

International Journal of Data Mining, Modelling and
Management

ISSN online: 1759-1171 - ISSN print: 1759-1163
https://www.inderscience.com/ijdmmm

Capturing uncertainties through log analysis using DevOps

Rajeev Kumar Gupta, Arti Jain, Ruchika Kumar, R.K. Pateriya

DOI: 10.1504/IJDMMM.2023.10055208

Article History:
Received: 12 July 2021
Last revised: 07 December 2021
Accepted: 21 February 2022
Published online: 04 April 2023

Powered by TCPDF (www.tcpdf.org)

Copyright © 2023 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijdmmm
https://dx.doi.org/10.1504/IJDMMM.2023.10055208
http://www.tcpdf.org

 Int. J. Data Mining, Modelling and Management, Vol. 15, No. 1, 2023 53

 Copyright © 2023 Inderscience Enterprises Ltd.

Capturing uncertainties through log analysis using
DevOps

Rajeev Kumar Gupta*
Pandit Deendayal Energy University,
Gandhinagar, India
Email: rajeevmanit12276@gmail.com
*Corresponding author

Arti Jain
Jaypee Institute of Information Technology,
Noida, India
Email: ajain.jiit@gmail.com

Ruchika Kumar and R.K. Pateriya
Maluna Azad National Institute of Technology,
Bhopal, India
Email: ruchika.kumar9893@gmail.com
Email: pateriyark@gmail.com

Abstract: DevOps is an advancement of agile processes which is mainly used
to improve the coordination between development and operation teams.
Continuous practices survive within the core of the DevOps which ensures
efficient pipelines and high-quality delivery of software. Using such practices
in a synchronous, business dynamics compliance and ever-changing needs of
clients can meet high performance and reliable final products. This research
work is an attempt to propose a simplified solution, guideline and tools support
for developing and maintaining quality of continuous practices that are used in
the DevOps project. The system automates the correlation among various
telemetry data to contribute towards enriching log analysis and reduces manual
efforts. The proposed system undergoes in-depth analysis of logs, promotes
quality assessments and feedback to developers, which in result, helps in
deeper problem diagnosis of the telemetry data. In this work, an empirical study
is carried out to gain conceptual clarity on integrated pipeline architecture and
to address how automation in continuous monitoring accelerates and extends
the feedback loop in the system.

Keywords: agile; DevOps; log analysis; telemetry data; software development
life cycle; SDLC.

Reference to this paper should be made as follows: Gupta, R.K., Jain, A.,
Kumar, R. and Pateriya, R.K. (2023) ‘Capturing uncertainties through log
analysis using DevOps’, Int. J. Data Mining, Modelling and Management,
Vol. 15, No. 1, pp.53–78.

 54 R.K. Gupta et al.

Biographical notes: Rajeev Kumar Gupta has completed his PhD from the
MANIT, Bhopal, India. He is working as a Senior Assistant Professor at the
Pandit Deendayal Energy University, Gandhinagar, Gujarat, India. He is a
recipient of the Best Young Researcher Award by RSRI in 2019. He has
published more than 30 referred articles in various book chapters, conferences
and international repute peer-reviewed journals of Elsevier, Springer, IEEE. He
has a total of more than ten years of teaching experience. He is a life member
of some of the reputed societies – CSI India, IAENG (Hong Kong). He has
organised several STTPs/FDPs and have taken several expert lectures at
various Institutes throughout India. He has supervised 20 MTech thesis and
around 40 BTech projects in various domains. His area of interest includes
machine learning, deep learning and cloud computing, software reliability,
artificial intelligence, computer vision, data mining and information security.

Arti Jain is working as Assistant Professor (Senior Grade) of Computer Science
and Engineering at the Jaypee Institute of Information Technology, Noida,
Uttar Pradesh, India. She is having more than 19 years of academic experience.
She is member of IEEE, INSTICC, IAENG, SAFAS, IFERP and TERA. She
has more than 20 research papers in peer-reviewed international journals, book
chapters, and international conferences. She has delivered expert talks in KDPs,
FDPs and workshops. She is editorial board member and TPC member of
several international journals and conferences. She has supervised MTech
thesis and around 100 BTech projects. Currently, she is supervising PhD
candidate in the area of social network analysis. Her research interest includes
natural language processing, machine learning, data science, deep learning,
social media analysis, soft computing, big data and data mining.

Ruchika Kumar is working as a software engineer at the Intel Technology India
Pvt. Ltd., Bangalore, India. She has completed her MTech from the Maulana
Azad National Institute of Technology Bhopal, India. Her area of interest
includes cyber security, software engineering and cloud computing.

R.K. Pateriya is working as a Professor in the CSE Department of Maulana
Azad National Institute of Technology Bhopal, India. He completed his PhD
from the MANIT, Bhopal. He has published more than 60 referred articles in
various book chapters, conferences and international in reputed peer-reviewed
journals of Elsevier, Springer, IEEE, etc. He has a total of more than 28 years
of teaching experience. He is a life member of some of the reputed societies
like CSI India, IEEE, etc. He has organised several STTP/FDP and taken
several expert lectures at various institutes. He has supervised eight PhD, 80
MTech thesis and around 120 BTech projects in various domains. His area of
interest includes information security and cloud computing.

1 Introduction

DevOps is a set of software engineering practices that brought a revolution of cultural
and organisational changes (Katal et al., 2019; Yarlagadda, 2021). In other words,
DevOps combines software development (Dev) and information technology operations
(Ops) which aims to shorten the systems development life cycle. The DevOps is
responsible to provide continuous delivery and that too with higher software quality. It is
considered as complementary with agile software development. Also, several of the
DevOps aspects have come from the agile methodology. DevOps has broadened the

 Capturing uncertainties through log analysis using DevOps 55

scope of research as well as the technology market. It has gained popularity in no time
because of its objective to utilise knowledge and resources in the best way by eliminating
non-value-added processes in the software delivery pipeline and emphasising more on
learning at every level.

Developers are expected to be aware of uncertainties in the entire DevOps life cycle.
A widely adopted resolution to minimise uncertainties is the ‘continuous monitoring’.
Rapid feedback on real-time data helps in monitoring such situations. Repetitive
measuring and monitoring systems ensure that developers’ contributions are oriented
towards adding value to the software quality. Moreover, in-depth knowledge of the
software delivery pipeline can help to identify and handle the root cause of uncertainties.
Continuous monitoring techniques like sensitivity analysis of different parameters of a
system, rigorous statistical evaluation and visualisation of results, etc. can help in
reducing uncertainties further. Even if uncertainties cannot be handled, qualitative and
quantitative analysis predicts the probability of failures.

The aim of the DevOps practices is to mark delivery teams as accountable for the
production issues and fixes, whether legacy or novel. In the traditional systems, delivery
would only be answerable for the alterations put in by them, within the duration of
warranty. In this work, an attempt is made to propose a DevOps-based simplified
solution, with suggested guidelines and tools support for developing and maintaining the
quality of continuous practices that are used in the telemetry data. The proposed system
automates towards enriching the log analysis and reduces manual efforts. It undergoes an
in-depth analysis of the logs, promotes the quality assessments, as well as feedbacks to
the developers, which in turn helps in the deeper problem diagnosis of the telemetry data.

Stahl et al. (2017) and Rafi et al. (2021) define it as “A superset of continuous
practices involving values, principles and procedures” whereas, others stated as “An
emerging culture or phenomenon that integrates development, operation and quality”
(Kamuto and Langerman, 2017; Pietrantuono et al., 2019). This research project aims to
present a simple solution, guideline, and tools for developing and maintaining the quality
of continuous practises used in DevOps projects. The system automates the linkage of
various telemetry data, which enriches log analysis while reducing manual work.

 Collecting telemetry and metrics data for data analytics and resource management.

 Automation and effective monitoring of the services to map down correlation
between telemetry data to analysed data.

 Enriching log analysis context for thorough uncertainty diagnosis by identifying and
controlling the sensitive areas.

 Automate the process of continuous monitoring to save time and effort of the users
and help them to stay ahead of potential issues with predicted reports and charts.

The paper revolves around build flow of CI/CD pipelines in Jenkins, functional modules,
building triggers, log parsing, structuring and cleaning data, and creating visuals for
report, and at the end, summarising and analysing the performance.

The paper is structured as follows: Section 2 explains the literature review for
evolution of SDLC and emergence of DevOps. Section 3 illustrates the DevOps-based
case study of the Intel project. Section 4 details about the execution results. And, finally,
Section 6 concludes the paper.

 56 R.K. Gupta et al.

2 Literature review

The literature review is subdivided into two subsections. Subsection 2.1 discusses the
evolution of SDLC and Subsection 2.2 discusses the emergence of DevOps.

2.1 Evolution of SDLC

The acronym SDLC stands for ‘software development life cycle’ it is a procedural
approach to convert stakeholders’ expectations and requirements into realistic software
products. Aligned with companies’ strategies and priorities it becomes the home ground
for any software production (Frijns et al., 2018; Hemon et al., 2019). Traditional models
like waterfall model, interactive model, spiral model, v-model, big bang model, etc.
followed a linear progression of requirement gathering, analysing, feasibility study,
designing, developing, implementing, verifying, testing, validating, maintaining and
ultimately delivering the software.

The waterfall model has been adopted as a base since 1960 for every other model.
The factors that contribute to its longevity are included as: simplicity, predictability of
deliverables at every stage and segregated roles and responsibilities. It continued to
predominate SDLC methodology until the introduction of agile in the early 2000
(Kersten, 2018). Agile is the outcome of incompetence of the conventional
methodologies of software development. The basic principle agile is the customer’s
satisfaction with project’s cost control, better team collaboration and minimalistic waste
of knowledge and resources (Pingrong et al., 2021).

Dörnenburg (2018) has approached by bringing together silo teams and replacing
them by a cross functional team based on their specialisations. It would be relatively
difficult to be adopted in large enterprises and even worse in case of different vendors
and scattered geographical setup locations. With the increasing levels of confusion and
frustration, whether to emphasise on timely delivery and on budget delivery or software
stability and cost of operations at the sake of expenses and maintainability, awake
practitioners are uncomfortable and resistant to adoption of agile.

Instead of just focusing on product, agile needs to be tailored with new techniques
and redrawn team boundaries and responsibilities (Gokarna and Singh, 2021). DevOps
emerged in the late 2000s which clears the path of production with convenience and
reduces life cycle time. This breakthrough in SDLC transforms agile islands and brings a
dynamic era of digitalisation and automation (Pietrantuono et al., 2019). DevOps
technology framework helps in building effective software delivery pipelines by fusing
independent design, development and deployment practices (Koilada, 2019). It is
collaboration with new tools and technology has paved new paths of evolution of
different software segments. To exemplify, DevOps consists of values, principles,
methods, practices and tools. Fedushko et al. (2020) investigate the impact of COVID-19
on network traffic resulting from e-commerce, online education, and other types of
activities. This work introduced a site reliability engineering (SRE) approach to assure
the reliability and availability of e-portal system. The primary goal of this research is to
improve content quality while also identifying anomalous system behaviour and poor
infrastructural conditions.

Figure 1 shows how the waterfall model and agile model give birth to DevOps
methodology. The main phases of DevOps are – collaboration, plan, build, continuous

 Capturing uncertainties through log analysis using DevOps 57

integration and continuous development (CI/CD), deployment, operation, continuous
monitoring and reporting feedbacks.

Figure 1 Evolution of SDLC methodology (see online version for colours)

The recent Forrester research revealed that till now, about 50% of associations have
successfully executed DevOps at an ‘escape velocity’ (Hemon et al., 2019).

2.2 Emergence of DevOps

DevOps methodology abridges the functional and operational gap among silos teams and
handovers a versatile specialist team with amalgamated development and operational
responsibilities (Yarlagadda, 2021). According to the reports of 2015, 2016 and 2017 by
the Puppet Labs, an important aspect of DevOps is to improve the workflow within an
organisation and efficiently share information based on the concept of work being pulled
rather than being pushed (Katal et al., 2019).

Although many researchers and academicians have tried to formulate a
comprehensive definition for DevOps but have failed to propose one, due to its
multifaceted vastness and ambiguity. Some researchers (Stahl et al., 2017; Chen, 2019;
Geissdoerfer and Wolisz, 2019; Veres et al., 2019; Rafi et al., 2021) define it as “A
superset of continuous practices involving values, principles and procedures” whereas,
others stated as “An emerging culture or phenomenon that integrates development,
operation and quality” (Kamuto and Langerman, 2017; Pietrantuono et al., 2019). In
another work, researchers (Trubiani et al., 2018) have called it a novel trend among
practitioners while few focused on its technical stance like automation and toolchain
which opened huge entrepreneurial opportunities in the IT market (Koilada, 2019).

Though DevOps became a buzzword, but it can be best explained by CAMS – culture
(C), automation (A), measurement (M), sharing (S), term coined by John Willis (Perera
et al., 2017; Stahl et al., 2017). Culture, automation, measurement and sharing are the
fundamental and mutually reinforced values behind DevOps implementation. Prior
culture setup encourages the adoption of agile practices and overcomes conventional

 58 R.K. Gupta et al.

limitations of SDLC approach. “Automation is the key enabler for DevOps adoption”
(Perera et al., 2017). Modern DevOps toolset and advanced technology revamped
organisational workflow. CAMS recommends transparent, accessible and meaningful
measurements of all DevOps constituents. And lastly, sharing of ideas, knowledge,
challenges and learnings help in aligning people, practices and technology towards a
common goal, i.e., adding value to the IT business.

The in-depth literature analysis of many papers and interviews, it is concluded that
few factors which hinder the adoption of DevOps, are risk of disintermediation of roles,
lack of education, resistance to change, silo mentality, lack of strategic direction from
management (Gokarna and Singh, 2021) and so on.

2.2.1 Continuous practises – ‘the heart of DevOps’

DevOps comprises many continuous practices which all together contributes to the
agenda – customer satisfaction and better software quality. It includes continuous
integration, continuous delivery, continuous deployment, continuous testing and
monitoring, and continuous release. Each of them are detailed here.

a Continuous integration – Means integrating the developers’ work very frequently
and iteratively. It frames other continuous practices which in combination eliminates
discontinuities between development and operations, preferable to be practiced at
large scale.

b Continuous delivery – Complies to the actual release of software segments with short
release cycles, it brings optimisation of infrastructure management and balances out
software release availability and reliability. The potential release candidate
undergoes rigorous code analysis, proper documentation, acceptance testing,
regulatory compliance assessment, license and requirement verification. It is often
used interchangeably with continuous deployment.

c Continuous deployment – Refers to the operational placement of the potential release
candidate, evaluated in the former stage, in the production environment.

d Continuous testing and monitoring – Runs parallely with other continuous practices.
Automated testing with regular quality feedback to DevOps and quality assurance
teams, evaluates the software candidate’s readiness for release. Data collected from
the systems in production is passed as inputs for testing and monitoring activities.

e Continuous release – Refers to the business practices in order to make the desired
software timely and readily available to the stakeholders, i.e., customers and clients.

2.2.2 Automation and software quality

“Quality of the software is the key factor of IT business” (Perera et al., 2017). It ensures
business growth with customers’ satisfaction as priority. The set of attributes that are
mentioned in ISO 9126, an International Standard for Evaluation of Software Quality laid
down the six main characteristics of software quality, namely – functionality, reliability,
usability, efficiency, maintainability and portability.

A model is formulated in (1) to represent the relationship between DevOps and
quality based on CAMS – culture (C), automation (A), measurement (M), sharing (S), as
is given in equation (1) as follows:

 Capturing uncertainties through log analysis using DevOps 59

SQ 1.409 0.176(C) 0.272(A) 0.096(M) 0.172(S) (1)

Automation in the business model and high velocity advancement strongly relies on high
performing technologies (Alnafessah et al., 2021; Castellanos et al., 2021). With the
modernisation of tools used, the release-deployment time gap can be scaled down
immensely (Geissdoerfer and Wolisz, 2019). According to an ongoing research by the
KBR, the worldwide DevOps market will hit $8.8 billion by the year 2023 (Hemon et al.,
2019).

“Quality delivers with short cycle times need a high degree of automation”
(Yarlagadda, 2021) and that comes by advancement in tools and technologies.

Figure 2 DevOps tool tree (see online version for colours)

To provide more clarity over the categories and subcategories of varieties of tools that the
DevOps ecosystem contains, we have compiled the contributions (Kamuto and
Langerman, 2017; Dörnenburg, 2018; Veres et al., 2019; Ganeshan and Vigneshwaran,
2021; Yarlagadda, 2021). The DevOps toolset can be divided into 12 major categories
based on the DevOps Lifecycle Mesh (Veres et al., 2019). Figure 2 represents the major
categories as – planning tools, build tools, integration tools, deployment tools, run tools,
test tools, monitoring tools, notifying tools, analytics tools, application programming
interface (API) tools, security tools and low code development tools. Their further
sub-categories are as follows:

a Planning tools – Includes requirement management tools and issue tracking tools.

b Build tools – Includes source control management tools, repositories, integrated
development environment (IDE), agile management tools and development analysis
tools.

 60 R.K. Gupta et al.

c Integration tools – Includes continuous integration and continuous delivery (CI/CD)
tools.

d Deployment tools – Includes configuration management tools, deploy automation
tools and release management tools.

e Run tools – Can be cloud-based, containers and virtualisation tools.

f Test tools – Includes perf (a performance analysis tool)/load/stress management
tools, service virtualisation tools and functional tools.

g Monitoring tools – Includes monitoring and supervising tools and log management
tools.

h Notifying tools – Includes collaboration tools and feedback tools.

i Analytics tools – Includes tools for quickly and efficiently data analysis.

j API tools – Includes API management tools, API Dev service tools, API integration
tools and API.

k Security tools – Includes container security tools, application security tools and
DevSecOps.

l Low code development tools – Includes mobile Dev tools, etc.

3 Case study

This work is carried out at Intel private limited which is well-renowned for
manufacturing microprocessors and embedded software worldwide. Our team follows the
DevOps methodology to develop and release post-silicon platform specific software to
the clients. Every operation committed by the team is strictly carried out in the Agile
Scrum model.

3.1 Requirement elicitation and feasibility study

Requirement gathering and its analysis is the crucial phase of the project. Stakeholder’s
like high level management, developers and the end user of the feedback report and alert
system created due to continuous monitoring, their requirements are noted down under
categories based on their perspectives. Their expectations give insights into the functional
and non-functional requirements of the project.

Further, the feasibility studies of the requirements are outlined in Table 1 that has
helped in finalising the tools and technology that are needed and in designing the
blueprint of the architecture of the project. List of certain tools with brief description is
given in Table 2 which is followed by their detailed description.

1 Jira – is a free tool which is used for project management. It is basically used for
issue tracking and bug tracking. Features and dashboards provided, helps to follow
Agile scrum scheme easily.

 Capturing uncertainties through log analysis using DevOps 61

2 Git/GitLab – is a free, open-source version control tool, widely used for source code
management of small as well as large projects. It supports centralised and distributed
version systems with the advantages like reliability, scalability and security.

3 Jenkins – is an open-source continuous integration (CI) tool written in Java. It
accelerates the process of continuous delivery of software segments by integrating
them with different scans, test suites and deployment technologies. Easy installation
and wide community support make it more preferable by developers for integration
of different DevOps stages with the help of various plug-ins.

4 Skype – is a simple collaboration tool which provides audio calls, video calls and
instant messaging service. This freemium application allows users to communicate
on laptops, computers and mobile devices over the internet.

5 Splunk – is a data analytics tool used for continuous monitoring. Interactive
dashboards and reports with triggered action can be generated by collecting,
monitoring, analysing and visualising the system generated real-time telemetry data.

Table 1 Requirement overview

S. no. Requirement category Requirements

Save effort and time, lost due to uncertainties at infrastructure
and development level

Ensure smooth functioning among teams – IT, development
team, operation team, test and validation team

1 Business
requirements

Focus on overall productivity and contribution to timely
delivery of the error-free final product as committed to end

customers

Gain clarity on the blocking issues and figure out where and
what caused the uncertainties

Continuous infrastructure monitoring and uncertainty trend
analysis on real-time integration and development

Early detection and prediction of the issues of potential
failure causes of the development segment

2 Functional
requirements

Interactive visual reports and alert mechanism through
dashboards with least manual efforts

Modularity – to make the modules reusable and inheritable

Efficiency – to maximise the overall throughput

Accuracy – to authenticate the data integrity of the reports
with the actual output of the jobs

Automation – to reduce manual interference

Flexible – easy to use and readable

Modifiable – to change the logic as and when required

3 Non-functional
requirements

Platform independent – to avoid storing and processing on
any physical server

 62 R.K. Gupta et al.

Table 2 Tools description

S. no. Tools used Tool type

1 Jira Issue tracking tool

2 Git/GitLab Source code management tool/version control tool

3 Jenkins Integration tool

4 Skype Collaboration tool

5 Splunk Monitoring tool/analytics tool

3.2 Architectural orientation and technical design

Any DevOps project comprises of five stages majorly:

1 stage 0 – sync

2 stage 1 – build

3 stage 2 – integrate

4 stage 3 – validate

5 stage 4 – publish.

Figure 3 represents the architectural design of the project. Developers push and pull
codes from Git, which gets cloned in any build agent. A build agent can be a physical
server or container or cloud-based architecture as per the user needs. Whenever any
changes happen in Git, the CI/CD pipeline gets triggered in Jenkins. Build agent is in
continuous sync to a central Artifactory.

Figure 3 Architectural orientation of the project (see online version for colours)

Integration of these tools (Table 1) with CI/CD pipeline defines the build flow, which is
an interim process to enable consolidating source codes, branching and versioning of
CI/CD builds as shown in Figure 4.

 Capturing uncertainties through log analysis using DevOps 63

Figure 4 Build flow of CI/CD pipeline in Jenkins (see online version for colours)

Abstract build interface (ABI) is a DevOps package in Python which provides:

 common functionalities needed during build, signing, security, etc.

 consistent API and shared common libraries

 flexible packages for entire end-to-end CI/CD solutions.

Using ABI, teams have flexibility to choose packages/services as per the requirement
without wasting resources. Automatic feature updation and scalability to the business
growth are the benefits of ABI.

The generic approach is followed for extraction of relevant data from CI/CD pipeline
output, by maintaining a customised agile scrum methodology. When a developer
commits code on SCM, i.e., source code management tool GitLab, the commit is listened
to by Jenkins, which initiates the build of the components. Every build triggered in
Jenkins produces an output console log, where ‘what-to-log’ and ‘where-to-log’ is the
matter of concern.

‘What-to-log’ should provide enough information that is needed for uncertainties
diagnosis on ‘where-to-log’, an automated logging practice is adopted. Initially, the
console output log is manually tracked down in a physical server in which parsing script
is pre-stored. Parsing script is a code written in Python that is responsible for runtime
capturing unique build URL, build number, infrastructure details and error messages in
every build console output log.

Later, temporary placement of output logs and parsing script are to be node
independent and hence ABI shared library is used. The shared library written in Groovy
can be easily integrated with the Jenkins file during the build phase in Jenkins. We have
systematically analysed logs from historical repositories and extracted the relevant data
and derived a certain threshold condition for time stamped data in JavaScript Object
Notation (JSON) format collected by Splunk, processed the raw data and filtered out the
relevant information by using statistical analysis. Splunk’s visualisation support feature
has generated interactive reports and feedback with alerts and warning messages.
Correlating the analysed data to telemetry data has helped the team members to find out
the root cause of failures and also has eased the early detection of several failures.

 64 R.K. Gupta et al.

3.3 Dataset description

Collection of output console logs generated by Jenkins, resulted in a huge dataset with
more than 100 fields. The project runs in a dynamic environment which is unpredictable,
therefore normalisation of the relation table is avoided initially to prevent unnecessary
anomalies and ensure lossless data. Table 3 defines a few most important data fields with
schema description and constraints.

Table 3 Dataset schema

Field information
Filed name Value data

types/constraints
No. of values;
defined values

Description

build_number number [primary
key]

>100 (varies with
time range)

Holds unique build
number

build_url string [primary
key]

>100 (varies with
time range)

Holds unique build
URL

host string 12 (fixed) Holds the name of
main servers

job_duration number >100 (varies with
time range)

Holds job’s time
duration

Job_name string 96 (varies with
time range)

Holds job’s name

job_result string 3 (success, failure,
aborted)

Holds job’s result
after Execution

job_started_at string >100 (varies with
time range)

Holds job’s
starting time

Stages{}.id string >100 (varies with
time range)

Holds build’s stage
unique id

Stages{}.name string >100 (varies with
time range)

Holds build’s stage
name

Stages{}.duration string >100 (varies with
time range)

Holds build’s stage
time duration

Stages{}.error string >100 (varies with
time range)

Holds build’s stage
error message

Stages{}.start_time string >100 (varies with
time range)

Holds build’s stage
start time

Stages{}.status string 4 (fixed); (success,
not_built, failure,

aborted)

Holds build’s stage
status after
execution

Stages{}.childen{}.name string >100 (varies with
time range)

Holds build’s
stage’s children

name

Stages{}.childen{}.duration string >100 (varies with
time range)

Holds build’s
stage’s children
time duration

Stages{}.childen{}.error string >100 (varies with
time range)

Holds build’s
stage’s children
error message

 Capturing uncertainties through log analysis using DevOps 65

Table 3 Dataset schema (continued)

Field information
Filed name Value data

types/constraints
No. of values;
defined values

Description

Stages{}.childen{}.id string >100 (varies with
time range)

Holds build’s
stage’s children

unique ID

Stages{}.childen{}.start_time string >100 (varies with
time range)

Holds build’s
stage’s children

start time

triggered_by string >100 (varies with
time range);

(started by timer,
branch indexing,
started by user##)

Holds who
triggered the build

Queue_id number >100 (varies with
time range)

Holds unique
queue id

Queue_time number >100 (varies with
time range)

Holds queue time

Metadata~ string >100 (varies with
time range)

Different fields
starting with

metadata~ holds
data details

Figure 5 Data flowchart

 66 R.K. Gupta et al.

Table 4 Functional modules description

Functional block Inputs Functionality Output

Calls ABI Libraries and maps
Jenkins to different scripts.

Jenkins_Build() Any code pushed,
committed or
merged in GitLab. Creates virtual workspace for

different BUILD operations.

Raw unstructured
output console log
for every BUILD.

Context containing
BUILD
configurations and
environment setup
parameters.

Declares login credentials that
are needed for workspace
operations.

Raw unstructured
output console log
for every BUILD.

Construct file path for the
context downloaded in the
workspace.

Calls log parsing script to
parse output console log.

Mapper()

Workspace details.

Send parsed output to analyser
tool.

Parsed output file
containing error
message and
relevant details of
every BUILD.

Version 1: Raw
unstructured output
console log for
every BUILD.

Fetches error messages from
output console log and writes
in a file.

Parsed output file
containing error
message and
relevant details of
every BUILD.

Fetches error messages from
output console log and writes
in a file.

Creates and identifies error
patterns.

Log_Parser()

Version 2: Raw
unstructured output
console log for
every BUILD.

Assign error pattern to every
error message fetched.

Parsed output file
containing error
message and
relevant details of
every BUILD.

Version 1: Raw
unstructured output
console log for
every BUILD.

Data collection in SPLUNK
database.

Customised
interactive reports.

Pre-process unstructured raw
data to structured data.

Creates and identifies error
patterns.

Assign error pattern to every
error message fetched.

Group similar error patterns
into categories.

Querying database to generate
results.

Analyzer()

Parsed output file
containing error
message and
relevant details of
every BUILD.

Display statistical results and
customised reports and enable
alert and feedback mechanism.

Alert and feedback
mechanism.

 Capturing uncertainties through log analysis using DevOps 67

Table 4 Functional modules description (continued)

Functional block Inputs Functionality Output

Version 2: Raw
unstructured output
console log for
every BUILD.

Data collection in SPLUNK
database.

Customised
interactive reports.

Pre-process unstructured raw
data to structured data.

Querying database to generate
results.

Analyzer()

Parsed output file
containing error
message and
relevant details of
every BUILD.

Display statistical results and
customised reports and enable
alert and feedback mechanism.

Alert and feedback
mechanism.

Figure 6 CI/CD pipeline steps to BUILD triggered in Jenkins

3.4 Implementation

Whenever a developer pushes or commits any change in code in GitLab, CI/CD pipeline
triggers a job called ‘build’ in Jenkins – Jenkins_Build. It performs two functionalities in
parallel – first, it calls and integrates all the required ABI libraries, i.e., Mapper and
second, it creates a virtual workspace for different build stages. The ABI library Mapper
acts as a mediator between the log parsing script – Log_parser and Jenkins_Build. Build
stages running parallely in the workspace, produces an output console log which also
contains the overall job result. If the job result turns out to be a failure, Mapper calls
Log_parser. This parsing script is responsible for fetching the error messages and the

 68 R.K. Gupta et al.

relevant related details of the build and writing it down in a new file. The complete raw
unstructured console output and the parsed file created by Log_parser is pushed to the
analysis tool Splunk. The raw data collected, pre-processed and processed to generate
result and visuals is taken care by analyser, as represented in the flowchart Figure 5.

Table 4 represents the functional blocks, inputs, functionality and the desired outputs
of every block – Jenkins_Build(), Mapper(), Log_Parser() and Analyzer(), respectively.

Figure 7 Mapper() algorithm

Figure 8 Log_Parser() algorithm

 Capturing uncertainties through log analysis using DevOps 69

In stated blocks of Table 4 are well explained one-by-one in the algorithms given here.
Figure 6 represents CI/CD pipeline steps that are followed at every build that is triggered
in the Jenkins, i.e., Jenkins_Build(). Figure 7 represents an algorithm to map Jenkins to
other scripts, i.e., using Mapper().

Figure 8 represents algorithm for performing parsing on input data files and storing
results in the parsed output file. In version 1, Log_Parser() fetches error messages from
output console logs generated for every BUILD by Jenkins. The parsing script writes the
exact error lines along with the relevant details of BUILD into a new file containing
parsed data. And the analytics tool is responsible for creating and identifying error
patterns, assigning error patterns to every error message fetched and group similar error
patterns into categories.

Figures 9–16 represents Analyze_Log (Input_File, Parsed_File) which illustrates
tool-based steps that are followed to yield results from the data contained in the files.

 Figure 9 represents the collection of time stamped raw data from Input_File and
Parsed_File.

 Figure 10 processes raw unstructured time stamped data into structured time stamped
data.

 Figure 11 stores clean data into the SPLUNK database.

 Figure 12 represents the query generated results.

 Figure 13 creates and identifies error patterns from Parsed_File and assigns error
patterns to every error message fetched.

 Figures 14(a) and 14(b) queries the database to generate results and statistical
reports.

 Figure 15 displays the results in graphical visuals.

Figure 9 Raw unstructured time stamped data collected (see online version for colours)

In version 1, identifying the error patterns and assigning categories to the raw error
message imposed extra overheads on Splunk search engine. In the initial stage when the
data is collected via plug-ins is limited and the error patterns are stable, but with time, the

 70 R.K. Gupta et al.

data collected have become large and new error patterns are identified, assigning error
categories to raw error messages becomes unmanageable and time taking for the search
engine. The report generating time of the analyser tool eventually becomes slow due to
the overheads of processing the query and loading results.

Figure 10 Structured raw time stamped data in JSON format (see online version for colours)

(a)

(b)

(c)

 Capturing uncertainties through log analysis using DevOps 71

Figure 11 Clean data into Splunk database

Figure 12 Query generated results (see online version for colours)

Figure 13 Processing on query generated results to obtain desired fields (see online version
for colours)

Therefore, to overcome the limitations that are faced in version 1, the task of identifying
the error patterns and assigning categories to the raw error message is moved in the
parsing script in version 2. Logical implementation of the parsing script as in Figure 16
Log_Parser() is modified to perform this task and Analyze_Log() has handled data
collection, pre-processing of unstructured time stamped data and converting to structured

 72 R.K. Gupta et al.

time stamped data, querying the database to generate results and statistical reports and
displaying the results in graphical visuals.

Figure 14 (a) Query code to generated reports (b) Query generated reports targeting particular
information (see online version for colours)

(a)

(b)

The new approach in version 2, resulted in an improved performance of Splunk search
engine and quick loading of results. The efficient result generating and displaying time
has made it likable and more adaptable in the production environment.

Figure 15 Creating visuals for the reports displaying information

 Capturing uncertainties through log analysis using DevOps 73

Figure 16 Algorithm for parsing on input data file and store result in parsed output file

4 Execution results

This section summarises the results that are generated on real-time data collected from
Jenkins in Splunk database. The result is produced after performing Analyze_Log is
displayed in graphical visuals to provide more information on builds, platform/
infrastructure and performance trends as shown below:

Figure 17 Summarising build counts (see online version for colours)

4.1 Build analysis

Figure 17 depicts the summary of build counts – 1,308 failed builds, 1,725 successful
builds, 114 aborted builds, etc. Figures 18(a)–18(c) depicts the summary of build
statistics-based upon: builds per user as in Figure 18(a), top issues as in Figure 18(b), and

 74 R.K. Gupta et al.

builds per branch as in Figure 18(c) respectively. Also, Figure 20 depicts drilldown to
specific build details.

Figure 18 (a) Summarising build details per user statistics (b) Summarising build details top
issues statistics (c) Summarising build details per branch statistics (see online version
for colours)

(a)

(b)

(c)

 Capturing uncertainties through log analysis using DevOps 75

Figure 19 Summarising build details (see online version for colours)

4.2 Platform/infrastructure analysis

Figure 20 depicts summarisation infrastructure related details as node/mater correlation.
In other words, agent types are distributed for specific masters. Figure 21 depicts the
summary of slave server nodes details via agent types’ distribution based on standby and
overall agent pie chart.

Figure 20 Summarising infrastructure related details as node/master correlation
(see online version for colours)

Figure 21 Summarising slave server node details (see online version for colours)

 76 R.K. Gupta et al.

Figure 22 Continuous indicator of the pipeline health based on build’s end result

4.3 Performance analysis

Figure 22 depicts a continuous indicator of the pipeline health based on build end result.
Figure 23 depicts the summarising infrastructure setup services that are provided by
various modules such as Jenkins, Artifactory, Rancher, Klocwork, Teamcity, GitLab,
Microservices, Protex, HD-Des, Black Duck Binary Analysis, OneBKC, Splunk,
symbols. Figure 24 depicts continuous checks on active servers through statistics, i.e.,
average build time per team.

Figure 23 Summarising infrastructure setup services provided by the various modules
(see online version for colours)

Figure 24 Continuous check on active servers through statistics (see online version for colours)

 Capturing uncertainties through log analysis using DevOps 77

5 Conclusions and future works

This study demonstrates that certain difficulties must be overcome on the development
and operational sides. To begin with, digging up historical repositories is difficult due to
the migration to new tools and technology. Creating a benchmark dataset that includes
real-time issues concerns is now a time-consuming effort. Secondly, efficient and
automated storage of associated source codes and logs in run-time repositories is
necessary. Thirdly, collecting and analysing various types of real-timed data must be
reliable and always available for infrastructure support. Finally, providing timely
feedback, assessment and evaluation reports to team members with specific information
is enormously challenging.

This paper proposes a tool for enriching log analysis and reduces manual efforts
which automates the correlation among various telemetry data. The proposed solution is
quite supportive for developing and maintaining the quality of continuous practices that
are used in the DevOps project. This article analyses logs in depth and encourages quality
assessments and feedback to developers, which helps to diagnose telemetry data more
thoroughly. This research conducts an empirical investigation to establish conceptual
clarity about integration pipeline architecture and examine how the automation speeds up
and expands the system feedback loop in the continuous monitoring.

All observations of the case study are limited to the organisation’s exposure to
DevOps methodology. In the future, the amalgamation of machine learning techniques
for classification and clustering, can build a more powerful model which will efficiently
classify the types of uncertainties and cluster them according to their source and end
results. After attaining maturity, the model can predict the potential issues beforehand
and forecast them with the evidence produced while analysing the system logs.

References

Alnafessah, A., Gias, A.U., Wang, R., Zhu, L., Casale, G. and Filieri, A. (2021) ‘Quality-aware
DevOps research: where do we stand?’, IEEE Access, Vol. 9, No. 9, pp.44476–44489.

Castellanos, C., Varela, C.A. and Correal, D. (2021) ‘ACCORDANT: a domain specific-model and
DevOps approach for big data analytics architectures’, Journal of Systems and Software,
Vol. 172, No. 4, p.110869.

Chen, B. (2019) ‘Improving the software logging practices in DevOps’, in 2019 IEEE/ACM
41st International Conference on Software Engineering: Companion Proceedings
(ICSE-Companion), IEEE, May, pp.194–197.

Dörnenburg, E. (2018) ‘The path to DevOps’, IEEE Software, Vol. 35, No. 5, pp.71–75.

Fedushko, S., Ustyianovych, T., Syerov, Y. and Peracek, T. (2020) ‘User-engagement score and
SLIs/SLOs/SLAs measurements correlation of e-business projects through big data analysis’,
Applied Sciences, Vol. 24, No. 10, pp.1–16.

Frijns, P., Bierwolf, R. and Zijderhand, T. (2018) ‘Reframing security in contemporary software
development life cycle’, in 2018 IEEE International Conference on Technology Management,
Operations and Decisions (ICTMOD), IEEE, November, pp.230–236.

Ganeshan, M. and Vigneshwaran, P. (2021) ‘A survey on DevOps techniques used in cloud-based
IOT mashups’, in ICT Systems and Sustainability, pp.383–393, Springer, Singapore.

Geissdoerfer, K. and Wolisz, A. (2019) ‘Walker: DevOps inspired workflow for experimentation’,
in IEEE INFOCOM 2019-IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS), IEEE, April, pp.277–282.

 78 R.K. Gupta et al.

Gokarna, M. and Singh, R. (2021) ‘DevOps: a historical review and future works’, in 2021
International Conference on Computing, Communication, and Intelligent Systems (ICCCIS),
IEEE, February, pp.366–371.

Hemon, A., Fitzgerald, B., Lyonnet, B. and Rowe, F. (2019) ‘Innovative practices for knowledge
sharing in large-scale DevOps’, IEEE Software, Vol. 37, No. 3, pp.30–37.

Kamuto, M.B. and Langerman, J.J. (2017) ‘Factors inhibiting the adoption of DevOps in large
organisations: South African context’, in 2017 2nd IEEE International Conference on Recent
Trends in Electronics, Information & Communication Technology (RTEICT), IEEE, May,
pp.48–51.

Katal, A., Bajoria, V. and Dahiya, S. (2019) ‘DevOps: bridging the gap between development and
operations’, in 2019 3rd International Conference on Computing Methodologies and
Communication (ICCMC), IEEE, March, pp.1–7.

Kersten, M. (2018) ‘A Cambrian explosion of DevOps tools’, IEEE Computer Architecture Letters,
Vol. 35, No. 2, pp.14–17.

Koilada, D.K. (2019) ‘Business model innovation using modern DevOps’, in 2019 IEEE
Technology & Engineering Management Conference (TEMSCON), IEEE, June, pp.1–6.

Perera, P., Silva, R. and Perera, I. (2017) ‘Improve software quality through practicing DevOps’, in
2017 Seventeenth International Conference on Advances in ICT for Emerging Regions
(ICTer), IEEE, September, pp.1–6.

Pietrantuono, R., Bertolino, A., De Angelis, G., Miranda, B. and Russo, S. (2019) ‘Towards
continuous software reliability testing in DevOps’, in 2019 IEEE/ACM 14th International
Workshop on Automation of Software Test (AST), IEEE, May, pp.21–27.

Pingrong, L., Xiaoquan, S. and Junqin, Y. (2021) ‘Research on the application of DevOps in the
smart campus of colleges and universities’, in Journal of Physics: Conference Series, IOP
Publishing, April, Vol. 1883, No. 1, p.12101.

Rafi, S., Yu, W., Akbar, M.A., Mahmood, S., Alsanad, A. and Gumaei, A. (2021) ‘Readiness
model for DevOps implementation in software organizations’, Journal of Software: Evolution
and Process, Vol. 33, No. 4, p.e2323.

Stahl, D., Martensson, T. and Bosch, J. (2017) ‘Continuous practices and DevOps: beyond the
buzz, what does it all mean?’, in 2017 43rd Euromicro Conference on Software Engineering
and Advanced Applications (SEAA), IEEE, August, pp.440–448.

Trubiani, C., Jamshidi, P., Cito, J., Shang, W., Jiang, Z.M. and Borg, M. (2018) ‘Performance
issues? Hey DevOps, mind the uncertainty’, IEEE Software, Vol. 36, No. 2, pp.110–117.

Veres, O., Kunanets, N., Pasichnyk, V., Veretennikova, N., Korz, R. and Leheza, A. (2019)
‘Development and operations – the modern paradigm of the work of IT project teams’, in 2019
IEEE 14th International Conference on Computer Sciences and Information Technologies
(CSIT), IEEE, September, Vol. 3, pp.103–106.

Yarlagadda, R.T. (2021) ‘DevOps and its practices’, International Journal of Creative Research
Thoughts, ISSN: 2320-2882.

