Understanding methane flame kinetics from reduced mechanisms
by G. Skevis, D.A. Goussis, E. Mastorakos
International Journal of Alternative Propulsion (IJAP), Vol. 1, No. 2/3, 2007

Abstract: Reduced mechanisms for laminar premixed methane–air flames are constructed on the basis of the GRI-3.0 detailed chemistry. It is demonstrated that significant understanding of the flame chemistry can be acquired by examining reduced mechanisms generated on the basis of either the full flame domain or specific subdomains, such as the preheat, the flame and the post-flame zones. Reduced mechanisms of increasing number of steps generated by taking into account the full flame domain identify the parts of chemistry that relate to the slowest chemical time scales and thus dominate the overall flame structure. Observed differences in the reduced mechanisms of a given size generated on the basis of different regions of the flame distinguish the locally prevailing kinetic paths. The effects of inlet mixture composition on the dominant parts of chemistry are discussed.

Online publication date: Tue, 03-Apr-2007

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Alternative Propulsion (IJAP):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com