous publications in the literature on RL’'s mathematical
modelling for diverse activities with risk as one of its components. Senthil et al. (2018)
use analytical hierarchy process (AHP) coupled with the fuzzy technique for order
preference by similarity to ideal solution (TOPSIS) and preference ranking organisation
method for enrichment evaluations (PROMETHEE) to prioritise the RL network risk.
They rank nine RL risks depending on a few parameters. Although they looked at
nine risk variables, there are many more. Furthermore, research on the interconnectivity
of risk in RL implementation is till lacking. Therefore, there is a need to investigate
variousrisk variables in RL implementation and understand their interdependence.

The literature was also searched for studies on RL risk management strategies, but
only one paper was found. The scope of the search was broadened to include supply
chain management and green supply chain management. Table 1 lists a few publications
that only cover the risk management approach.



A modelling and management approach to risks 25

3 Theproposed framework

This study provides a two-step approach for risk identification and risk structuralisation.
The method for identifying and selecting hazards is referred to as risk identification. The
Delphi technique is used in this study to determine the hazards associated with RL
implementation. The method for organising risk variables into a well-defined framework
isrisk structuralisation. Dueto its appropriateness, ISM-F-MICMAC is used to determine
an identified risk’s interrelationship, driving and dependency power. The suggested
research framework for this project is depicted in Figure 1.

4 Application of the proposed resear ch framework

4.1 Riskidentification

Therisksin RL implementation are identified with the help of the Delphi method.

4.1.1 The Delphi method

The Delphi method is one of the oldest techniques for administrative decision-making
that takes into account the opinions of a panel of experts. It was created in the 1950s by
the RAND Corporation in the USA (Han et a., 2019). Delphi is a structured group
discussion technique used to manage (or solve) a complicated issue (Okoli and
Pawlowski, 2004). It eliminates face-to-face squabbling amongst experts (Barrios et al.,
2021). Previously, the Delphi approach has been used in studies on healthcare research
(Nasa et al., 2021), solar energy in smart cities (Ghadami et al., 2021), Industry 4.0
(Culot et al., 2020), information systems (Lee and Park, 2020), Brownfield (Han et al.,
2018, 2019), e-commerce (Okoli and Pawlowski, 2004), forest management (Filyushkina
et a., 2018), sustainable ecotourism (Ocampo €t al., 2018) and in many others. The
five step Delphi method is asfollows:

Step1l Factor selection: A list of semi-structured criteriais prepared based on existing
literature.

Step2 Removeduplicates: The prepared list is rechecked to remove the duplicates
present if any.

Step3  Sclection of experts: A group of expertsis chosen from atarget system for this
study. The number of expertsin Delphi is not limited and can be chosen based
on the study aim (Nasa et al., 2021). An expert panel in this research consists of
ten professionals, two of whom are academics with extensive experiencein
supply chain management and RL research, three consultants dealing with RL
implementation, and five industry experts from an Indian eectrical
manufacturing company that is already implementing RL in their organisation.
These experts assist in the identification of RL risk factors and the following
iterations.
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RL risks

Table2
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RL risks (continued)
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Step 4 Iteration of pre-prepared list: The semi-structured list is distributed to each
expert, who updates it based on their knowledge. The replies are gathered, ideas
are combined, and the second set of criteriais created. It isforwarded to the
same experts for revisions and recommendations. The procedures can be
continued until a state of shared consciousness is attained.

Step5 Finalisation of factors: A completed set of criteriais created for future study
based on the replies gathered and iterations performed.

The extensive literature analysis finds 22 risk variables for RL. The expert panel
combines four RL risk variables and recommends one new RL risk factor. As a result,
this study highlights 19 risk factors for RL adoption for future investigation. Table 2
contains a full list of the RL risk variables, along with a definitive description based on
the Delphi approach.

4.2 Risk structuralisation

Risk structuralisation involves the evaluation of interrelationship between the risk, its
driving and dependence power and dividing it into the four clusters of driving, dependent,
linkage and autonomous variables.

4.2.1 Interpretive structural modelling

The ISM is the most commonly utilised structural analysis method (Han et al., 2019). The
ISM model includes level-by-level information for locating a criterion (Trivedi et al.,
2021). Its basic idea is to leverage experts relevant knowledge and information to break
down a complicated framework into a few sub-components and build a multilayer model
(Kumar et a., 2021). The ISM approach transforms vague and ineffectively articulated
frameworks into a clear and well-defined framework (Shanker and Barve, 2021). ISM is
deployed in many research areas such as supply chain management (Gorane and Kant,
2015; Shanker and Barve, 2021), inland waterways as a sustainable transportation mode
(Trivedi et a., 2021), Industry 4.0 and circular economy (Kumar et al., 2021), green
supply chain management (VenkatesaNarayanan and Thirunavukkarasu, 2021), supply
chain performance measurement (Katiyar et al., 2018) and many more. ISM typically
causes managers to reconsider obvious demands and enhance their understanding of the
rel ationships between critical elements (Mishraet ., 2017).

Step 1 Identification of criteria: Table 1 shows the criteriafor which the
interrelationship is to be modelled.

Step 2 Finding contextual relationship: A brainstorming session was held among the
experts (described in Section 4.1.1) to discover a contextual link between
criteria and to create a structural self-interaction matrix (SSIM) based on
pairwise comparisons. The comparison is based on qualitative ratings expressed
asV, A, X and O, where

V indicatesit criterion influence ji criterion and not vice-versa
A indicatesj™ criterion influence it" criterion and not vice-versa
X indicatesit" criterion and j™ criterion influence each other

O indicatesit criterion and j*" criterion are unrelated.
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The SSIM for risksin RL implementation is devel oped using the response from

the experts (Table 3).

Structural self-interaction matrix
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Initial reachability matrix
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Step 3 Developinitial reachability matrix; The SSIM is converted to abinary digit
matrix known as initial reachability matrix (Table 4) by replacing the above
qualitativeterms (V, A, X and O) to binary numbers (0 and 1) according to the
following rule:

IfitojvalueisV, replace(i,j) toland(j,i)toO.
IfitojvalueisA, replace(i,j) toOand (j, i) to 1.
Ifito] valueis X, replace both (i, j) and (j, i) to 1.
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e |Ifito]jvalueisO, replace both (i, j) and (j, i) to O.

Convert initial reachability matrix to final reachability matrix: The transitivity
rule transforms the initial reachability matrix to the final reachability matrix,
which states that if acriteriaP islinked to a criterion Q and a criterion Q is
connected to acriterion R, then P must be connected to R.

This matrix also displays the driving and dependence power of each RL risk
variable. The driving force of avariable reflects the number of elements
(including self) that may aid in achieving agoal. The driving power is
determined by summing the entries in the final reachability matrix’s rows. The
dependence power reflects the number of elements (including self) that may aid
to achieve it. The dependence power is calculated by adding the entriesin the
columns of the final reachability matrix. Table 5 presents the final reachability
matrix.

Finding the hierarchical level of criterion: The levels of each criterion are
determined through several iterations based on reachability and antecedent set
through level partitioning. The final reachability matrix leads to the
development of reachability and antecedent set for each risk factor. The
reachability set M(x) of the variable x isthe set of variables defined in the
columns that contained 1 in row x. Similarly, the antecedent set N(x;) of the
variable x; is the set of variables defined in the rows that contained 1 in column
X (Mishraet al., 2017). The intersections of these sets are found for each risk
variable. Those variables which have the same reachability and intersection set
are assigned top-level in the ISM model. The top-level variables would not
impact the other variables below in the hierarchy. Now, the variables which are
assigned at some level are removed, and the next iterations are performed to find
out the prominence for other variables.

In the present research, six iterations were performed to find the level of selected
19 RL risk variables. In Table 6, risk variables R1 and R13 have the same
reachability and intersection set; therefore, they are assigned level 1 in the ISM
model.

Now, level 1isnot carried for further iterations and is discarded. In the second
iteration (Appendix: Table A2), therisk variables R3, R5, R14, and R19 are
assigned at the second level in the ISM model. Similarly, the process of
removing the variables (assigned levels) and performing the iterationsis
repeated to assign the level to each variable in the system. In third iteration
(Appendix: Table A3), variables R4, R9, R10, R11, R12, and R15 are assigned
at level 3. In the fourth iteration (Appendix: Table A4), variables R2, R6, R17,
and R18 are assigned at level 4. In fifth iteration (Appendix: Table A5),
variable R8 isassigned at level 5. In the sixth iteration, variables R7 and R16 are
assigned the bottom level, i.e., level 6 (Appendix: Table A6). The bottom level
variables are the key drivers of the system that changes in these have an overall
impact on the entire system.
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Final reachability matrix
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Note: DrP: driving power and DeP: dependence power.
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Table6 Level partition of levels of RL risk —first iteration
Reachability set Antecedent set Intersection set  Level
R1 1,13 1,234,56,7,8,9, 10, 11, 1,13 1
12,13, 14, 15, 16, 17, 18, 19
R2 1,2345,6,9 10, 11, 12, 2,6,7,8,16,17,18 2,6,17,18
13, 14, 15, 17, 18, 19
R3 1,35,13,14,19 2,3,4,56,7,8,9, 10, 11, 12, 3,5,14,19
14, 15, 16, 17, 18, 19
R4 1,3 4,509, 13,14, 15,19 2,4,6,7,8,9 15, 16, 17, 18 4,915
R5 1,3,5, 13, 14,19 2,3,4,5,6,7,8,9, 10, 11, 12, 3,5,14,19
14, 15, 16, 17, 18, 19
R6 1,234,569, 10,11, 12, 2,6,7,8,16,17, 18 2,6,17,18
13, 14, 15, 17, 18, 19
R7 1,2,3/4,5,6,7,8,9, 10, 11, 7,16 7,16
12, 13, 14, 15, 16, 17, 18, 19
R8 1,2,34,5,6,8,9, 10, 11, 7,8, 16 8
12, 13, 14, 15, 17, 18, 19
R9 1,3,4,5/9, 13, 14, 15, 19 2,4,6,7,8,9 15, 16,17, 18 4,9,15
R10 1,3,5,10,11,12,13,14,19 2,6,7,8, 10,11, 12, 16,17,18 10,11, 12
R11 1,3,5/10,11,12,13,14,19 2,6,7,8, 10, 11, 12, 16, 17, 18 10, 11, 12
R12 1,3,5,10,11,12,13,14,19 2,6,7,8, 10,11, 12,16, 17,18 10, 11, 12
R13 1,13 1,234,5/6,7,8,9, 10, 11, 1,13 1
12,13, 14, 15, 16, 17, 18, 19
R14 1,3,5,13, 14,19 2,3,4,5,6,7,8,9, 10, 11, 12, 3,5,14,19
14, 15, 16, 17, 18, 19
R15 1,345,913 14, 15,19 2,4,6,7,8,9 15, 16,17,18 4,9,15
R16 1,2 3,4,5,6,7,8,9,10,11, 7,16 7,16
12,13, 14, 15, 16, 17, 18, 19
R17 1,2,3,4,5,6,9, 10, 11, 12, 2,6,7,8,16,17,18 2,6,17,18
13, 14, 15,17, 18, 19
R18 1,23,4,5,6,9, 10, 11, 12, 2,6,7,8,16,17,18 2,6,17,18
13, 14, 15,17, 18, 19
R19 1,35,13,14,19 2,3,4,5,6,7,8,9, 10, 11, 12, 3,5,14,19

14, 15, 16, 17, 18, 19

Step 6 Developing the ISV model: Now, with the help of the levels assigned to each
RL risk variables, the ISM model is developed. A six level ISM model is given
in Figure 2. Therisksin RL implementation are arranged according to the levels
assigned in Step 5. The variables R7 and R16 acquiring level 6 is kept at the
bottom of the model while the variables R1 and R13 acquiring level 1 iskept at

the top.
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Figure2 ThelSM model
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4.2.2 Fuzzy cross-impact matrix multiplication applied to classification

The F-MICMAC analysis aids in determining the degree of connection between the
criteria. The MICMAC approach, created in 1973 by Duperrin and Godet, is an aberrant
grouping technique that evaluates the degree of each ISM criteria (Raval et a., 2018).
The MICMAC examines the criterion in terms of its driving power (the number of
criteria it may affect) and dependency power (i.e., the number of criteria that can
influence it) (Shanker and Barve, 2021). The requirements are divided into four groups:
autonomous (weak driving — weak dependency), dependent (weak driving — strong
dependence), linkage (strong driving — high dependence), and driver (strong driver —
weak dependence). A driver-dependence matrix is formed to present al the criteria at a
place. To show al of the requirements in one location, a driver-dependence matrix is
created. The MICMAC technique only examines binary digits to identify the relationship,
i.e, a‘0 indicatesno link and a‘1’ indicates a relationship between the two variables. It
never demonstrates the quality of the link between the variables (Abbas et a., 2021). The
F-MICMAC analysis handles this shortcoming by classifying the connection as having
no impact, very low influence, low influence, medium influence, high influence, very
high influence and complete influence. The F-MICMAC additionally improves the
MICMAC anadysis's sensitivity (Ramos et al., 2021). The F-MICMAC technique is
described in detail below:
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Step 1 Developing the binary direct reachability matrix (BDRM): The BDRM is
developed from the final reachability matrix by making all the diagonal
elements 0 and removing al the trangitivity init (Table 7).

Table7 The BDRM

1 2 3 17 18 19
R1 0 0 0 0
R2 1 0 1 1 1
R3 1 0 0 0
R17 1 1 1 0 1
R18 1 0
R19 1 0 1 0 0

Step2 Developing fuzzy direct reachability matrix (FDRM): The triangular fuzzy setis
defined by a set (i, j, k), where i isthe lower limit and k is the upper limit. The
valuejissuchthat, i <j <kandisvalued between [0, 1]. The --MICMAC
analyses the interrel ationships between the variable by using the linguistic scale.
First, the linguistic assessment direct reachability matrix (LADRM) is devel oped
(Table 8) from the BDRM matrix by rating the quality of the relationship
between the two variables on alinguistic scale (Appendix: Table Al).

Table8 The LADRM

1 2 3 17 18 19
R1 O O O O O o
R2 H O H H M VL
R3 H H (0] (0] (0] L
R17 M H L (0] H L
R18 L M L H (0] H
R19 o H o o o

Again, the judgement of the same experts asin ISM was taken to rate the
relationship between two variables using the linguistic scale. Using the best
non-fuzzy performance value, the fuzzy values are defuzzified to crisp values
for further calculations [equation (1)] (Bhosale and Kant, 2016).

[(=)+(i=D] .
3

The FDRM matrix (Table 9) is obtained from the LADRM by replacing the
linguistics values by the respective quantitative term.

Best non-fuzzy performance value (BNP) = D
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Table9 The FDRM
2 17 18 19
R1 0 0 0 0
R2 0.7 0 0.7 0.7 0.5 0.1
R3 0.7 0 0 0 0 0.3
R17 0.5 0.7 0.3 0 0.7 0.3
R18 0.3 0.5 0.3 0.7 0 0.7
R19 0.7 0 0.7 0 0 0
Step 3 Obtaining fuzzy stabilised matrix: After obtaining the FDRM, the multiplication

Step 4

concept of the fuzzy set theory is utilised to get the stabilised matrix (Table 10)
(Mishraet a., 2017). The matrix multiplication follows the following rule
[equation (2)]:

X = AB = max k[ min(ay; by )| where A=[ay] and B =[by] @)

The driving and dependence power of each risk variable is obtained by adding
the rows and columns entries separately.

Classification of categories: Based on the driving and dependence power of
each risk variable, they are classified into four clusters, i.e., autonomous,
dependent, linkage and driver variables (Figure 3). A higher value of
dependence power shows that many variables are required to be addressed to
address a given variable. On the other hand, a higher value of driving power
indicates that these variables have to be addressed first compared to others.

e Autonomous RL risks: This cluster of risksin RL implementation has alow
dependency aswell as alow driving power. These hazards are not impacted
by other risks and have little impact on other risks. The autonomous hazards
are generally detached from the system and are located close to the origin.
The lack of componentsin this category implies that al of the risk factors
considered are substantial and have some effect while adopting RL.

e Dependent RL risks: Therisksin RL implementation, which fall under this
cluster, have high dependence and low driving power. Theserisks are
highly dependent on other risks in the system. Financial and economic risk
(R1), inventory and capacity design (R3), process design risk (R4),
gatekeeping design risk (R5), machine/facility failurerisk (R9), returns
forecasting risk (R10), return product quality risk (R13), return product
quantity risk (R14), scarcity of skilled labour risk (R15), and market
demand risk (R19) are in the second cluster of F-MICMAC analysis. Except
for R5, the management cannot control the remaining other risks and
depend on them.
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e Linkagerisks: Therisksfalling in this category have high driving and
dependence power. These are the most unstable risks as any change in them
has a high impact on the system, and they also affect themselves (either
positively or negatively). Derived from the driving barrier, the linkage
barrier results in an absolute dependent barrier. Information flow and data
managing risk (R11) isthe only risk in RL implementation that fallsin this
category. Trust becomes a critical issue when it comesto risks (Khurana
et a., 2010). Information flow and data management is the heart of RL
management. It smoothen the RL process from the bottom level till the top.

e Driving risks: The fourth region belongsto the driving risks, which have
low dependence and high driving power. These are the critical risksin the
system and generally placed at the ISM model’ s bottom level. Handling the
driving risk factors may help in managing other risk factorsin the system as
well. Network design risk (R2), information and communication technology
risk (R6), management policy risk (R7), strategy risk (R8), outsourcing risk
(R12), government policy risk (R16), litigation risk (R17), and social risk
(R18) are therisk factors that fallsin this category.

Figure3 Resultsof F-MICMAC analysis (see online version for colours)
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The fuzzy stabilised matrix
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A new ISM-FMICMAC model may be developed by utilising the effectiveness of risksin
RL implementation, which is calculated by subtracting the dependence power from the
corresponding driving power of the variable (Table 11). Generaly, the driving variables
have a higher value of effectiveness. The risks having higher effectiveness are placed at
the bottom level, while those having lower effectiveness are placed at the top level of this
model. Based on the effectiveness, the ranking of the risks in RL implementation is also
calculated.

Table1ll  Effectiveness, ranking and level of risk variables by F-MICMAC analysis

Risk factor ~ Driving power  Dependence power  Effectiveness Ranking Level
R1 0 135 -135 18 1
R2 12.6 4.7 7.9 5 11
R3 24 12.7 -10.3 16

R4 6.3 7.2 -0.9 11 7
R5 44 12.7 -8.3 14 4
R6 13 51 7.9 4 11
R7 12.2 0.1 121 2 13
R8 132 12 12 3 12
R9 53 7.2 -1.9 13 5
R10 6.7 7.6 -0.9 10 7
R11 7.9 7.2 0.7 8 8
R12 7.7 7 0.7 9 8
R13 0 12.7 -12.7 17 2
R14 42 125 -8.3 15 4
R15 59 7.6 -17 12 6
R16 138 0.7 131 1 14
R17 112 49 6.3 6 10
R18 11.2 51 6.1 7

R19 4.2 125 -8.3 15 4

5 Discussion

Stringent government laws and regulations and diminishing natural raw material sources
have heightened the need for RL implementation. Nonetheless, a significant amount of
risk is involved with RL implementation, which the industry must efficiently manage.
This study uses the Delphi method, 1SM, and F-MICMAC to create a hybrid research
framework. The Delphi technique identifies the nineteen RL risk variables, and I1SM
creates a structural model for each discovered component to examine the contextual
connection. However, the model does not offer information on the link between the
variables degree (or quality). Hence, it uses F-MICMAC for categorising RL risk
factors, which elements the shortcomings of the ISM model. F-MICMAC organises these
RL risk factorsinto four clusters based on its driving and dependence power. Further, the
results of ISM and F-MICMAC are compared to enhance the model’ s sensitivity.
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5.1 ThelSM model

The management policy risk (R7) and government policy risk (R16) are at the ISM
model’s bottom level. The policies are the basis for the initiation of any RL project
activity. Every industry planning is required to fulfil the condition of laws stated by the
government and follow the industry guidelines. Strategy risk (R8) is at the fifth level in
the model, which implies that strategic planning is of utmost importance. Proper strategy
planning reduces the impact of other risks present in the system towards minimisation.
Network design risk (R2), information and communication technology risk (R6),
litigation risk (R17), and social risk (R18) are at the fourth level in the model. A good RL
network helps for efficient collection of returns and flow of information. Adoption of
relevant technology and processes is required for effective RL deployment. The absence
of these influences other RL risk variables such as predicting returns, process design, etc.
The lack of customer understanding of return benefitsisasocial RL risk. It influences the
quality and amount of product returns, which in turn has an impact on inventory and
capacity planning. The management could do nothing except educate people about the
detrimental effects of waste generation, the benefits of RL adoption, and their
participation in its effective implementation. The above al are the driving factors in the
F-MICMAC analysis, which implies that these risks are to be addressed first before
considering other risks. Process design risk (R4), machine/facility failure risk (R9), return
forecasting risk (R10), information flow and data managing risk (R11), outsourcing risk
(R12), and scarcity of skilled labour risk (R15) are at the third level in the model. These
risks are in the dependence cluster but have a reasonably high driving power, impacting
the risks at level 1 and level 2 of the ISM model. R10, R11 and R12 are interlinked as
valuable data provides better forecasting, which creates more data to be analysed and
further enhances the return forecasting values. Outsourcing aso offers data to improve
the return forecasting further. R4, R9 and R15 are also interrelated.

Machines' life depends upon their proper maintenance and handling, requiring skilled
labour. Design the return handling process according to the skills of the available labours.
Therefore, the scarcity of skilled labours creates a significant risk to RL implementation.
Inventory and capacity design (R3), gatekeeping design risk (R5), return product quantity
risk (R14), and market demand risk (R19) is at the second level in the ISM model. The
gatekeeping decides the return product quantity, which, in turn, decides the organisation’s
inventory handling capacity. Senthil et al. (2018) prioritised nine RL risk factors,
seven risk factorslies at level 2 or 3 of our ISM model. The other two top-ranking criteria
in their findings are consistent with ours and turn out to be critical risks.

Financial and economic risk (R1) and Return product quality risk (R13) are at the top
level of the ISM model and is dependent on al the other factors in the system. The
quality of returns decides the value (revenue) from the product the organisation will get
(Meng et a., 2017). The RL implementation requires a high initial investment, which
ultimately creates a financial risk for the organisation implementing it.

5.2 ThelSM-F-MICMAC results

The ISM model places the RL risk factors at six different levels. Many risks are at the
same level due to the calculation based on binary numbers. It does not show the quality
of the relationship the factors have between them. The F-MICMAC analysis enhances the
model’s sensitivity by rating the quality of the relationship on the seven-point scale.



40 H. Prajapati et al.

The placement of risks at a particular level shows its effectiveness, expanding the
ISM-FMICMAC model to 14 levels (Table 11). Government policy risk (R16) is at the
bottom, acting as the base for the model and is the critical driving risk factor for the RL
implementation. All the other things depend on the government’s policies to implement
RL. Most industries think that implementing RL is an extra burden on the company, but
this is not so (Prajapati et al., 20198). Government policies play a significant role in
changing this thinking and promoting RL implementation. Strategy risk (R8) has a higher
driving power than management (policy) risk (R7) but has lower effectiveness.
Therefore, R7 is at level thirteenth, and R8 is at level 12th in the ISM-F-MICMAC
model. Network design risk (R2) and information and communication technology risk
(R6) are at the same level, but unlike ISM results, litigation risk (R17) and social risk
(R18) are at different levels. Similar is the case with process design risk (R4),
machinef/facility failure risk (R9), and scarcity of skilled [abour risk (R15).

Information flow and data managing risk (R11) and outsourcing risk (R12) are at the
eighth level, whereas return forecasting risk (R10) shifts to level 7 of this model. Return
forecasting requires proper collection and analysis of past data. R11 and R12 bring
together accurate data from the market, which helps in precise returns forecasting.
Gatekeeping design risk (R5), return product quantity risk (R14), and market demand risk
(R19) stay at the fourth level similar to the ISM model, but Inventory and capacity design
(R3) shifts to the third level. RL risk factors R5, R14 and R19, will collectively decide
the organisation’ s capacity design; hence, R3 is dependent on these factors. Financial and
economic risk (R1) isthe only risk at the top level of the ISM-F-MICMAC model asit is
the ultimately driven variable in the system. Any change in the system’s risk factor
affects the organisation’ s financial status.

5.3 RL risk management strategies

Risk management is a collaborative effort by stakeholders to detect and communicate
concerns to eliminate data inconsistencies and avoid negative repercussions for company
performance. The following steps should be included in risk management: identification,
assessment, mitigation methods and control of risks (Pfohl et al., 2010). There are
two types of risk mitigation strategies: proactive and reactive risk mitigation. The
decision to select the appropriate risk strategy is essential, and it is widely seen as being
driven by the decision-makers behavioural side. Discussion with our experts reveal that
major RL risk management strategies includes collaboration with network partners, risk
sharing with stakeholders, strong mutua trust among collaborators, improved forecasting
technique, continuous information sharing, considering sustainability factors while
designing RL network and Integrating product life cycle with RL network. Tang (2006)
suggested the risks management strategies, namely information sharing, vendor managed
inventory, and collaborative forecasting as the measures to tackle supply chain risks, are
equally applicable to manage RL risks. Few risk mitigation strategies such as strong
mutual trust among collaborators (Ghadge et al., 2012), integrated management of RL
and its risks, prioritising risks rank, quantifying risk factors, developing risk averse RL
network (Singhal et al., 2011), avoidance and dodging, and developing new theories,
found from the literature were approved by the experts to tackle various risk in RL
implementation.
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5.4 Managerial implications

RL will play a crucia part in achieving the goas of the Indian Government’s initiatives
such as ‘Clean India, Green India , ‘ Swachh Bharat Mission’ and others. The government
has established several rules and ordinances that compel industries to adopt RL in their
present supply chain (Prajapati et a., 2019b). The application of RL may help society
maintain cleanliness by reducing trash going to landfills, limiting the usage of virgin raw
materials, and financially benefiting industries. It is difficult for management to identify
the risks connected with RL deployment and the relationships between them. The current
study reveals many risk variables related to RL adoption. There is a contextua
connection between the RL risk variables. As aresult, this study aims to discover the link
that exists between the risk variables. The present study shows that all 19 RL risks are
substantial; hence, management must manage each risk throughout RL implementation.
Understanding the driving and reliance power and the efficacy of a specific risk
factor aids in separating the variables that demand prompt attention. To ease RL
implementation, the ABC analysis may aso be performed based on the efficacy of the
risk variables. This research provides valuable information and helps set the guidelines
for the industries willing to implement RL.

6 Conclusions

The advantages of the reverse supply chain are offset by the various risks and
uncertainties that a company may encounter during implementation. Understanding
hazards and managing them in the reverse supply chain is critical, and it is a primary
focus for both academics and business. A business must view risk management as an
integrated management strategy to be successful. The Delphi approach was used in this
study to determine the 19 most relevant hazards in RL deployment. To select the
contextual connection among the risks, a six-level ISM model was constructed. The ISM
model was validated using F-MICMAC analysis based on its driving and dependent
power. The strength of the link between the components and its new levels was also
caculated based on the effectiveness of individual risks. The risk variables were
classified into four groups depending on their driving and dependent power. There are no
risk variables in the autonomous risk cluster, ten risk factors in the dependent risk cluster,
one risk in the linkage risk cluster, and eight risk factors in the driving risk cluster. The
ISM-MICMAC and ISM-F-MICMAC findings were compared in order to get insight
into the efficacy of particular risk factors during RL implementation. Finally, the
understanding of RL risk management techniques and managerial implications were
explored to control the risks associated with RL deployment.

The current investigation is quite beneficia for identifying risks in RL deployment
and understanding the relative efficacy of various hazards. On the other hand, the
developed model is a hypothetical model produced by requesting expert advice and
conducting a literature review. ISM provides an organised, directed model for
complicated situations and reasonably represents the risk variables involved, but the
model’s accuracy suffers as the number of variables increases. The model is subjective
and solely based on the expert’'s opinion. A more significant number of experts may
result in disagreements (arguments) that impact model building. Statistical analysis might
be used to test the ISM-F-MICMAC model for real-world applications. Structural
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equation modelling (SEM) or system dynamics (SD) modelling might be utilised to
validate the proposed model further. The analytic hierarchy process, analytic network
process, and step-wise weight assessment ratio analysis methods might be used to
quantitatively assess the variables.

To summarise, the current study effectively offers companies preliminary guidelines
for assessing risks associated with RL adoption. This research assists companies in
taking preventative actions to avoid becoming trapped in some issues during RL
implementation. This research also aids in the formulation of management (strategic)
policies by taking into account the different risks involved with execution.
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Appendix

Table Al Fuzzy linguistic scale
Linguistic value Fuzzy value
No influence (O) (0,0,0)
Very low influence (VL) (0,0.1,0.3)
Low influence (L) (0.1,0.3,0.5)
Medium influence (M) (0.3,0.5,0.7)
High influence (H) (0.5,0.7,0.9)
Very high influence (VH) (0.7,0.9, 1.0
Complete influence (C) (2.0,1.0,1.0

Table A2  Level partition of levels of RL risk — second iteration
Reachability set Antecedent set Intersectionset  Level
R2 2,3,4,56,9, 10, 11, 12, 2,6,7,8,16,17,18 2,6,17,18
14, 15, 17, 18,19
R3 3,514, 19 2,3,4,56,7,8,9,10, 11, 12, 3,5,14, 19 2
14, 15, 16, 17, 18, 19
R4 3,4,5,9, 14, 15,19 2,4,6,7,8,9, 15,16, 17, 18 4,9,15
R5 3,5,14,19 2,3,4,56,7,8,9,10, 11, 12, 3,5,14, 19 2
14, 15, 16, 17, 18, 19
R6 2,3,4,56,9, 10, 11, 12, 2,6,7,8,16,17,18 2,6,17,18
14, 15, 17, 18,19
R7 2,3,4,56,7,8,9,10, 11, 7,16 7,16
12, 14, 15, 16, 17, 18, 19
R8 2,3,4,5,6,8,9,10, 11, 7,8,16 8

12, 14, 15, 17, 18, 19
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Table A2 Level partition of levels of RL risk — second iteration (continued)
Reachability set Antecedent set Intersectionset  Level
R9 3,4,59 14, 15,19 2,4,6,7,8,9 15,16, 17,18 4,9, 15
R10 3,5, 10, 11, 12, 14, 19 2,6,7,8,10,11, 12, 16, 17, 18 10,11, 12
R11 3,5,10, 11, 12, 14, 19 2,6,7,8,10,11, 12, 16, 17, 18 10,11, 12
R12 3,5,10, 11, 12, 14, 19 2,6,7,8,10, 11,12, 16,17, 18 10, 11, 12
R14 3,5,14,19 2,3,4,56,7,8,9,10, 11, 12, 3,5,14, 19 2
14, 15, 16, 17, 18, 19
R15 3,4,5,9, 14, 15,19 2,4,6,7,8,9,15, 16, 17, 18 4,9,15
R16 2,3,4,56,7,8,9,10, 11, 7,16 7,16
12, 14, 15, 16, 17, 18, 19
R17 2,3,4,5,6,9,10,11, 12, 2,6,7,8,16,17,18 2,6,17,18
14, 15, 17, 18,19
R18 2,3,4,5,6,9, 10,11, 12, 2,6,7,8,16,17,18 2,6,17,18
14, 15, 17, 18,19
R19 3,5,14,19 2,3,4,56,7,8,9, 10,11, 12, 3,5,14, 19 2
14, 15, 16, 17, 18, 19
Table A3 Leve partition of levels of RL risk —third iteration
Reachability set Antecedent set Intersection set  Level
R2 2,4,6,9, 10, 11, 12, 15, 17, 2,6,7,8,16,17,18 2,6,17,18
18
R4 4,9, 15 2,4,6,7,8,9,15, 16, 17, 18 4,9,15 3
R6 2,4,6,9, 10,11, 12, 15, 17, 2,6,7,8,16,17,18 2,6,17,18
18
R7 2,4,6,7,8,9, 10, 11, 12, 7,16 7,16
15, 16, 17, 18
R8 2,4,6,8,9,10,11, 12, 15, 7,8,16 8
17,18
R9 4,9, 15 2,4,6,7,8,9, 15,16, 17, 18 4,9,15 3
R10 10,11, 12 2,6,7,8,10, 11, 12, 16,17, 18 10,11, 12 3
R11 10, 11,12 2,6,7,8,10,11, 12, 16, 17, 18 10,11, 12 3
R12 10, 11,12 2,6,7,8,10,11, 12, 16, 17, 18 10,11, 12 3
R15 4,9,15 2,4,6,7,8,9 15, 16,17, 18 4,9, 15 3
R16 2,4,6,7,8,9,10, 11, 12, 7,16 7,16
15, 16, 17, 18
R17 2,4,6,9, 10, 11, 12, 15, 17, 2,6,7,8,16,17,18 2,6,17,18
18
R18 2,4,6,9, 10, 11, 12, 15, 17, 2,6,7,8,16,17,18 2,6,17,18

18
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TableAd4 Level partition of levels of RL risk —fourth iteration

Reachability set Antecedent set Intersection set Level
R2 2,6,17,18 2,6,7,8,16,17,18 2,6,17,18 4
R6 2,6,17,18 2,6,7,8,16,17,18 2,6,17,18 4
R7 2,6,7,8,16,17,18 7,16 7,16
R8 2,6,8,17,18 7,8,16 8
R16 2,6,7,8,16,17,18 7,16 7,16
R17 2,6,17,18 2,6,7,8,16,17,18 2,6,17,18 4
R18 2,6,17,18 2,6,7,8,16,17,18 2,6,17,18 4
Table A5 Level partition of levels of RL risk —fifth iteration
Reachability set Antecedent set Intersection set Level
R7 7,8,16 7,16 7,16
R8 8 7,8,16 8 5
R16 7,8,16 7,16 7,16
Table A6 Leve partition of levels of RL risk —sixth iteration
Reachability set Antecedent set Intersection set Level
R7 7,16 7,16 7,16 6
R16 7,16 7,16 7,16 6




