Analysis and simulation of modified susceptible-infected-recovered model with vaccination for COVID-19 outbreak
by Teoh Yeong Kin; Rizauddin Saian; Suzanawati Abu Hasan
International Journal of Mathematics in Operational Research (IJMOR), Vol. 24, No. 4, 2023

Abstract: In this paper, we develop and analyse a modified susceptible-infected-recovered (SIR) compartment model by integrating the vaccination factor as a model parameter to investigate the effect of vaccination parameter on the long-term outcomes of the COVID-19 pandemic. Mathematical analysis is used to determine the disease-free equilibrium, the endemic equilibrium, and the basic reproduction number of the developed model. The stability of the model is studied using the Routh-Hurwitz criterion, and numerical simulations are conducted to assess the impact of vaccination on the disease at different rates. The findings suggest that vaccination rate influences the transmission dynamics, and the vaccine can speed up the COVID-19 recovery and contain the outbreak.

Online publication date: Wed, 05-Apr-2023

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Mathematics in Operational Research (IJMOR):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com