Optimisation of ingot casting wheel design using SPH simulations
by Mahesh Prakash, Paul W. Cleary, John Grandfield, Patrick Rohan, Vu Nguyen
Progress in Computational Fluid Dynamics, An International Journal (PCFD), Vol. 7, No. 2/3/4, 2007

Abstract: Performance improvements of a new filling system for aluminium ingot casting resulting from a combination of Smoothed Particle Hydrodynamic (SPH) modelling and pilot scale testing are reported in this paper. The SPH modelling was used as the primary design tool, passing through several design iterations to understand the flow fundamentals and to progressively improve performance. The best concept from the simulation design stage was then refined through a detailed programme of pilot scale testing and a final round of SPH simulation. The results of this development programme will be described, with the new wheel design now able to operate at 50% higher throughput with an expected reduction in the oxide content by about 53% compared to that of the original design.

Online publication date: Tue, 03-Apr-2007

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the Progress in Computational Fluid Dynamics, An International Journal (PCFD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com