

International Journal of Information Technology and
Management

ISSN online: 1741-5179 - ISSN print: 1461-4111
https://www.inderscience.com/ijitm

A reliability and security enhanced framework for cloud-based
storage systems

Peng Xiao

DOI: 10.1504/IJITM.2023.10055157

Article History:
Received: 19 April 2018
Last revised: 09 September 2019
Accepted: 03 December 2019
Published online: 05 April 2023

Powered by TCPDF (www.tcpdf.org)

Copyright © 2023 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijitm
https://dx.doi.org/10.1504/IJITM.2023.10055157
http://www.tcpdf.org

 160 Int. J. Information Technology and Management, Vol. 22, Nos. 1/2, 2023

 Copyright © 2023 Inderscience Enterprises Ltd.

A reliability and security enhanced framework for
cloud-based storage systems

Peng Xiao
Department of Computer Science,
Hunan Institute of Engineering,
No. 88 Fu-Xing Road,
Xiangtan City 411104, China
Email: zghu1963@126.com

Abstract: In cloud computing environments, reliable and secure data storage
service plays a more and more important role in many data-intensive
applications. However, existing storage systems either fail to provide them or
provide them in a cost-ineffective manner. To provide better storage service in
nowadays cloud environments, we propose a novel framework called reliability
and security enhanced cloud storage (RSCS), which consists of several
well-designed components to improve low-level data reliability as well as
guarantee up-level data accessing security. In the RSCS framework, a simple
yet effective file system scheme is proposed, which can duplicate stripped data
in different storage nodes so as to increase the data reliability and aggregated
throughput. We also introduce a centralised leasing mechanism, which allows
accessing different portions of a file based on the multiple-reader-single-writer
principle. Finally, we provide a secure data accessing tunnel technology, which
allows the RSCS to establish secure communication channels between users
and storage nodes without introducing too many extra costs. In a real-world
cloud platform, we conduct sets of experiments and the results show that the
proposed RSCS framework is able to meet the requirements for most of
cloud-based storage platforms.

Keywords: cloud storage; data security; replication service; file system.

Reference to this paper should be made as follows: Xiao, P. (2023)
‘A reliability and security enhanced framework for cloud-based storage
systems’, Int. J. Information Technology and Management, Vol. 22, Nos. 1/2,
pp.160–174.

Biographical notes: Peng Xiao is received his master’s degree in Xiamen
University and doctoral degree in Central South University. Currently, he
works in Hunan Institute of Engineering as an Associate Professor. His
research interests include cloud computing, parallel and distributed systems,
green network and software engineering. He is currently a member of IEEE and
ACM societies.

1 Introduction

A major goal of cloud computing is to offer flexible and secure resource sharing
mechanisms for diversity of users with different requirements (Subashini and Kavitha,
2011; Marmol and Kuhnen, 2015). To do this, cloud middleware should provide a

 A reliability and security enhanced framework 161

flexible and customisable resource provisioning service, by which un-trusted programs
and applications from users can be executed in a configurable manner (Bohli et al., 2013;
Sindhu and Mushtaque, 2014). Such a resource management service is often
implemented by combining cloud middleware and resource virtualisation technology,
which is responsible for managing virtual machine (VM) instances based on per-user
fashion (Lagar-Cavilla et al., 2011; Canali and Lancellotti, 2014). As VM instances are
often deployed across distributed resources, which means that a lot of large VM state data
(e.g., disk, RAM, vCPU) needs to be transferred (Di et al., 2015). Besides, as more and
more data-intensive applications are deployed in cloud environments, a reliable and
secure storage platform plays a key role to execute these applications (Shamsi et al.,
2013; Song et al., 2013; Xiao and Han, 2014).

Currently, some cloud middleware have provide data management service from the
perspective of VM instance, such as VM-based data transferring, I/O scheduling, data
backup, etc. (Wan et al., 2013; Khan et al., 2014; Long et al., 2014). Based on the
experiences of using these VM-based data services, more and more researchers have
noticed that transferring VM states (especially the RAM layout) is likely causing serious
performance problems. In addition, it also may result in tight-coupled logics between
resource infrastructure layer and the user application layer (Guan and Choi, 2014). On the
other hand, by offering an effective data management service, the cloud middleware is
capable of distributing the overheads of data management across different logical entities,
such as state servers, data severs, monitoring servers, etc., each kind of logical entity
being responsible for managing certain kind of VM-related information (Mao et al., 2014;
Anglano et al., 2015). Unfortunately, in current available cloud-based storage systems,
data security and data reliability are typically separated provided in different middleware.
As a result, I/O performance bottleneck becomes more and more significantly in many
real-world cloud environments since providing reliability and security enhanced storage
service typically involves heavy overheads on cloud resources as cloud users (Zhang
et al., 2013; Goncalves et al., 2016).

To provide better storage service in nowadays cloud environments, we design a novel
framework called reliability and security enhanced cloud storage (RSCS), which consists
of several well-designed components to improve low-level data reliability as well as
guarantee up-level data accessing security. In the RSCS framework, a simple yet
effective file system scheme is proposed, which can duplicate stripped data in different
storage nodes so as to increase the data reliability and aggregated throughput. We also
introduce a centralised leasing mechanism which allows to accessing different portions of
a file based on the multiple-reader-single-writer principle. Finally, we provide a secure
data accessing tunnel technology which allows the RSCS to establish secure
communication channels between users and storage nodes without introducing too many
extra costs.

The rest of this study is organised as follows: In Section 2, we present the related
studies on the addressed topic in our study; In Section 3, we describe the RSCS
framework and the corresponding implementation in details; In Section 4, we conduct
sets of experiments to investigate the effectiveness of the proposed framework. Finally,
we conclude out study with a brief discussion of the future work in Section 5.

 162 P. Xiao

2 Related work

In early years, many cloud-based storage systems developed and deployed in practical
cloud environments mainly focused on block-level optimisation techniques. For example,
ORTHRUS (Wan et al., 2013) is a light-weighted block-level storage system, in which a
listen-detect-switch mechanism is designed deal with contingent volume servers’ failure,
and a strategy that dynamically balances load between multiple volume servers based on
black-box model is also incorporated. NCCloud (Chen et al., 2014) is cloud storage
platform, which can provide cost-effective fault-tolerant service in multi-cloud
environments. In the NCCloud platform, erasure code technology is only used for
maintaining data fault-tolerance and acceptable redundancy, while using a functional
minimum-storage regenerating code technology to managing data transferring and
movement. In this way, NCCloud can obtain desirable data fault-tolerance and
management efficiency at the same time. BSS (Khan et al., 2014) is an energy-efficient
block-based sharing scheme that provides confidentiality and integrity data accessing
services for mobile users in the cloud environment. In Liang and Kozat (2014), the
authors proposed a set of solutions which focus on reducing the data transferring delay in
cloud storage platforms. These solutions are based on the performance measurements
obtained by observing the Amazon S3 for long time durations. For example, they found
that the operations of reading and writing small data files follow certain kind of random
patterns, which can be used to design optimal erasure code scheme or I/O scheduling
policy. MORM (Long et al., 2014) is an effective data management framework, which
tries to find out the optimal data replication factor by solving a multi-objective
optimisation problem through the immune algorithm. To meet the requirements from
daily users who frequently modify the same dataset, Duan et al. (2015) proposed the
CSTORE system, which uses a three-level hash mapping mechanism to realise the data
de-duplication at the block level. In this way, the CSTORE system can effectively
adjusting the trade-offs between data reliability and storage utilisation. Similarly, the
RAMCloud (Ousterhout et al., 2015) is also an optimal cloud storage system, which
always tries to use the massive RAM capacities for buffering the hashing tables of data
files. For example, it allows to aggregating thousands of hashing table in a single
key-value table with aiming at reducing the overheads of virtual file systems. WaFS
(Wang et al., 2015) is cloud-oriented file system, which is especially designed for
detecting the data-dependencies for workflow applications. By using the WaFS system, a
task scheduler is able to suitable decisions on job scheduling, such as obtaining desirable
trade-offs between storage utilisation and data movement overhead.

In the above cloud-based storage systems, I/O performance is often the primary
designing goal, instead of reliability and security. In recent years, as reliability and
security have become important QoS metrics from the perspective of cloud users, more
and more systems are incorporated with corresponding services or mechanisms. For
example, depot (Mahajan et al., 2011) is a simple but effective two-layer storage
framework that is able to detect malicious behaviours on data accessing operations. In
depot, the data consistency service is implemented based on the Fork-Join-Causal
principle, which is more cost-effective than the traditional consistency maintaining
mechanisms. Zhu et al. (2015) presented a data security technology called ABE-AH with
aiming at offering an easy-to-manage access controlling service. The key feature of ABE-
AH is that it allows to defining per-user access controlling rules, which makes it very
suitable for opening cloud environments. Celesti et al. (2016) proposed a system with

 A reliability and security enhanced framework 163

aiming at offering reliable and secure storage service for long-term cloud applications.
This storage system is able to log and analyse the data accessing patterns and then make
intelligent adjustments on system’s runtime parameters, such as block layout scheme,
duplication factor, and accessing controlling thresholds. Cui et al. (2016) proposed a
key-aggregate searchable encryption scheme, which tries to solve the problem of securely
distributing to users a large number of keys for both encryption and search. The key
features of this scheme is that the owner of a data file only needs to sent a single key
when multiple files are accessed by another user.

3 System design and implementation

3.1 Framework overview

In Figure 1, we present the framework overview of the proposed RSCS system and the
designing and implementation details will be described in the next sections. In this
framework, cloud users interact with the RSCS system through an independent service
portal which can be implemented as a web service or separated networking application.
The key components in RSCS framework include data security service, data access
service, data recovery service, replication service, mirror file system, and I/O monitoring
service. It is noteworthy that although these components are independently designed and
implemented, they are in fact interacting with others to achieve two goals:

1 improving low-level data reliability

2 guaranteeing up-level data security.

Specifically, data recovery service, replication service and mirror file system are working
together to achieve the goal of improving low-level data reliability, while data security
service and data access service are responsible for guaranteeing up-level data security. As
to the I/O monitoring service, it is designed for measuring the storage-related metrics,
including I/O delays, throughput, responsive time, networking traffic, storage resource
utilization, etc. As to the underlying cloud-based storage infrastructure, they can be
organised by different manners as long as the interfaces of file system are compatible
with the interfaces in the mirror file system component.

As we can see in Figure 1, the interactions between RSCS and cloud storage
infrastructure are limited to the tasks of data management that is saying, our RSCS does
not involve data transferring between users and underlying storage nodes. This is an
important designing principle to avoid performance degradation in distributed storage
platforms. For example, when a secure data transferring connection is successfully
established by the RSCS system, the user request will directly communicate with the
underlying storage nodes. In our RSCS framework, all the components are designed in a
plug-in manner, which means they can be flexibly replaced by other similar services.
Currently, the replication service and I/O monitoring service are directly based on the
existing services in our cloud storage middleware since they are working properly. So, in
the following sections, we mainly take efforts on describing the key mechanisms
implemented in the RSCS framework, including mirror file system, data consistency
maintenance and recovery, and secure data accessing tunnel.

 164 P. Xiao

Figure 1 Overview of the RSCS framework

Data security service Cloud storage
service portal

Replication
service

Data recovery
service

Mirror file system

Cloud storage
infrastructure

I/O monitoring
service

Data access
service

RSCS
components

Key and authentication
servers

Data flow

3.2 File system based on mirroring stripped data

In recent years, many approaches have been proposed to improve the fault-tolerance in
distribute file systems. Among these approaches, stripping data on multi-RAID nodes is
the most-mentioned one due to its simplicity and efficiency. Unfortunately, it can only
offer low-level reliability because when multiple storage nodes are crashed at the time, it
cannot work properly. The other alternative approach is using parity-based redundancy
technology for providing data fault-tolerance, which is very effective in small-scale
storage platforms but not suitable for large-scale environments, because multiple storage
nodes failing may cause temporary or permanent data inaccessibility which is often
negligible in thousands of storage nodes. More importantly, the parity-based redundancy
technology is likely to degrade the I/O performance when frequently performing writing
on small files. For instance, the writing operation in RAID-5 requires four I/O operations:
two for old data parity and two for new data parity. If the I/O system is not optimised, the
four I/O operations may lead to significantly I/O latency. Finally, in a distributed file
system, the parity calculation should be performed in a distributive manner to avoid
performance bottleneck instead of by any single node. As to the erasure-coding based
methods, they may be suitable in P2P systems but not for GB/s scale file systems.

In RSCS, we design a simple but effective file system scheme which duplicate
stripped data in different storage nodes so as to increase the data reliability and
aggregated throughput. As the price of commodity hard disks has dropped rapidly in
recent years, we believe that sacrificing some storage capacities for improving the storage
performance and reliability is a more sensible option. Unlike the traditional fault-

 A reliability and security enhanced framework 165

tolerance approaches (such as parity and erasure coding technique), our solution
introduce the extra overheads as less as possible, and the costs of data recovery process
are kept in a very low-level. Meanwhile, the proposed solution is adaptive to various
kinds of workloads and introduces less complexity in the current storage systems. For
example, the data mirroring mechanism in our RSCS can double the performance of I/O
operation while only introducing very small overheads on data management. In Figure 2,
we demonstrate the framework of mirror-stripped-data file system.

Figure 2 Framework of mirror-stripped-data file system in RSCS

Meta Sever

Data Sever #1

Data Sever #2

Data Sever #N

…

Meta Sever

Data Sever #1

Data Sever #2

Data Sever #N

…

Primary Group Backup Group

Client Client Client …

In the above framework, the underlying file systems are responsible for mirroring the
stripped data across server nodes. We categorise the server nodes into two groups:
primary and backup. The user requests are firstly dispatched to the primary server group
for reducing the overheads of synchronisation operation. In the case of the failure of
primary metadata server, all metadata requests will be re-dispatched to the backup servers
until the primary sever is repaired and rejoins the storage platform. When the system
receives a write request, the primary server is firstly used to perform data transferring
operation, while the backup servers are used for storing duplicated data. As a result, our
RSCS always maintains two sets of metadata structures: system-related metadata and
individual file metadata. The former is for managing the life-cycle of storage nodes, since
our RSCS allows the storage nodes to join/leave the platform during the runtime. If some
failures occur in a storage node, the I/O requests sent to this node will be redirected to the
corresponding mirror server. To detect the failures of a storage node in time, we use the
heartbeat detecting approach due to its simplicity and cost-effectiveness. Specifically, if a

 166 P. Xiao

storage node does not send the periodic heartbeat message to the metadata server within a
pre-defined time period, it is considered to be failed regardless of its failing reason.

As to the metadata server, it stores the stripping block layout, the data mirroring state,
and other kinds of data information. It is clear that the metadata servers hold the data
managing information in the mirror-stripped-data file system. So, it is important to
incorporate a backup mechanism in the metadata service, since its failing may lead to the
crashing of the whole storage system. In many conventional solutions, backup metadata
file server should be implemented in remote storage nodes due to the limitation of
namespace in local nodes. More specifically, the file names should be uniqueness which
often is the same as its i-node number in the local storage node. To deal with problem, we
use the MD-5 sum of the file name as the actual file name in metadata server, which can
ensure that files in the metadata servers are always unique and therefore can backup them
in the local storage nodes. Here, the only overhead is the cost of MD-5 calculation.
According to our experiment, the calculation of a file name requires about 25~100 ns
which can almost be ignored in distributed storage platforms.

3.3 Data consistency maintenance and recovery

The key issue in a distributed storage system is to meet the concurrent accessing to same
files from multiple clients. So, data consistency maintenance and recovery mechanisms
play important roles to achieve these goals. In RSCS, we employ a centralised leasing
mechanism which allows to accessing different portions of a file based on the multiple-
reader-single-writer principle. First, we define the lease as a timed lock which holds
certain rights on certain resources during limited time duration. To providing more
flexible and fine-grained controlling, we also define that the leases are only based on the
logical addresses of file’s header and ending. The metadata server will issue exclusive
lease of writing to a user as long as there is no existing leases on this data file. On the
other side, multiple leases of reading can be assigned to different users if there is no
conflicting writing lease exists. Such a leasing mechanism significantly reduces the
overheads of maintaining data consistency.

As long as a failed server is detected and rebooted, all data on this storage node need
be recovered. The recovery procedure in RSCS is simple and efficient in that all the data
can be directly obtained from the mirrored server without any extra costs on
communications. Meanwhile, if a storage node is in the process of recovering and
receives a writing request, we apply the copy-on-write (COW) mechanism to ensure data
consistency as well as uninterrupted storage service. To explain this mechanism, we
demonstrate an example in Figure 3 to show the data recovery procedure in the RSCS
system.

As shown in Figure 3, the first step is to replicate data located on the mirroring server.
If a writing request is overlapped with the recover time, a shadow data copy is
dynamically generated which will record the updated content and let the old content
unchanged. As long as the old data has been recovered, the shadow copy will bee
replicated to the repaired server in a sequential order. In this way, we can avoid data
inconsistency. It is noteworthy that there may be several shadow copies for a single
recovering data. We store them in a list based on its generated time and write back to the
recovered data block. In Figure 3, we can see that the COW mechanism only works on
the replicated data which can significantly reduce the probability of data inconsistency if
the recovery process is interrupted by some unknown reasons.

 A reliability and security enhanced framework 167

Figure 3 Data recovery procedure in RSCS

Modified
list

Storage Nodes

Step 1: data
replication

Functional sever

Data to be
recovered

Shadow
copies

Data Blocks

Step 3: data
recovery

Step 2: copy on
write (COW)

Step 4:
data

update

3.4 Secure data accessing tunnel

In wide-area data sharing environments, data security is always a key concern in the view
points of both system administrator and clients. In most of applications, remote procedure
calling (RPC) is the most used technology for data accessing. For RPC-based
applications, communication security is often supported by other mechanisms instead of
the RPC protocol itself, since this offers more flexibility for programmers. For example,
secure RPC-based communication can use TCP/IP tunnelling technology, which allows
application programmers to separate the logics of data encapsulation from data
encryption. In this way, private communication channels can be established in an
application-transparent manner. Tunnelling of RPC connections can be obtained by
secure sockets layer (SSL) and secure shell (SSH). In our RSCS framework, the
underlying file system relies on the interfaces in SSH to establish encrypted and
authenticated communication connections between users and storage nodes. Comparing
with the existing solutions of section management, the key advantage of our RSCS
framework is that it allows to establishing I/O sections based on per I/O requests.
Meanwhile, the RSCS framework has incorporated a per-user identity-mapping
mechanism which allows to performing ID searching and matching across different
management domains. By establishing per-user communication tunnels as well as the
per-user ID mapping table, users coming from different administrative domains can use a
uniform model of file system section.

To deploy the SSH tunnels and secure file system channels, RSCS only needs the
conventional kernel-level routines, such as file system mounting, I/O exporting, pipe
commands, etc. In the RSCS framework, the data security model assumes that cloud
middleware has incorporated the accounting service for users, which implies that both
server-side and client-side can be authenticated through the accounting service. As a
result, the cloud middleware is required to permit to mount logic file directory tree to the
file system in the proxy. Otherwise, the cloud middleware may not be able to delegate
their access controlling service to RSCS’s server administrator. In fact, we can easily
implement an independent accounting service in the RSCS framework. However, doing

 168 P. Xiao

this will introduce unpredictable overheads on the whole system. Considering the case
that the kernel server only exports to the local-host and other users cannot mount file
systems, the root directory of users will be exported through RSCS, while authentication
to this file system will be managed by the kernel account service.

It is noteworthy that the authentication service in RSCS is based on the proxy model,
which means that the server-side proxy is responsible for authenticate the I/O requests by
establishing secure tunnels. From the perspective users, they are able to present suitable
credentials to the RSCS system to ask for a secure tunnel. Unlike the previous
authentication mechanisms which only allow trusted IP/Port to perform data accessing
operations, our RSCS introduce an inter-proxy authentication mechanism, which uses the
local-host to intermediate requests from non-privileged IP/Port. Specifically, we generate
a random session key for the inter-proxy when I/O operation is required, and the actual
execution of data accessing may be delayed until the user has complete the
authentication. In this way, our RSCS can significantly reduce the I/O latency when
plenty of users issues massive requests from different locations.

4 Performance evaluation

4.1 Experimental configuration

We deploy the implementation of the RSCS framework in a campus-based cloud
platform, where the underlying storage infrastructure is consisted of 12 massive storage
clusters connected through Myrinet network, and above 50 distributed storage severs
each with 250 GB~1 TB hard disk. To generate various kinds of I/O traffics, we use a
modified MPI program as the experimental benchmark, it enables us to make fair
performance comparisons on different data accessing and management methods. Besides
the simulative I/O traffics, we also use the I/O traffics generated in our experimental
test-bed. So, the experimental results are categorised into two classes: real world
performance, simulative performance.

4.2 Performance evaluation under real-world traffics

As shown in Figure 1, the I/O monitoring service is designed to evaluate the I/O-related
metrics. For the convenience of our experiments, the prototype implementation of RSCS
framework has incorporated several extra functions. According to our logs, the total
number of registered users is 1,885 and about 21% of these users use the RSCS system
over 10 times per day. So, we define them as the active users and the following
experimental data are all obtained from this kind of users. In the first set of experiments,
we take efforts on examining the performance and efficiency of storage nodes. In
Table 1, we demonstrate the results obtained from 2017-4-1 to 2017-4-30.

According to the results shown in Table 1, we can conclude several valuable results
on the proposed RSCS system. Firstly, we can see that the speed of downloading is
significantly higher than the speed of uploading by about 91%. This is because that the
reading speed in user’s equipment is generally higher that the writing speed. Also, we
notice that the throughput metric is significantly lower than the designing expectation of
the RSCS system. Such a result can be contribute to the small number of active users,
which means when more active users use the RSCS, the throughput metric will be

 A reliability and security enhanced framework 169

increased as well. It is noteworthy, if we only take into account the working time (from
8:00 to 17:00), the throughput metric will be higher than the current result. According to
the experimental results, the average data recovering time is 3.25 seconds and the average
time of secure tunnelling is only 0.08 seconds. Such a result clearly indicates that the
costs of security mechanisms in RSCS system are very acceptable in real-world
scenarios.
Table 1 Performance statistics on data operations

Performance metrics Max value Min value Mean value
Data upload speed (MB/sec.) 450 191 335
Data download speed (MB/sec.) 785 112 613
Data throughput (GB/day) 1555 16 256
Response time of file accessing (sec) 3.7 0.4 1.54
Time of data integrity check (sec/GB) 0.6 0.07 0.274
Total storage capability (TB) 33.31 7.42 18.11
Average time of data recovering (sec) 11.2 0.88 3.25
Average time of secure tunnelling 0.31 0.03 0.08
Online active users (/min) 368 0 35
Data size of users (GB) 69 0 13.65

To evaluate the file system I/O performance of the RSCS implementation, we
demonstrate the measurements of the I/O related operations in Table 2.
Table 2 File system I/O Performance in RSCS

Operation Time (s) I/O Vol. Percentage in I/O time Percentage in exec time
Open 1.33 N/A 1.5% 0.08%
Read 14.4 20MB 32.5% 36.2%
Seek 1.25 N/A 1.06% 0.06%
Write 25.6 50MB 61.15% 66.3%
Close 0.21 N/A 0.13% 0.01%

According to the results in Table 2, we first notice that read and write operations almost
occupy 99% I/O processing time due to the I/O feature of our tested benchmarks.
Specifically, the tested benchmarks will repeatedly read data in different iterations and
then write the processed data consequently. According to the results in Table 2, we can
guess that the reading speed and writing speed is very close in file system, which can be
explained by the I/O buffer mechanism in local operation system. As to the other
operations (e.g., open, close, seek, and flush), their total costs are less than 2% of the
overall I/O costs. Based on the abovementioned experimental data, it can be concluded
that the RSCS prototype system is able to cope with the scenarios where there are plenty
of active users asking for retrieving small data files. Limited by our experimental
environment, if the number of potential active users has exceeded over a certain level, we
believe that performance bottleneck will occur at the link layer instead of the RSCS
system.

 170 P. Xiao

4.3 Performance evaluation under simulative traffics

In this set of experiments, we select 55 PCs to simulate the behaviours of users with
aiming at simulating the real-world scenarios as possible as we can. The selected PCs are
located at different geographical positions, and are executing a specially designed
software agent, which create continuous user requests to the RSCS system based on
certain random distribution model. In Figure 4, we demonstrate the upload/download
speeds of the RSCS system under the scenarios with different number of active users.

Figure 4 Data storage speed with various numbers of active users

In our experiments, we gradually increase the active user number from 200 to 1,800. It is
clear that the speed of upload/download will be reduced with the increasing of active
users. Even so, we still notice that such a performance decreasing is not very significant
at the beginning (when the number of active users is less than 800). So, we conclude that
the number of 800 active users seems to be a threshold in our test-bed platform. For other
system, this number may be less or more. As long as the number exceeds over this
threshold (800), we can see that upload/download speed will be decreased rapidly. When
the number of active users has reached 1,800, we notice that upload/download speed is
only 25% of the maximal speed. Such a performance level can be maintained for a while
if more active users join the system. Based on these experimental data, we conclude that
the proposed RSCS system can accommodate at least 1,800 active users concurrently. It
is noteworthy that the number of active users in RSCS is generally about 10% of the total
users in our cloud platform. Therefore, we believe that the current RSCS system can
provide data storage service for those mobile communities where the total number of
users is less than 20,000.

 A reliability and security enhanced framework 171

Figure 5 Response time of file system navigation operations

In order to examine the performance when interacting with users, we investigate the
response time when users ask for file navigating operations. In Figure 5, we demonstrate
the experimental results on three file navigating operations:

1 ‘list /’ is to ask for the list of directories in user’s root file system

2 ‘list / -t move –a 2011’ is to query all the movie files s that stored in 2011

3 ‘rename /movie /music’ is to rename a user directory.

The results in Figure 5 have shown several interesting observations. At first, we notice
that file name changing operation seems to have more delays than other file navigating
operations, while its performance seems to be not affected by the number of active users.
By analysing the logs of file system callings, we find that it is because that the filename
changing operation often requires re-mapping the namespace in distributed file system,
which is a more cost-consuming operations comparing with other navigating operations.
Secondly, we notice that the response time when performing ‘list /’ operation is closely
related with the number of active users as long as this number is larger than 1000. Such a
result can be attributed to the I/O accessing patterns of users. For example, we find that
the frequency of ‘list /’ operation is nearly six times of the ‘list / -t move –a 2011’
operation in our experiments. As a result, when more and more users join the RSCS
system, the response time of this operation will be significantly decreased.

Finally, we demonstrate the throughput metric of the proposed RSCS when the
test-bed platform is facing very intensive workloads (the number of active number is
1,800). To reduce the size of measuring data, we set the sampling frequency is one
minute. According to data shown in Figure 6, we can see the throughput metric fluctuates
dramatically during the execution time. Such a performance mainly affected by the user’s
I/O accessing patterns. To deal with the problem of bursty workloads, some auto-scaling
mechanism may be useful, which may be our future work. Currently, our designing
objective of RSCS is that it can provide about 50 TB throughput per day. According to
our experimental results, it is clear that current throughput metric is nearly 13% of the

 172 P. Xiao

designing limitation, which means it can be applied to those cloud systems with more
intensive data-accessing requirements.

Figure 6 Real-time throughput in simulative experiments with 1,800 active users

5 Summary and future work

To provide better storage service in nowadays cloud environments, in this study we
propose a novel framework called RSCS, which consists of several well-designed
components to improve low-level data reliability as well as guarantee up-level data
accessing security. In the RSCS framework, a simple yet effective file system scheme is
proposed, which can duplicate stripped data in different storage nodes so as to increase
the data reliability and aggregated throughput. We also introduce a centralised leasing
mechanism which allows to accessing different portions of a file based on the
multiple-reader-single-writer principle. Finally, we provide a secure data accessing tunnel
technology which allows the RSCS to establish secure communication channels between
users and storage nodes without introducing too many extra costs. In a real-world cloud
platform, we conduct sets of experiments and the results show that the proposed RSCS
framework is able to meet the requirements for most of cloud-based storage platforms.
According to our experiments, we have shown that when the number of active users is
less than 20000, the RSCS platform perform well in different experimental scenarios.
Meanwhile, the experimental results also reveal some limitations in the proposed RSCS
system. For example, the interacting performance of RSCS is affected by the number of
users, and the data throughput metric changes dramatically when facing intensive
workloads. So, we are planning to conduct more performance evaluations in more
scenarios with aiming to find more characteristics of the RSCS. Also, we are planning to
incorporate some auto-scaling mechanism in the data transferring service in the RSCS.
Finally, we are planning to device some load-balancing mechanism in the I/O layer of
RSCS with aiming at obtaining more stable performance.

 A reliability and security enhanced framework 173

Acknowledgements

This work is supported by a grant from the National Natural Science Foundation of China
(No. 61402163) the Research Foundation of Education Bureau of Hunan Province,
China(Grant No. 18A343).

References
Anglano, C., Gaeta, R. et al. (2015) ‘Exploiting rateless codes in cloud storage systems’, IEEE

Transactions on Parallel and Distributed Systems, Vol. 26, No. 5, pp.1313–1322.
Bohli, J-M., Gruschka, N. et al. (2013) ‘Security and privacy-enhancing multicloud architectures’,

IEEE Transactions on Dependable and Secure Computing, Vol. 10, No. 4, pp.212–224.
Canali, C. and Lancellotti, R. (2014) ‘Improving scalability of cloud monitoring through

PCA-based clustering of virtual machines’, Journal of Computer Science and Technology,
Vol. 29, No. 1, pp.38–52.

Celesti, A., Fazio, M. et al. (2016) ‘Adding long-term availability, obfuscation, and encryption to
multi-cloud storage systems’, Journal of Network and Computer Applications, Vol. 59, No. 2,
pp.208–218.

Chen, H.C.H., Hu, Y. et al. (2014) ‘NCCloud: a network-coding-based storage system in a
cloud-of-clouds’, IEEE Transactions on Computers, Vol. 63, No. 1, pp.31–44.

Cui, B., Liu, Z. et al. (2016) ‘Key-aggregate searchable encryption (KASE) for group data sharing
via cloud storage’, IEEE Transactions on Computers, Vol. 65, No. 8, pp.2374–2385.

Di, S., Kondo, D. et al. (2015) ‘Optimization of composite cloud service processing with virtual
machines’, IEEE Transactions on Computers, Vol. 64, No. 6, pp.1755–1768.

Duan, H., Yu, S. et al. (2015) ‘CSTORE: a desktop-oriented distributed public cloud storage
system’, Computers and Electrical Engineering, Vol. 42, No. 1, pp.60–73.

Goncalves, G.D., Drago, I. et al. (2016) ‘Workload models and performance evaluation of cloud
storage services’, Computer Networks, Vol. 109, No. 1, pp.183–199.

Guan, X. and Choi, B-Y. (2014) ‘Push or pull? Toward optimal content delivery using cloud
storage’, Journal of Network and Computer Applications, Vol. 40, No. 1, pp.234–243.

Khan, A.N., Kiah, M.L.M. et al. (2014) ‘BSS: block-based sharing scheme for secure data storage
services in mobile cloud environment’, Journal of Supercomputing, Vol. 70, No. 2,
pp.946–976.

Lagar-Cavilla, H.A., Whitney, J.A. et al. (2011) ‘SnowFlock: virtual machine cloning as a first-
class cloud primitive’, ACM Transactions on Computer Systems, Vol. 29, No. 1, pp.1–44.

Liang, G. and Kozat, U.C. (2014) ‘FAST CLOUD: pushing the envelope on delay performance of
cloud storage with coding’, IEEE/ACM Transactions on Networking, Vol. 22, No. 6,
pp.2012–2025.

Long, S-Q., Zhao, Y-L. et al. (2014) ‘MORM: a multi-objective optimized replication management
strategy for cloud storage cluster’, Journal of Systems Architecture, Vol. 60, No. 2,
pp.234–244.

Mahajan, P., Setty, S. et al. (2011) ‘Depot: cloud storage with minimal trust’, ACM Transactions on
Computer Systems, Vol. 29, No. 4, pp.1–45.

Mao, B., Jiang, H. et al. (2014) ‘Read-performance optimization for deduplication-based storage
systems in the cloud’, ACM Transactions on Storage, Vol. 10, No. 2, pp.1–38.

Marmol, F.G. and Kuhnen, M.Q. (2015) ‘Reputation-based web service orchestration in cloud
computing: a survey’, Concurrency Computation, Vol. 27, No. 9, pp.2390–2412.

Ousterhout, J., Gopalan, A. et al. (2015) ‘The RAMCloud storage system’, ACM Transactions on
Computer Systems, Vol. 33, No. 3, pp.1–44.

 174 P. Xiao

Shamsi, J., Khojaye, M.A. et al. (2013) ‘Data-intensive cloud computing: requirements,
expectations, challenges, and solutions’, Journal of Grid Computing, Vol. 11, No. 2,
pp.281–310.

Sindhu, R. and Mushtaque, A. (2014) ‘A new innovation on user’s level security for storage data in
cloud computing’, International Journal of Grid and Distributed Computing, Vol. 7, No. 3,
pp.213–220.

Song, S., Khil, K-J. et al. (2013) ‘Software RAID for data intensive applications in cloud
computing’, Journal of Internet Technology, Vol. 14, No. 3, pp.529–534.

Subashini, S. and Kavitha, V. (2011) ‘A survey on security issues in service delivery models of
cloud computing’, Journal of Network and Computer Applications, Vol. 34, No. 1, pp.1–11.

Wan, J., Zhang, J. et al. (2013) ‘ORTHRUS: a light weighted block-level cloud storage system’,
Cluster Computing, Vol. 16, No. 4, pp.625–638.

Wang, Y., Lu, P. et al. (2015) ‘WaFS: a workflow-aware file system for effective storage
utilization in the cloud’, IEEE Transactions on Computers, Vol. 64, No. 9, pp.2716–2729.

Xiao, P. and Han, N. (2014) ‘A novel power-conscious scheduling algorithm for data-intensive
precedence-constrained applications in cloud environments’, International Journal of High
Performance Computing and Networking, Vol. 7, No. 4, pp.299–306.

Zhang, D., Coddington, P. et al. (2013) ‘Improving data transfer performance of web service
workflows in the cloud environment’, International Journal of Computational Science and
Engineering, Vol. 8, No. 3, pp.198–209.

Zhu, Y., Huang, D. et al. (2015) ‘From RBAC to ABAC: constructing flexible data access control
for cloud storage services’, IEEE Transactions on Services Computing, Vol. 8, No. 4,
pp.601–616.

