
 
International Journal of Data Mining, Modelling and
Management
 
ISSN online: 1759-1171 - ISSN print: 1759-1163
https://www.inderscience.com/ijdmmm

 
A deep-learning approach to game bot identification via
behavioural features analysis in complex massively-cooperative
environments
 
Alfredo Cuzzocrea, Fabio Martinelli, Francesco Mercaldo
 
DOI: 10.1504/IJDMMM.2023.10055201
 
Article History:
Received: 28 September 2020
Last revised: 06 May 2021
Accepted: 11 June 2021
Published online: 04 April 2023

Powered by TCPDF (www.tcpdf.org)

Copyright © 2023 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijdmmm
https://dx.doi.org/10.1504/IJDMMM.2023.10055201
http://www.tcpdf.org


   

  

   

   
 

   

   

 

   

   Int. J. Data Mining, Modelling and Management, Vol. 15, No. 1, 2023 1    
 

   Copyright © 2023 Inderscience Enterprises Ltd. 
 
 

   

   
 

   

   

 

   

       
 

A deep-learning approach to game bot identification 
via behavioural features analysis in complex 
massively-cooperative environments 

Alfredo Cuzzocrea* 
iDEA Lab, 
University of Calabria, 
Rende, Italy 
and 
LORIA, 
Nancy, France 
Email: alfredo.cuzzocrea@unical.it 
*Corresponding author 

Fabio Martinelli and Francesco Mercaldo 
Institute for Informatics and Telematics, 
National Research Council of Italy (CNR), 
Pisa, Italy 
Email: fabio.martinelli@iit.cnr.it 
Email: francesco.mercaldo@iit.cnr.it 

Abstract: In the so-called massively multiplayer online role-playing games 
(MMORPGs), malicious players have the possibility of obtaining some kind of 
gains from competitions, via easy victories achieved thanks to the introduction 
of game bots in the games. In order to maintain fairness among players, it is 
important to detect the presence of game bots during video games so that they 
can be expelled from the games. This paper describes an approach to 
distinguish human players from game bots based on behavioural analysis. This 
implemented via supervised machine learning (ML) and deep learning (DL) 
algorithms. In order to detect game bots, considered algorithms are first trained 
with labelled features and then used to classify unseen-before features. In this 
paper, the performance of our game bots detection approach is experimentally 
obtained. The dataset we use for training and classification is extracted from 
logs generated during online video games matches of a real-life MMORPG. 
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1 Introduction 

Video games rapidly evolved in recent years from single player systems to distributed 
systems in which a community of players shared a single video game. This has given rise 
to team game organisations, tournaments and competitions of various types. This 
evolution is characterised by different states of progress, which are briefly described 
below. Until 1990, video games were essentially single systems used by a single player. 
In the 90s video games began to be distributed through internet (Adams, 2014) and 
played by community of players also from different countries (Seay et al., 2004; 
Wellman and Gulia, 1999). In the late 90s, massively multiplayer online role-playing 
games (MMORPGs) began to spread (Quandt and Kröger, 2013). These are role-playing 
video games with a large number of players sharing the games via network infrastructure. 
MMORPGs are the basis of a vast video game market with a large number of 
heterogeneous customers in terms of nationality, age, type of work but who share the 
same interest in the same types of video games (Yee, 2008; Griffiths et al., 2004; Taylor, 
2009). Video game providers therefore develop more and more innovative systems to 
arouse increasing interest in their customers. For example, since the 2000s video game 
providers have vastly expanded the platforms that can be used by customers for playing, 
which can range from personal computers to various types of mobile devices to dedicated 
systems that can expand the type of interaction with the player. However, recently, 
automatic players have been introduced into the communities of human players. 
Automatic players, or game bots, are software programs which, using artificial 
intelligence principles, play the video game instead of human players (Yampolskiy and 
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Govindaraju, 2008; Fernández-Ares et al., 2017; Cocar et al., 2017; Kim et al., 2005) thus 
attacking the whole game infrastructure. These types of attacks lead to various types of 
problems for video game providers. First of all, the performance of game bots is 
generally much higher than that of human players in terms of speed, accuracy and 
duration (Aziz et al., 2017; Wang et al., 2017). Some video games are giving away 
cybernetic money which can sometimes be converted into real money (Paulson and 
Weber, 2006; Esmaeili and Woods, 2016). Game bots can win more than human players 
who in these cases can feel not only frustrated but really angry. In these cases, human 
players can leave the gaming communities causing significant market losses. Secondly, in 
such ways attackers gain popularity in the player community with very little efforts. 

Another possibility, as described in Chen et al. (2004), may be that attackers, for 
some kind of economic advantage, may wish to acquire confidential information about 
other players using game bots. In conclusion, game bots can be a serious problem for 
video game producers because they can cause several problems in the video game market 
(Kang et al., 2016). For this reason, new approaches to detect the existence of game bots 
in the player communities are constantly being developed. Moreover, it must be 
considered that the development of game bots must follows the continuous complexity 
increase of video games. 

Consequently, the techniques to detect existing game bots become more and more 
sophisticated. Therefore, recent years have seen the development of game bots detection 
approaches ranging from the implementation of a series of Turing tests as described in 
Hingston (2009), to the analysis of network traffic as described in Lo and Chen (2008), to 
the scanning of bots. Common problems with these approaches are that they generally 
interfere with video games and can easily be avoided by game bots. 

In this paper, a game bot detection approach which is based on the behaviour of video 
game players is worked out. Our starting hypothesis is that human players and game bots 
behave differently during the game. 

For this reason, we defined behavioural features that can discriminate human players 
from game bots. The separation is achieved through classifiers that we build using 
machine learning (ML) (Bernardi et al., 2017a, 2017b; Aha and Kibler, 1991) and deep 
learning (DL) (Ioannidou et al., 2017; Rav et al., 2017; Deng and Yu, 2014; LeCun et al., 
2015; Bengio et al., 2009; Collobert and Weston, 2008; Dahl et al., 2012 Deng et al., 
2014) principles. 

The effectiveness of the set of proposed behavioural features and of the proposed 
classifiers are verified using a real video game called Ainon: The Tower of Eternity 
(https://en.aion.gameforge.com/website/). With the datasets obtained by the video game 
we assess the discriminative power of the proposed approach and compare it with 
classifiers normally used for this purpose. We chose Ainon because it is a  
very popular MMORPG (https://www.badosoft.com/knowledgebase/top-10-most-played-
mmorpgs.php), because it is a free fantasy game but above all because the game producer 
made publicly available its dataset. The dataset was obtained by collecting and labelling 
the operations carried out by both human and robotic players during the game. 

This paper is organised in the following way. Section 2 describes some preliminary 
information about ML and DL while Section 3 describes the used data and the 
behavioural features reporting some descriptive statistics. Section 4 describes the 
developed classification approach while in Section 5 we report the experimental results. 
In Section 6, we discuss significant work done previously in this area. Section 7 reports 
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and discusses some threats of the described approach, while Section 8 describes 
concluding remarks and future work. 

2 Background: classification algorithms 

In this Section, we provide some preliminary information on the classification algorithms 
we use in this work for evaluating the discrimination between human players and game 
bots using our behavioural features. 

The observations are sequences of features obtained from a running video game. Our 
algorithms are trained using observations labelled as belonging to the ‘human player’ 
class if the video game is played by a human being. Conversely, they are labelled ‘game 
bots’ if the video game is played by a bot. 

The supervised classification algorithms estimate the category to which an unseen 
before input observation belongs, based on a training phase that uses observations whose 
category of belonging is known. 

Our classification system is based on ML and DL algorithms. 

2.1 ML algorithms 

ML algorithms are able to learn their behaviour directly from observations without being 
explicitly programmed (Mitchell, 1997) using artificial intelligence approaches. 

ML algorithms can be the supervised or unsupervised ones. The supervised ones 
work upon a series of observations provided to the algorithm consisting of data and their 
belonging classes, called training set. The ML algorithm determines an input-output 
function based on the training set. 

The nonlinear input-output function built by the ML algorithm after the training phase 
is then used to estimate the class of unseen before data. 

In unsupervised ML algorithms, instead, input data is completely unlabeled. The 
algorithms build the input output function by uncovering the patterns hidden in the data. 

The unsupervised ML algorithms cannot derive the correctness of the model itself 
because the training data is not labelled but they can obtain the statistical density of the 
data. In our case the unsupervised drives could be used to summarise the main 
characteristics of the data. 

In this paper, we use different types of supervised ML algorithms to classify between 
human players and game bots. The ML algorithms used in this paper are divided in 
decision tree (DT) algorithms, Bayesian networks (BN) type algorithms, multinomial 
logistic regression (MLR) classifiers, regression classifiers (RC), rules (R) and lazy (L) 
classifiers. 

DTs encode the training information in a tree in which information on the data is put 
in the branches and the decisions are put in the leaves of the tree. The following different 
DT algorithms are used in this paper, namely the J48 DT described in Mihǎescu et al. 
(2015), the decision stump described in Iba and Iba (1992), Hoeffding tree of Hoeglinger 
and Pears (2007), random forest of Breiman (2001), random tree described in Zhao and 
Zhang (2008), REP tree of Nadiammai and Hemalatha (2013) and logistic model tree 
(LMT) described in Landwehr et al. (2005). 

The class of algorithms called BN are based on a graph in which the nodes represent 
the random variables and the arcs represent probability dependencies among them. The 
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BN graph does not contain cycles (Friedman et al., 1997). Several algorithms belonging 
to this category are used in this work, namely BayesNet (Lee and Shimoji, 1993), naïve 
Bayes (John and Langley, 1995), naïve Bayes multinomial (McCallum and Nigam, 1998) 
and naïve Bayes multinomial text (Kibriya et al., 2004). 

The logistic regression algorithm is a two-class classifier and hence admits two 
possible output values. MLR is its multiclass extension and therefore its output values 
can be greater than two. MLR estimates the probability of a random variable starting 
from a set of independent variables. In this work we used two algorithms belonging to the 
MLR namely logistic and MLP (Buhrke and LoCicero, 1992). 

In the regression-based classifiers RC (Freedman, 2009) the dependent variable is 
categorical. The probability of a binary response based on several features is usually 
estimated by means of a binary logistic model. Moreover, the Adaboost ML classification 
algorithms (Kégl, 2013) discover the relationships between the studied variables by 
analysing a large amount of data. 

In particular, the JRrip algorithm (Cohen, 1995), which belongs to the Adaboost ML 
class, has been used in this paper. 

The ML algorithms used in this study are listed in Table 1, where each name is 
specified with a brief description of the algorithms. 

2.2 DL algorithms 

DL is a branch of Artificial Intelligence that refers to artificial neural networks. It is a 
type of hierarchical learning that is part of a wider family of ML methods (Deng and Yu, 
2014) that learn how to solve problems directly from data, as opposed to the algorithms 
that are built expressly for the execution of specific tasks. 

DL architectures have been successfully applied in many fields, for example in 
solving computer vision problems, in automatic recognition of spoken language, in 
natural language processing, in audio recognition and in bioinformatics (Ioannidou et al., 
2017; Rav et al., 2017). 

DL algorithms constitute a class of ML algorithms that use various levels of cascaded 
nonlinear units to perform feature extraction and transformation tasks. The input of each 
level uses the output of the previous level. The algorithms can be both supervised and 
unsupervised and applications include pattern analysis and classification. DL algorithms 
learn multiple levels of representation that correspond to different levels of abstraction; 
creating a hierarchy of concepts. 

In this paper, two types of DL algorithm are used, namely the multilayer perceptron 
(MLP) and the convolutional neural network (CNN). Their structures are composed by a 
number of layers formed by a number of neurons. A neuron is a computing element 
which adds all of its inputs and then uses an activation function, which is nonlinear 
(Gardner and Dorling, 1998). 

We chose these algorithms due to the following reason. These algorithms are a kind 
of DL algorithms, and it has been already proved they are suitable to support the 
knowledge discovery extraction from complex environments like the one we investigate, 
with accuracy well-beyond classical data mining and ML approaches, similarly to other 
research experiences (e.g., Hung et al., 2017). 
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Normally MLP consists of three layers trained by means of a backpropagation 
technique (Ruck et al., 1990). CNN are a family of neural networks widely used in the 
field of computer vision and, more generally, with data that have spatial relationships. 

Their graphical representation consists of a graph with a series of levels where, 
starting from a complex input, information is gradually extracted from the input data, or 
features, which are increasingly representative in the context of the problem under 
consideration. 

CNNs therefore follow a tiered architecture, typically non-cyclical. The most 
important levels are the convolution layers, from which it takes its name (Kim, 2017). 

A CNN can have many dozens of layers, each of which learns to detect the different 
features of an image. Images are analysed at different resolutions, and the output of each 
convolved image is used as input for the next layer. The great advantage of CNNs is that 
they can automatically optimise the features for image recognition without being defined 
by the researchers (Krizhevsky et al., 2012). 
Table 1 The ML algorithms used in our research 

Method Algorithm Algorithm description 
DT J48 A DT based on the attribute values of the training dataset is 

created in order to classify a new item. The set of items 
discriminating the various instances is extracted so when a new 
item is encountered it can be classified. 

Decision Stump A DT model with one internal root node immediately connected 
to the terminal nodes. The prediction is allowed by a decision 
stump basing on the value of just one input feature. 

Hoeffding tree An incremental, anytime DT induction algorithm learning from 
massive data streams. Basing on the assumption that the 
distribution generating examples does not change over time, it 
often uses a small sample to choose an optimal splitting attribute. 

Random forest It operates by constructing, at training time, a multitude of DTs 
and outputting the class that is the mode (the most frequent value 
appearing in a set of data) of the classes of the individual trees. 

Random tree It constructs a tree containing some randomly chosen attributes at 
each node. No pruning is performed. 

Rep tree It builds a DT using information gain/variance and reduces errors 
using reduced-error pruning. The values are ordered for numeric 
attributes once and missing values are recovered with by splitting 
the corresponding instances into pieces. 

LMT LMTs are built as classification trees with logistic regression 
functions at the leaves. This algorithm can deal with missing 
values, multi-class and binary target variables, nominal and 
numerical. 

BN BayesNet Bayes network learning using various search algorithms and 
quality measures to learn the probability density functions of 
individual pattern classes from a collection of learning samples. 

Naïve Bayes It uses numeric estimator precision values selected basing on the 
analysis of the training data. 
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Table 1 The ML algorithms used in our research (continued) 

Method Algorithm Algorithm description 
BN Naïve Bayes 

Multinomial 
It is based on a multinomial event model where samples 
(described as feature vectors) represent the frequencies with 
which certain events have been generated. The multinomial vector 
describes the probability that each event occurs. 

Naive Bayes 
multinomial text 

It is similar to naïve Bayes multinomial but it operates directly 
and exclusively on text. 

MLR Logistic It builds a MLR model with a ridge estimator. 
MLP It is a feedforward artificial neural network model mapping sets of 

input data onto a set of outputs. It consists of multiple layers of 
nodes related in a directed graph where each layer is fully 
connected to the next one. Except for the input nodes, each node 
is a neuron with a nonlinear activation function. 
A supervised learning technique (called backpropagation) is used 
for training the network. 

RC AdaBoostM1 It is usually used in conjunction with some other learning 
algorithms with the aim to improve their performance. The output 
of these other learning algorithms is combined into a weighted 
sum representing the final output of the boosted classifier. 

R JRip It analyses classes basing on their increasing size and an initial set 
of rules for each class is generated using incremental reduced 
error. For the first class it analyses all the examples of a particular 
judgement in the training data and finds a set of rules able to 
cover all the class members. These operations are repeated for the 
next class until all the classes have been covered. 

L IBk It is an application of the K-nearest neighbour’s algorithm where 
a parameter specifies the number of nearest neighbours allowed to 
classify a test instance and the outcome is determined by majority 
vote. 

3 The features model and the dataset 

In this paper, we experimentally prove that, by using a series of behavioural features, it is 
possible to distinguish human players from game bots. Experimental evidence is provided 
through the analysis of a video game very popular in the MMORPG community and 
described in Kang et al. (2016). Behavioural features can be divided into the following 
classes: player information (PI), player actions (PA), group activities (GA), diversity of 
social interactions (SID) and network measures (NM). The feature classes we have 
considered in this work, along with their final features, are listed in Table 2 for each class 
reported above. 

It is important to highlight why these behavioural features have been selected. 
According to our experimental evaluation of classification settings and parameters on our 
target dataset, these features have exposed the best domain knowledge capture and 
classification accuracy among all the available combinations of features that can be 
derived from the dataset. To this end, classical feature testing and extraction approaches 
have been applied. 
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Let’s start with the PA features. In general, the features belonging to the PA class 
represent the different behaviour performed by human players or game bots which should 
be very different. For example, consider the feature called PA1 in Table 2. It denotes the 
sitting rate of the players. Normally human players sit less frequently than bot players so 
this number should differentiate between the two players. Consider now the feature PA5. 
It denotes the amount of points earned by killing enemies. These points could be used to 
buy various types of item or to set the level of the player. In particular, in the Aion game 
the amount of kill points increases the rank of the player. In the Aion game, the rank of 
the player leads to more power which increases the easiness to kill enemies. Now, it is 
obvious that game bot can easily acquire more power than human player because they 
can play continuously since the bots is not needed to eat or to sleep. Let’s consider for 
example the feature class we called ‘GA’, in particular GA1 and GA2. These two features 
represent the amount of activities related to social relationships among players. The first 
feature for instance is the average time spent by party play which is an association among 
players for solving difficult steps in the game. The way that human players spend their 
time during a party play is different from that spent by a bot because they are supported 
by a different type of socialisation. This difference is highlighted by the features defined 
under the GA class. According to the social diversity issue between human players and 
game bots, the entropy of party play is another effective feature for representing the 
diversity between the two types of players. In fact, game bots normally execute single 
actions while human players normally execute multiple tasks. 
Table 2 The features involved in the study with the correspondent category 

Category Features 
Player 
information 

Login frequency (PI1), playtime (PI2), game money (PI3), number of IP 
address (PI4) 

Player actions Sitting (PA1), earning experience points (PA2), obtaining items (PA3), 
earning game money (PA4), earning player kill points (PA5), harvesting 
items (PA6), resurrecting (PA7), restoring experience points (PA8), being 
killed by a non-player and/or player character (PA9), using portals (PA10) 

Group activities The average duration of party play (GA1), number of guild activities (GA2) 
Social interaction 
diversity 

Entropy of party play (SID1) 

Network 
measures 

Degree centrality (NM1), betweenness centrality (NM2), closeness (NM3), 
eigenvector centrality (NM4), eccentricity (NM5), authority (NM6), hub 

(NM7), PageRank (NM8), clustering coefficient (NM9) 

The network interactions between the players are described in the features described in 
Table 3. For this purpose, a graph is used in which the nodes represent the players and the 
arcs their interactions. For example, an arc between two nodes could represent some type 
of transfer between two players. 

The dataset used to train and test the algorithm proposed in this paper has been made 
publicly available by the videogame company and consists of the log files  
generated by running the Ainon video game continuously for 88 days by 49,739 players 
(https://sites.google.com/a/hksecurity.net/ocslab/Datasets/game-bot-detection). The game 
company has identified 7702 players as game bots. Since all the entire dataset was 
available, we do not consider sampling approach to collect data. On the other hand, if 
some of the applied ML/DL techniques were requiring sampling, then we used the kind 
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of sampling (e.g., uniform, stratified, etc.) that the respective technique is considering the 
best in order to magnify the pattern discovery effect. 

The identification of the game bots was obtained first by monitoring and was then 
checked and verified manually. The dataset provided by the game company was then 
extended with our features that were labelled as generated by human players or game bots 
according to what is indicated by the company. Furthermore, all personal identity 
information has been removed from the entire data set for privacy reasons. 
Table 3 The features belonging to the NM category with their description 

NM category feature Description 
Degree centrality This feature represents the centrality focused on the degree. The more 

edges an actor has, the more important it is. 
Betweenness 
centrality 

It counts the number of shortest paths between two nodes on which a 
given actor resides. 

Closeness centrality An actor is considered important if it is relatively close to all other 
actors. Closeness is based on the inverse of the distance of each actor 
to every other actor in the network. 

Eigenvector centrality Indicates that a given node has a relationship with other valuable 
nodes. A high eigenvector value for an actor means that a node has 
several neighbours with high eigenvector values. 

Eccentricity The eccentricity of node v is calculated by computing the shortest path 
between node v and all other nodes in the graph; then the longest 
shortest path is chosen. 

Authority Exhibits a node pointed to by many good hubs. 
Hub Exhibits a node that points to many good authorities. 
PageRank Assigns a numerical weight to each element of a hyperlinked set of 

documents, such as the World Wide Web, with the purpose of 
‘measuring’ its relative importance within the set. 

Clustering coefficient It quantifies how close neighbours are to being a clique: a clique is a 
subset of all of the edges connecting pairs of vertices of an undirected 
graph. 

3.1 Descriptive statistics 

A common way to describe a random variable is through its statistical moments such as 
the central trend and dispersion indices. The most used central trend indices are the 
average, the median, the mode while the most used dispersion indices are the quartiles, 
the variance and the mean square deviation. Statistical distributions can be briefly 
described by other indices such as skewness and kurtosis of the distribution. The 
skewness index serves to distinguish functions of symmetric distributions such as the 
Gaussian function from functions that are displaced with respect to the average value. 
The kurtosis index measures the thickness of the tails or the degree of flattening of the 
distribution. The range of a distribution defines the range of variability of the variables 
and is given by the difference between the maximum and minimum value of the variable. 
Furthermore, the distribution of a variable can be described using graphic notations such 
as box-plot and violin-plot which are a way to graphically represent groups of numerical 
data through their quartiles. For example, box-plots are a non-parametric notation in the 
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sense that they are provided without referring to the underlying distribution. In other 
words, box-plots graphically represent groups of numeric data through their quartiles. 

Figures 1, 2, 3, 4 and 5 show the box plots for a subset of features belonging to each 
category considered by the proposed method. Specifically, in Figures 1, 2, 3 and 4 we 
report the box plots of a subset of features of the class human players and game bots 
respectively. To keep discussion focused we only show a subset of the box-plots related 
to interesting distributions. 

In particular, the box plot shown in Figure 1 represents the PL2 feature, that is, the 
game time. We see that using this feature the difference between human players and 
game bots is well separated as human players have a small inter-quartile range when 
compared to game bots. In this case the median values fall out of the inter-quartile range 
as the game bots are able to play longer and without interruption than the human 
counterpart. 

Figure 1 The box plot relating to the game bot and human distributions for the playtime feature 
belonging to the category PI (see online version for colours) 

 

Figure 2 The box plot relating to the game bot and human distributions for the earning 
experience points feature, belonging to the category PA (see online version for colours) 
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The box-plot related to the PA2 feature is shown in Figure 2. The PA2 feature describes 
the ability of a player to acquire points for purchasing power. Here too there is a clear 
distinction between human players and game bots, due to the fact that game bots are able 
to acquire more points than human players. If we look at Figure 2 it is evident that the 
median of the distribution of bots is greater than the third quartile of the distribution of 
human players. 

The box plot of the GA1 feature is shown in Figure 3. In this case, unlike the previous 
cases, the box plot for human players is greater than that of game bots. This is justified by 
the behaviour of the players belonging to the two categories. While human players have 
an inherent tendency to team up with others to solve difficult problems, game bots only 
attempt to gain points for increasing power. 

Figure 3 The box plot relating to the game bot and human distributions for the playtime feature 
belonging to the category GA (see online version for colours) 

 

Figure 4 The box plot relating to the game bot and human distributions for the degree centrality 
feature belonging to the category NM (see online version for colours) 
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Another example is represented by Figure 4, where the box plots related to the NM1 
feature are shown, which shows how the box plots of human players are greater than the 
game bots. This feature is also due to the fact that human players tend to have a greater 
relationship with other players than game bots. Finally, in the example shown in Figure 5, 
the game plots relating to the NM2 feature are shown. As in the previous examples we see 
that in human players the feature has a wider inter-quartile range than game bots, due to 
the fact that human players unlike game bots look for the shortest path when they have to 
reach a goal. 

4 The proposed classification approach 

The approach described by us in this paper achieves the classification of video game 
players between humans and bots through a sequence of operations, listed below and then 
described in detail: 

1 initially the dataset is pre-processed to normalise the data, clean up the whole from 
spurious data and label 

2 the supervised classification algorithm is trained before classification 

3 the best features are selected. 

The following subsection discusses each step in more details. 

Figure 5 The box plot relating to the game bot and human distributions for the betweenness 
centrality feature belonging to the category NM (see online version for colours) 

 

Figure 6 The pre-processing step (see online version for colours) 
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4.1 Pre-processing 

As illustrated in Figure 6, data pre-processing consists of cleaning the raw data by 
eliminating incomplete acquisition sessions and normalising the data. From the cleaned 
up data the training set and the test set are obtained. All data are obviously labelled as 
relating to human players or game bots. 

4.2 Classification 

The classifications carried out in this paper are based on the classification algorithms 
described above, i.e., those belonging to the ML class (Canfora et al., 2013, 2015) and 
those to the DL class (Deng and Yu, 2014). All the algorithms belonging to these two 
classes are used, namely those described in Table 1 for the ML class and the MLP and 
CNN algorithms for the DL class. The DL algorithms are related to one layer and two 
layers. Operationally both the ML and DL algorithms can be described in Figure 7. The 
classification is applied to the features described above and belonging to the PI, PA, GA, 
SID and NM categories. In Section 5 we report the obtained results. 

Figure 7 The classification step (see online version for colours) 

 

Figure 8 The feature selection process (see online version for colours) 

 

4.3 Feature selection 

In the context of the processing or classification of raw data, the extraction of features 
from raw data is necessary to reduce the quantity of data by eliminating redundant 
information. Redundant information is obtained by identifying the most important aspects 
of the data itself. Of all the features that can be defined and extracted from the data, some 
better identify the most important aspects of the data and give better results than others. 
In this paper we have used three feature selection schemes, namely the BestFirst, the 
greedy stepwise and the ranker. The first approach identifies the features that lead to the 
best results giving the learning technique and the metric used by the classification 
algorithm. The second approach selects the best features using an iterative greedy 
heuristic. The third feature selection approach ranks the effectiveness of each feature and 
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chooses the top ones for classification. To obtain the best results in each test, we have 
always used the best features based on an initial search, which can be schematised in 
Figure 8. 

5 The evaluation and analysis 

In the previous Section 2, in particular in Table 1 we have reported the ML and DL 
category algorithms used in this paper while in Section 3; in particular in Table 2 and 
Table 3, the features that describe respectively the behaviour of the players and the use of 
the network are listed. In Section 3 we also describe the used dataset. 

We now describe the experimental tests carried out with the described algorithms and 
dataset. First we specify the accuracy measures used, then we report the results obtained. 

5.1 Evaluation setting 

The classifications were made using Weka (https://www.cs.waikato.ac.nz/ml/weka/), 
which is a software tool widely used to make classifications with ML algorithms. For the 
classifications with the DL algorithms we used the open-source Deeplearning4j 
(https://deeplearning4j.org/) library written in Java and distributed under the Apache 
License 2.0 license. Classifications are evaluated using the following metrics: precision, 
recall, F-measure and ROC area. Precision and Recall measurements are calculated with 
the following equations: 

+
p

p p

t
Precision

t f
=  

+
p

p n

t
Recall

t f
=  

where tp is the number of true positives and fn is the number of false negatives. 
In other words, Precision is the proportion of correct positive classifications actually 

correct. Recall is the ratio between the number of correct classifications and the total 
number of results. In other words, Recall is the proportion of correct positive 
classification identified correctly. The F-measure is the weighted average of the 
Precision and Recall measurements: 

- 2
+

Precision RecallF Measure
Precision Recall

∗= ∗  

The last metric that we used in this paper is the ROC area. The ROC curve, also called 
receiver operating characteristic curve, represents the curve of true positives versus false 
positive at different classification thresholds. The ROC area is the area under the ROC 
curve, and measure the performance of classification across all possible classification 
thresholds. The validation of the classification algorithms was carried out according to 
the principles of k-fold cross-validation, which we summarise as follows. The set of 
original data are cleaned up and normalised. Then data is randomly divided into k subsets 
(k = 10). An iteration is performed on the k groups. At each iteration step, the current 



   

 

   

   
 

   

   

 

   

    A deep-learning approach to game bot identification 15    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

group is used for testing the classification algorithm while all the other (k – 1) groups are 
used for its training. The final result is the average of the k classifications. 

Calling M the raw data traces, B the game bot label and H the human player label, the 
dataset is formed by labelled traces (M, l). From raw data traces M, we derive the features 
vector F ∈ Ry, where y is the feature vector dimension. For instance, PI features has a  
y = 4 dimension, the PA features has a y = 9 dimension, GA features has a dimension  
y = 2, SID features ha a dimension y = 1 and NM features has a dimension equal to y = 9. 

In compact form trainings and classifications can be described as follows: 

1 build a training set T ⊂ D 

2 build a testing set T’ = D ÷ T 

3 perform training using the training set T 

4 perform classification using the testing set T’. 

From the original dataset, two distinct datasets are obtained, one for training and the other 
for classification. Only 10% of the classification dataset is used for testing, while 90% of 
the training dataset is used, thus giving higher priority to training. 

The testing and training phases were performed on a desktop with Intel Core I5 
processor and 4 GB of RAM memory. The operating system used is 64-bit Linux Mint. 

5.2 Classification results 

The results of the ML supervised classification with PA, GA, SID and NM features are 
shown in Tables 4 and 5. 

The results with PI features are the following. Precision is 0.764 and 0.95 with the 
naïve Bayes multinomial text and J48 algorithms respectively. The recall is 0.773 and 
0.952 with the naïve Bayes multinomial and LMT algorithms respectively. With the PI 
features, the algorithm that provides the best results of precision is therefore the J48. 
Let’s see for completeness all the results obtained with J48: precision and recall of 0.95 
and 0.951 respectively. The F-measure is equal to 0.949 and the ROC curve is equal to 
0.856. 

The results with the PA features are the following. The naïve Bayes multinomial 
algorithm gives precision and recall of 0.858 and 0.851 respectively. The values of 
precision and recall obtained with random forest algorithm are of 0.954 and 0.955 
respectively. 

With PA features, the algorithm that provides the best results from precision is 
therefore random forest. All the results obtained with the random forest algorithm are: 
precision and recall of 0.954 and 0.955, F-measure of 0.953 and the ROC curve of 0.95. 

The training phase of the naive Bayes algorithm is the fastest among all the others 
algorithms. However, naive Bayes algorithm provides the worst results, represented by a 
maximum F-measure of 0.92. The naive Bayes can therefore be used when not much 
precision is needed but a fast algorithm is needed. 

The results obtained with the GA features are the following. The precision and recall 
are equal to 0.759 and 0.553 with the naïve Bayes multinomial algorithm, and equal to 
0.928 and 0.973 with the LMT algorithm. 
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Table 4 Classification results: precision, recall, F-measure and ROC area for the first seven 
algorithms on all features of all groups 

Algorithm Feature group Precision Recall F-measure ROC area Time 
J48 PI 0.95 0.951 0.949 0.856 1.97 

PA 0.948 0.950 0.947 0.862 7.01 
GA 0.858 0.881 0.843 0.764 0.38 
SID 0.836 0.875 0.821 0.698 0.37 
NM 0.917 0.923 0.917 0.810 24.75 

Decision 
stump 

PI 0.942 0.944 0.941 0.823 0.21 
PA 0.934 0.936 0.935 0.830 0.58 
GA 0.764 0.874 0.816 0.721 0.05 
SID 0.764 0.874 0.816 0.690 0.06 
NM 0.871 0.884 0.875 0.673 0.99 

Hoeffding tree PI 0.941 0.944 0.941 0.872 0.3 
PA 0.942 0.944 0.942 0.872 0.94 
GA 0.854 0.880 0.839 0.783 0.17 
SID 0.826 0.874 0.823 0.710 0.32 
NM 0.892 0.903 0.891 0.769 2.68 

Random forest PI 0.952 0.953 0.950 0.895 37.8 
PA 0.954 0.955 0.953 0.95 57.23 
GA 0.820 0.855 0.833 0.766 17.71 
SID 0.805 0.863 0.822 0.688 8.31 
NM 0.923 0.928 0.923 0.858 42.42 

Random tree PI 0.917 0.916 0.916 0.814 0.64 
GA 0.820 0.854 0.833 0.758 0.42 
SID 0.805 0.865 0.822 0.682 0.14 
NM 0.886 0.887 0.887 0.751 0.69 

MLP PI 0.943 0.946 0.943 0.880 52.6 
PA 0.950 0.952 0.950 0.894 246.46 
GA 0.886 0.986 0.933 0.770 24.19 
SID 0.873 0.887 0.877 0.807 19.57 
NM 0.918 0.909 0.921 0.871 524.03 

BayesNet PI 0.939 0.942 0.940 0.876 0.72 
PA 0.941 0.942 0.941 0.896 1.8 
GA 0.897 0.899 0.898 0.840 0.71 
SID 0.882 0.893 0.885 0.820 0.19 
NM 0.875 0.708 0.756 0.830 4.45 
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Table 5 Classification results: precision, recall, F-measure and ROC area for the remaining 
algorithms on all feature groups 

Algorithm Feature group Precision Recall F-measure ROC area Time 
REP tree PI 0.946 0.948 0.945 0.880 0.93 

PA 0.948 0.950 0.948 0.888 3.36 
GA 0.858 0.882 0.845 0.784 0.47 
SID 0.829 0.874 0.823 0.717 0.11 
NM 0.917 0.923 0.917 0.845 5.5 

Naïve Bayes 
multinomial 

PI 0.815 0.773 0.792 0.590 0.06 
PA 0.858 0.851 0.855 0.685 0.07 
GA 0.749 0.553 0.628 0.416 0.06 
SID 0.812 0.539 0.615 0.534 0.01 
NM 0.854 0.564 0.635 0.656 0.19 

Logistic PI 0.943 0.945 0.942 0.879 2.03 
PA 0.945 0.947 0.943 0.880 5.05 
GA 0.884 0.878 0.825 0.768 1.47 
SID 0.826 0.873 0.826 0.801 0.65 
NM 0.854 0.564 0.635 0.656 0.19 

Ada Boost M1 PI 0.942 0.944 0.941 0.877 2.1 
PA 0.938 0.941 0.938 0.888 0.07 
GA 0.885 0.894 0.888 0.814 1.46 
SID 0.872 0.890 0.868 0.805 1.49 
NM 0.903 0.912 0.903 0.841 8.8 

JRip PI 0.949 0.951 0.947 0.839 33.57 
PA 0.950 0.952 0.950 0.848 62.61 
GA 0.899 0.908 0.899 0.721 26.51 
SID 0.886 0.900 0.885 0.669 29.6 
NM 0.939 0.982 0.960 0.771 133,42 

LMT PI 0.951 0.952 0.949 0.887 103.4 
PA 0.951 0.952 0.950 0.898 245.38 
GA 0.928 0.973 0.950 0.838 37.47 
SID 0.886 0.900 0.885 0.669 29.6 
NM 0.882 0.892 0.879 0.789 425.46 

IBk PI 0.927 0.927 0.927 0.834 0.01 
PA 0.927 0.927 0.927 0.830 0.01 
GA 0.888 0.886 0.887 0.748 0.01 
SID 0.865 0.863 0.864 0.696 0.01 
NM 0.895 0.895 0.895 0.762 0.01 
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Considering the GA features we can see that the worst performances are obtained with 
the naive Bayes algorithm and the best with the LMT algorithm. The values of precision 
and recall with the LMT algorithm are 0.928 and 0.973 respectively, while the F-measure 
is of 0.950 and the ROC area of 0.838. 

Now consider the SID features. In this case the naïve Bayes multinomial text and 
decision stump algorithms provide a precision value of 0.764 while the JRip algorithm of 
0.886. As for recall, we see that the naïve Bayes multinomial algorithm provides a value 
of 0.539 while the JRip algorithm provides a value of 0.900. 

Considering again the SID features, we see that the best precision is obtained with the 
JRip algorithm and is equal to 0.886. 

Now let’s consider the NM features. The naïve Bayes multinomial text and naïve 
Bayes algorithms provide precision and recall values of 0.764 and 0.534 respectively, 
while the JRip algorithm provides precision and recall values of 0.939 and 0.982. 

Let’s now pass to the DL algorithms used in this paper that is Dl4jMlp classifier and 
neural networks. The precision values obtained with all the features are generally higher 
with neural networks than with the Dl4jMlp classifier algorithm. The only case in which 
this result is reversed is with the SID features. In fact, with SID features the Dl4jMlp 
classifier algorithm gives a precision value of 0.832 while the other algorithm stops at 
0.764. Considering the computation time required to train the two algorithms, we see that 
neural networks always require lower time than the other, requiring only 12.66 seconds 
while training the Dl4jMlp classifier algorithm requires 185.59 (example relating to PI 
features). 

A fundamental initial step of ML is feature definition, which is needed to define the 
dataset to be used for training and classification. It is performed by looking at the best 
performing set of features which can be defined on the raw dataset. The set of best 
features is obtained by searching the space of attributes defined on the row dataset for the 
best classification results. 

Identifying the best features is important for many reasons. First, the best feature 
reduce overfitting because they reduce redundancy among the features, and it must be 
noted that less redundancy means less noise. It is important also because the best features 
allow to obtain the best possible results and it is finally important to assure that the 
training times are small. 
Table 6 Precision, recall, F-measure and ROC area for classifying the feature categories, 

computed with two DL different classification algorithms 

Category Algorithm Precision Recall F-measure ROC area Time 
PI Dl4jMlp classifier 0.930 0.933 0.931 0.852 185.59 

Neural network 0.942 0,.945 0.941 0.882 12.66 
PA Dl4jMlp classifier 0.924 0.928 0.925 0.833 185.54 

Neural network 0.947 0.949 0.946 0.893 10.15 
GA Dl4jMlp classifier 0.825 0.864 0.836 0.675 214.91 

Neural network 0.890 0.875 0.817 0.771 9.68 
SID Dl4jMlp classifier 0.832 0.871 0.839 0.776 221.42 

Neural network 0.764 0.874 0.816 0.803 5.23 
NM Dl4jMlp classifier 0.878 0.880 0.879 0.805 222.31 

Neural network 0.912 0.919 0.909 0.862 43.9 
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In this paper the space of attributes is searched with three heuristic approaches that, even 
if sub-optimal, are quite popular in the ML community, namely BestFirst, greedy 
stepwise and ranker. 
Table 7 Precision, recall, F-measure and roc area for classifying the best feature selected (PI 

and PA groups), computed with 16 different classification algorithms 

Algorithm Feature group Precision Recall F-measure ROC area Time 
J48 PI 0.954 0.984 0.969 0.824 0.36 

PA 0.958 0.986 0.972 0.870 0.48 
Decision Stump PI 0.954 0.984 0.969 0.823 0.05 

PA 0.957 0.971 0.964 0.830 0.15 
Hoeffding tree PI 0.953 0.985 0.968 0.845 0.41 

PA 0.957 0.985 0.971 0.882 0.25 
Random forest PI 0.943 0.944 0.943 0.831 15.06 

PA 0.960 0.986 0.973 0.890 56.67 
Random tree PI 0.943 0.944 0.943 0.774 0.37 

PA 0.954 0.954 0.954 0.818 0.98 
REP tree PI 0.954 0.984 0.969 0.837 0.33 

PA 0.959 0.985 0.972 0.889 0.74 
BayesNet PI 0.954 0.984 0.969 0.849 0.23 

PA 0.957 0.976 0.966 0.881 0.32 
Naïve Bayes PI 0.956 0.976 0.966 0.847 0.1 

PA 0.955 0.973 0.964 0.871 0.1 
Naïve Bayes 
multinomial 

PI 0.874 1.000 0.933 0.500 0.06 
PA 0.907 0.851 0.878 0.499 0.01 

Naïve Bayes 
multinomial text 

PI 0.874 1.000 0.933 0.500 0.07 
PA 0.874 1.000 0.933 0.500 0.01 

Logistic PI 0.953 0.984 0.969 0.844 0.75 
PA 0.947 0.988 0.967 0.851 0.89 

MLP PI 0.953 0.984 0.968 0.846 11.67 
PA 0.954 0.984 0.969 0.861 24.45 

Adaboost M1 PI 0.954 0.984 0.969 0.850 0.59 
PA 0.957 0.971 0.964 0.865 1.14 

JRip PI 0.954 0.984 0.969 0.825 1.84 
PA 0.954 0.986 0.970 0.826 10.57 

IBk PI 0.943 0.944 0.943 0.776 0.01 
PA 0.949 0.951 0.950 0.799 0.03 

LMT PI 0.954 0.984 0.969 0.845 8.38 
PA 0.954 0.987 0.970 0.865 24.63 
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The BestFirst approach navigates the space of attribute using a best first strategy, while 
the greedy approach uses a greedy heuristic. Finally, the ranker is the simpler approach, 
as it simply ranks the effectiveness of each feature, and selecting only the top in rank 
does not requires any search operation. 

All the sets of features are reported in Table 2. Best features selection identifies the 
same set of features as we describe below. As for the PI category features, PI2 features 
are those that lead to better discrimination between human players and game bots. As for 
PA, the features that lead to the best discrimination are PA1, PA2, PA3 and PA4. What we 
want to see now is whether reducing all the sets of features described in Table 2, that is 
the sets PI1–PI4 for PI features, PA1–PA10 for PA features, and sets GA1–GA2, SID1 and 
NM1–NM9 for all others, with only PI2 set of category PI and PA1–PA4 of the PA 
category, better results are obtained. 

For this purpose, we train and use different classifiers and compare the results, which 
are presented in Table 7. 

All the algorithms we use to select the best features identify the same set of features 
as we describe below. 

From Table 7 we can see that for the PI category the best precision value is 0.954, 
obtained with the following classifiers: J48, decision stump, REP tree, BayesNet, 
AdaBoostMI and JRip. From the same table we see that the best recall value is 1, obtained 
with the naïve Bayes multinomial and naïve Bayes multinomial text classifiers. If we 
compare the improvement of the results obtained with this reduced set of features 
compared to the results obtained with the complete set and described in Tables 4 and 5, 
we see that the precision has improved from 0.95 to 0.954 and the recall from 0.951 to 
1.00. 

Always from Table 7 we see then that for the PA category the best precision is 0.960 
obtained with the random forest classifier while the best recall value is 1 obtained with 
the naïve Bayes multinomial text classifier. Comparing the improvement obtained before 
we see that the precision has increased from 0.954 to 0.958 and the recall from 0.955 to 
1. 

To complete the test phase we now use the DL classifiers that we have considered in 
this paper, that is neural networks and convolutional networks and we compare the results 
with those obtained with the ML classifiers that we have just described. The features used 
are the two subsets of PI and PA category features that have proven to be optimal from 
tests with ML classifiers. The results are shown in Table 8. 
Table 8 Classification results: precision, recall, F-measure and ROC area obtained using the 

best feature categories, computed with two DL classification algorithms on a single 
and dual layer networks 

Category Algorithm Precision Recall F-measure ROC 
area Time 

PIbest Dl4jMlp classifier 0.951 0.984 0.968 0.845 240.85 
Neural network 0.949 0.988 0.968 0.844 7.12 

Neural network (two-layer) 0.987 0.990 0.987 0.872 16.74 
PAbest Dl4jMlp classifier 0.945 0.988 0.966 0.848 229.13 

Neural network 0.954 0.984 0.969 0.853 8.05 
Neural network (two-layer) 0.992 0.994 0.996 0.889 15.34 
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Even with tests with the DL classifiers the two subsets of features lead to a performance 
increase. In particular, the Precision value obtained with the Dl4jMlp classifier algorithm 
obtains a precision value of 0.984 with only the PI2 feature while with the complete set 
of features it is 0.930. The recall is equal to 0.984 while with the whole set of features it 
is 0.945. 

Using the neural network algorithm, a precision of 0.949 is obtained, while it is 0.942 
with the whole set of features, and a recall of 0.988 while with the whole set of features it 
is of 0.945. 

Now consider the optimal subset of features of the PA category, which we call PAbest. 
In this case the Dl4jMlp classifier algorithm obtains a precision of 0.945 while it was 
0.924 as reported in Table 6. The recall with the Dl4jMlp classifier algorithm is 0.988 
while it was 0.928. 

Using the PAbest subset, the neural networks algorithm obtains a precision of 0.954 
while it was 0.947 in Table 6. The recall is equal to 0.984, compared to 0.949 in Table 6. 

In Table 8, we also report the results obtained using neural networks with two layers. 
The results shown in Table 8 show that the performances obtained with the neural 
network algorithm with two layers exceed those obtained with all the other algorithms, 
both all the ML category algorithms and the CNN type algorithm considered, i.e., 
Dl4jMlp classifier. In fact, we obtain, with the PIbest features, a precision of 0.987 and a 
recall of 0.990, while with the PAbest features we have a precision of 0.992 and a recall of 
0.994. The calculation time of the neural network with two layers used is 16.74 and 15.34 
seconds respectively with the features PIbest and PAbest. We also observe that the  
F-measure is 0.872 and 0.996 with the two features. We conclude that the best 
classification between human players and game bots is obtained with a neural network 
with two layers and with the features PIbest and PAbest. 

Figure 9 Precision and recall trends for the neural network DL algorithm with one-layer when 
the MaxIterations parameter is ranging between 1 and 128 (see online version  
for colours) 

 

Having established that the best classifier is made up of neural networks with two layers, 
there is another level of optimisations that should be made, that is, the determination of 
the learning parameters of the neural network. Since network learning is carried out with 
the backpropagation algorithm, which can still be used with two hidden layers (if the 
number of layers were greater, the backpropagation algorithm would no longer be usable 
due to the vanishing gradient problem), the learning parameters, which are described in 
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Table 9, should be optimised. However, since the optimisation of these parameters is 
quite complex, we adopt an empirical approach which is summarised below. In Figure 9, 
we report the trend of the neural network with one layer as the MaxIterations parameter 
changes. From Figure 9 we see that the precision increases from 0.874 to 0.949 as the 
value of MaxIterations increases from 1 to 128 while recall decreases from 1 to 0.987. 
The same behaviour is obtained with the other parameters. Since the increase in precision 
is much more significant than the decrease in recall, we set the value of the MaxIterations 
parameter to 128, so in Table 8 the value of recall is 0.988. 
Table 9 The algorithm parameters with the considered values in the neural network and 

Dl4jMlp classifier evaluations 

Parameter Neural network Dl4jMlp classifier 
batchSize 100 100 
hiddenLayers 100  
hiddenLayersDropoutRate 0.5  
inputLayerDropoutRate 0.2  
inputWidth 0  
learningRate 0.0  
maxIterations 1,000  
numberOfEpochs  10 
numDecimalPlaces  2 
seed  0.2 

Note: We considered the same parameter values for the classifications with one and two 
layers. 

6 Related work 

In recent years there has been a major increase in the MMORPG video game market. 
Video game manufacturers have therefore tried to improve video game performance so 
that they are increasingly attractive to increase the market. 

Consequently, the number of game bots has continuously increased and therefore also 
the amount and complexity of algorithms to detect their presence, as reported in Kang  
et al. (2016). 

The game bot detection algorithms described in Kang et al. (2016) are focused on the 
approaches they perform on the game server. These approaches analyse the log files on 
the game server using data mining algorithms, and are normally preferred to the 
approaches they run directly on the client because they allow to detect and block game 
bots without interfering with the players. They also do not require players to upload, 
update and run detection programs. 

The approaches they perform on the game server are normally divided into the 
following groups: social activities, sequences, mobile path, frequency of action, similarity 
and gold farming. The approach described in this paper is based on the analysis of social 
interactions between videogame players and therefore can be considered belonging to the 
group of social activities (Varvello and Voelker, 2010). 
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The hypothesis behind these approaches is that the discriminating factor between 
human players and game bots is player behaviour. 

Another example of a behavioural approach is described in Oh et al. (2013) where the 
game bots detection algorithm is based on the analysis of social networks as used by 
players. First of all, from the use of social networks during the game, features are 
extracted which are previously compared with those obtained from human players and 
game bots. The algorithm described in Kang et al. (2013) analyses the logs generated 
during a game session and compares them with those generated separately by human 
players and game bots. Behaviours are identified through the use of previously defined 
thresholds. 

The article described in Kim et al. (2005) does not use social interactions but the type 
and frequency of windows events that are used as features. The detection of game bots 
takes place through learning algorithms. 

The papers presented in Chen et al. (2008, 2009) describe algorithms that detect game 
bots by analysing the movements of avatars which are considered as features. The basis 
of these works is the hypothesis that human players and game bots use different 
trajectories of the movements of the avatars. In Chen et al. (2008), the authors proposed 
an algorithm to estimate the trajectories of the movements. The algorithm was validated 
using a different game than the one used in this paper (quake 2). The results of the 
validation were that more than 95% of the movements were actually identified on a 200 
second game track. 

From the network traffic generated during a game session, features can be extracted 
that can be compared with those produced during game sessions with human players. 
This approach has been followed also in the work described in Chen et al. (2006). 

Another possibility is to consider the MMORPG game environment from the point of 
view of economic transactions (in virtual currency) and to detect anomalous exchanges. 
This approach is the basis of the work described in Kwon et al. (2017) which proposes a 
method to detect gold farming groups (GFG). The transactions are described in a graph 
from which features used for the identification of the GFG are derived. The main 
contribution of Kwon et al. (2017) is to propose recommendations for defence against 
CFGs without affecting the economic environment of the game. 

The paper reported in Kim et al. (2017) describes a system that detects thefts to 
protect players from malicious users. The system of Kim et al. (2017) runs on the game 
server by analysing the log files. The measured accuracy is 88%. 

The principle according to which player behaviour is analysed to discriminate 
between human players and game bots is described in many papers such as (Thawonmas 
et al., 2008; Kashifuji, 2008; Hilaire et al., 2010; Mishima et al., 2013; Kang et al., 2016). 
These works share the defect of using only one or two features extracted from the game 
environment rather than the players’ behaviour, and therefore are dependent on the type 
of game itself (Chung et al., 2015). 

Starting from this defect, in Chung et al. (2015) it is proposed to use a greater number 
of features, both dependent on the game and on the players. 

Although the work proposed in Chung et al. (2015) is similar to that described in this 
paper, the performance in terms of precision and recall is lower than ours. 

In this work, unlike Chung et al. (2015), we use a selection of features to identify 
those that are able to best discriminate human players from game bots. We also report the 
times required to detect a game bot by its behaviour. 
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In this paper we describe the results obtained with many ML and DL algorithms for 
the detection of game bots. 

DL is widely used in many application fields such as voice recognition and natural 
language processing but does not detect game bots. 

7 Threats to validity 

The validity of the detection approach proposed in this paper could be attacked from 
several points of view. First of all, the measurements made are based on a labelled 
dataset, so the results depend on the correctness of the labelling that may be related to a 
human player or a game bot. We have tried to reduce these types of errors by using a 
dataset provided by the company that produced the Aion video game. To further increase 
the validity of the dataset, each label that turned out to be game bot was manually 
checked by a specialist. 

Another possible element that could affect the validity of the method proposed in this 
paper is the generalisation of the approach, i.e., the fact that its application to datasets 
other than Ainon can give different results. This problem is reduced by the fact that we 
consider features that characterise the behaviour of the players and do not depend on the 
videogame considered. 

8 Conclusions and future work 

Current video games are shared by community of distributed players connected through 
the internet. During the game, they require multiple operations such as the organisation of 
groups of players, the activation of social interactions between them, acquisition of 
virtual money and other complex operations. This scenario of distributed resource sharing 
is very interesting to study from different points of view. As their popularity has 
increased, the number of malicious players who unfairly want to acquire points to 
outperform other players has also increased. Malicious players have introduced robotic 
players into the game that simulate the behaviour of human players and easily outperform 
human players. Robotic players, called game bots, in fact do not get tired and therefore 
they do not need to stop. Therefore, the need arises to develop algorithms to counter the 
spread of game bots for eliminating them from the game. 

In this paper we have proposed a system that, by defining features that characterise 
player behaviour, is able to detect game bots by discriminating them from human players. 

To verify the algorithm, we carried out extensive experimentation using many 
supervised ML and DL algorithms. The result is that the best classification algorithms are 
neural networks with two hidden layers. The Precision and Recall values obtained are 
0.992 and 0.994 respectively. The time required to train the models is 15.34 seconds 
using a 2.3 GHz i5 processor with 4 GB of RAM. The features used that provide better 
results are two subsets of behavioural features. 

In the future we will extend these results to detect robotic participants in some social 
networks using behavioural features. 

We will also use process mining techniques (Bernardi et al., 2016) and formal 
methods (De Francesco et al., 2016) to distinguish robotic users from human users. 
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Finally, we will apply the proposed approach in various big data problems (for 
example, Cuzzocrea and Wang, 2007; Bonifati and Cuzzocrea, 2006; Cuzzocrea and 
Bertino, 2011; Cuzzocrea and Russo, 2009; Chatzimilioudis et al., 2013; Cuzzocrea, 
2006; Cuzzocrea and Song, 2014; Campan et al., 2017). 

Acknowledgments 

This research has been conducted in the context of the Excellence Chair in Computer 
Engineering – Big Data Managements and Analytics at LORIA, Nancy, France. This 
work has been partially supported by H2020 EU-funded project NeCS and by the French 
PIA project ‘Lorraine Université d’Excellence’, reference ANR-15-IDEX-04-LUE. 
Authors are extremely grateful to Marta Cimitile and Mario Luca Bernardi for their 
contributions in early versions of this work. 

References 
Adams, E. (2014) Fundamentals of Game Design, Pearson Education, London, UK. 
Aha, D. and Kibler, D. (1991) ‘Instance-based learning algorithms’, Machine Learning, Vol. 6, 

pp.37–66. 
Aziz, A., Lai, W-L. and Manni, J. (2017) System and Method for Bot Detection, April 18, US 

Patent 9,628,498. 
Bengio, Y. et al. (2009) ‘Learning deep architectures for AI’, Foundations and Trends in Machine 

Learning, Vol. 2, No. 1, pp.1–127. 
Bernardi, M.L., Cimitile, M., Di Francescomarino, C. and Maggi, F.M. (2016) ‘Do activity 

lifecycles affect the validity of a business rule in a business process?’, Inf. Syst., December, 
Vol. 62,No. C, pp.42–59. 

Bernardi, M.L., Cimitile, M. and Mercaldo, F. (2017a) ‘A time series classification approach to 
game bot detection’, in Proceeding of the 7th ACM International Conference on Web 
Intelligence, Mining and Semantics, pp.512–519. 

Bernardi, M.L., Cimitile, M., Distante, D. and Mercaldo, F. (2017b) ‘Game bot detection in online 
role player game through behavioural features’, in Proceeding of the 12th International 
Conference on Software Technologies. 

Bonifati, A. and Cuzzocrea, A. (2006) ‘Storing and retrieving xpath fragments in structured P2P 
networks’, Data Knowl. Eng., Vol. 59, No. 2, pp.247–269. 

Breiman, L. (2001) ‘Random forests’, Mach. Learn., October, Vol. 45, No. 1, pp.5–32. 
Buhrke, E.R. and LoCicero, J.L. (1992) ‘A learning algorithm for multi-layer perceptron networks 

with nondifferentiable nonlinearities’, in [Proceedings 1992] IJCNN International Joint 
Conference on Neural Networks, June, Vol. 1, pp.944–949. 

Campan, A., Cuzzocrea, A. and Truta, T.M. (2017) ‘Fighting fake news spread in online social 
networks: Actual trends and future research directions’, in Proceedings of IEEE Big Data 
2017, pp.4453–4457. 

Canfora, G., De Lorenzo, A., Medvet, E., Mercaldo, F. and Visaggio, C.A. (2015) ‘Effectiveness of 
opcode ngrams for detection of multi-family android malware’, 2015 10th International 
Conference on In Availability, Reliability and Security (ARES), IEEE, pp.333–340. 

Canfora, G., Mercaldo, F. and Visaggio, C.A. (2013) ‘A classifier of malicious android 
applications’, in 2013 Eighth International Conference on Availability, Reliability and 
Security (ARES), IEEE, pp.607–614. 



   

 

   

   
 

   

   

 

   

   26 A. Cuzzocrea et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Chatzimilioudis, G., Cuzzocrea, A., Gunopulos, D. and Mamoulis, N. (2013) ‘A novel distributed 
framework for optimizing query routing trees in wireless sensor networks via optimal operator 
placement’, J. Comput. Syst. Sci., Vol. 79, No. 3, pp.349–368. 

Chen, K-T., Jiang, J-W., Huang, P., Chu, H-H., Lei, C-L. and Chen, W-C. (2006) ‘Identifying 
MMORPG bots: a traffic analysis approach’, in Proceedings of the 2006 ACM SIGCHI 
International Conference on Advances in Computer Entertainment Technology, ACE ‘06, 
ACM, New York, NY, USA. 

Chen, K-T., Liao, A., Pao, H-K. and Chu, H-H. (2009) ‘Game bot detection based on avatar 
trajectory’, Entertainment Computing-ICEC 2008, pp.94–105. 

Chen, K-T., Pao, H-K.K. and Chang, H-C. (2008) ‘Game bot identification based on manifold 
learning’, in Proceedings of the 7th ACM SIGCOMM Workshop on Network and System 
Support for Games, ACM, pp. 21–26. 

Chen, Y-C., Chen, P.S., Song, R. and Korba, L. (2004) ‘Online gaming crime and security  
issue-cases and countermeasures from Taiwan’, in PST, pp.131–136. 

Chung, Y., Park, C.Y., Kim, N-R., Cho, H., Yoon, T.B., Lee, H. and Lee, J-H. (2015) ‘A behavior 
analysis-based game bot detection approach considering various play styles’, CoRR, 
abs/1509.02458. 

Cocar, M., Harris, R. and Khmelevsky, Y. (2017) ‘Utilizing minecraft bots to optimize game server 
performance and deployment’, in 2017 IEEE 30th Canadian Conference on Electrical and 
Computer Engineering (CCECE), IEEE, pp.1–5. 

Cohen, W.W. (1995) ‘Fast effective rule induction’, in Twelfth International Conference on 
Machine Learning, Morgan Kaufmann, pp.115–123. 

Collobert, R. and Weston, J. (2008) ‘A unified architecture for natural language processing: deep 
neural networks with multitask learning’, in Proceedings of the 25th International Conference 
on Machine Learning, ACM, pp.160–167. 

Cuzzocrea, A. (2006) ‘Combining multidimensional user models and knowledge representation and 
management techniques for making web services knowledge-aware’, Web Intelligence and 
Agent Systems, Vol. 4, No. 3, pp.289–312. 

Cuzzocrea, A. and Bertino, E. (2011) ‘Privacy preserving OLAP over distributed XML data: a 
theoretically-sound secure-multiparty-computation approach’, J. Comput. Syst. Sci., Vol. 77, 
No. 6, pp.965–987. 

Cuzzocrea, A. and Russo, V. (2009) ‘Privacy preserving OLAP and OLAP security’, in 
Encyclopedia of Data Warehousing and Mining, 2nd ed., Vol. 4, pp.1575–1581, Hershey, PA, 
USA. 

Cuzzocrea, A. and Song, I-Y. (2014) ‘Big graph analytics: the state of the art and future research 
agenda’, in Proceedings of ACM DOLAP 2014, pp.99–101. 

Cuzzocrea, A. and Wang, W. (2007) ‘Approximate range-sum query answering on data cubes with 
probabilistic guarantees’, J. Intell. Inf. Syst., Vol. 28, No. 2, pp.161–197. 

Dahl, G.E., Yu, D., Deng, L. and Acero, A. (2012) ‘Context-dependent pretrained deep neural 
networks for large-vocabulary speech recognition’, IEEE Transactions on Audio, Speech, and 
Language Processing, Vol. 20, No. 1, pp.30–42. 

De Francesco, N., Lettieri, G., Santone, A. and Vaglini, G. (2016) ‘Heuristic search for equivalence 
checking’, Software and System Modeling, Vol. 15, No. 2, pp.513–530. 

Deng, L. and Yu, D. (2014) Deep Learning: Methods and Applications, Now Publishers Inc., 
Hanover, MA, USA. 

Deng, L., Yu, D. et al. (2014) ‘Deep learning: methods and applications’, Foundations and Trends 
in Signal Processing, Vol. 7, Nos. 3–4, pp.197–387. 

Esmaeili, H. and Woods, P.C. (2016) ‘Calm down buddy! it’s just a game: behavioral patterns 
observed among teamwork MMO participants in wargaming’s world of tanks’, in 22nd 
International Conference on Virtual System & Multimedia, VSMM 2016, Kuala Lumpur, 
Malaysia, 17–21 October, pp.1–11. 



   

 

   

   
 

   

   

 

   

    A deep-learning approach to game bot identification 27    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

Fernández-Ares, A., Mora, A.M., Garcıa-Sánchez, P., Castillo, P.A. and Merelo, J.J. (2017) 
‘Analysing the influence of the fitness function on genetically programmed bots for a  
real-time strategy game’, Entertainment Computing, Vol. 18, pp.15–29. 

Freedman, D.A. (2009) Statistical Models: Theory and Practice, Cambridge University Press, 
Cambridge, UK. 

Friedman, N., Geiger, D. and Goldszmidt, M. (1997) ‘Bayesian network classifiers’, Machine 
Learning, Vol. 29, No. 2, pp.131–163. 

Gardner, M.W. and Dorling, S.R. (1998) ‘Artificial neural networks (the multilayer perceptron) a 
review of applications in the atmospheric sciences’, Atmospheric Environment, Vol. 32,  
No. 14, pp.2627–2636. 

Griffiths, M.D., Davies, M.N.O. and Chappell, D. (2004) ‘Online computer gaming: a comparison 
of adolescent and adult gamers’, Journal of Adolescence, Vol. 27, No. 1, pp.87–96. 

Hilaire, S., Kim, H-C. and Kim, C-K. (2010) ‘How to deal with bot scum in MMORPGS?’, 2010 
IEEE International Workshop Technical Committee on In Communications Quality and 
Reliability (CQR), IEEE, pp.1–6. 

Hingston, P. (2009) ‘A turing test for computer game bots’, IEEE Transactions on Computational 
Intelligence and AI in Games, September, Vol. 1, No. 3, pp.169–186. 

Hoeglinger, S. and Pears, R. (2007) ‘Use of hoeffding trees in concept based data stream mining’, 
in 2007 Third International Conference on Information and Automation for Sustainability, 
December, pp.57–62. 

Hung, C-Y. et al. (2017) ‘Comparing deep neural network and other machine learning algorithms 
for stroke prediction in a large-scale population-based electronic medical claims database’, 
2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology 
Society, EMBC 2017. 

Iba, W. and Langley, P. (1992) ‘Induction of one-level decision trees’, in Proceedings of the Ninth 
International Workshop on Machine Learning, ML ‘92, Morgan Kaufmann Publishers Inc., 
San Francisco, CA, USA, pp.233–240. 

Ioannidou, A., Chatzilari, E., Nikolopoulos, S. and Kompatsiaris, I. (2017) ‘Deep learning advances 
in computer vision with 3d data: a survey’, ACM Comput. Surv., April, Vol. 50, No. 2, 
pp.20:1–20:38. 

John, G.H. and Langley, P. (1995) ‘Estimating continuous distributions in Bayesian classifiers’, in 
Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence, UAI’95, 
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, pp.338–345. 

Kang, A.R., Jeong, S.H., Mohaisen, A. and Kim, H.K. (2016) ‘Multimodal game bot detection 
using user behavioral characteristics’, SpringerPlus, Vol. 5, No. 1, p.523. 

Kang, A.R., Woo, J., Park, J. and Kim, H.K. (2013) ‘Online game bot detection based on party-play 
log analysis, Computers & Mathematics with Applications, Vol. 65, No. 9, pp.1384–1395. 

Kashifuji, Y. (2008) ‘Detection of MMORPG bots based on behavior analysis’, ACE, Vol. 2008, 
p.4. 

Kégl, B. (2013) ‘The return of adaboost.mh: multi-class hamming trees’, CoRR, abs/1312.6086. 
Kibriya, A.M., Frank, E., Pfahringer, B. and Holmes, G. (2004) ‘Multinomial naive Bayes for text 

categorization revisited’, in Proceedings of the 17th Australian Joint Conference on Advances 
in Artificial Intelligence, AI’04, Springer-Verlag, Berlin, Heidelberg, pp.488–499. 

Kim, H., Hong, S. and Kim, J. (2005) ‘Detection of auto programs for MMORPGS’, in 
Australasian Joint Conference on Artificial Intelligence, Springer, pp.1281–1284. 

Kim, H., Yang, S. and Kim, H.K. (2017) ‘Crime scene re-investigation: a postmortem analysis of 
game account stealers’ behaviors’, CoRR, abs/1705.00242. 

Kim, P. (2017) ‘Convolutional neural network’, in MATLAB Deep Learning, pp.121–147, Springer, 
Berlin, Germany. 



   

 

   

   
 

   

   

 

   

   28 A. Cuzzocrea et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Krizhevsky, A., Sutskever, I. and Hinton, G.E. (2012) ‘Imagenet classification with deep 
convolutional neural networks’, in Advances in Neural Information Processing Systems, 
pp.1097–1105. 

Kwon, H., Mohaisen, A., Woo, J., Kim, Y., Lee, E. and Kim, H.K. (2017) ‘Crime scene 
reconstruction: online gold farming network analysis’, IEEE Trans. Information Forensics and 
Security, Vol. 12, No. 3, pp.544–556. 

Landwehr, N., Hall, M. and Frank, E. (2005) ‘Logistic model trees’, Machine Learning, Vol. 59, 
No. 1, pp.161–205. 

LeCun, Y., Bengio, Y. and Hinton, G. (2015) ‘Deep learning’, Nature, Vol. 521, No. 7553,  
pp.436–444. 

Lee, S. and Shimoji, S. (1993) ‘Bayesnet: Bayesian classification network based on biased random 
competition using Gaussian kernels’, in IEEE International Conference on Neural Networks, 
Vol. 3, pp.1354–1359. 

Lo, N.W. and Chen, S-H. (2008) ‘A study of anti-robot agent mechanisms and process on online 
games’, in 2008 IEEE International Conference on Intelligence and Security Informatics, 
June, pp.203–205. 

McCallum, A. and Nigam, K. (1998) ‘A comparison of event models for naive bayes text 
classification’, AAAI Workshop on Learning for Text Categorization, pp.41–48. 

Mihǎescu, M.C., Popescu, P.S. and Burdescu, D.D. (2015) ‘J48 list ranker based on advanced 
classifier decision tree induction’, Int. J. Comput. Intell. Stud., November, Vol. 4, Nos. 3/4, 
pp.313–324. 

Mishima, Y., Fukuda, K. and Esaki, H. (2013) ‘An analysis of players and bots behaviors in 
MMORPG’, in IEEE 27th International Conference on Advanced Information Networking 
and Applications (AINA), IEEE, pp.870–876. 

Mitchell, T.M. (1997) Machine Learning, 1st ed., McGraw-Hill, Inc., New York, NY, USA. 
Nadiammai, G.V. and Hemalatha, M. (2013) Performance Analysis of Tree Based Classification 

Algorithms for Intrusion Detection System, pp.82–89, Springer International Publishing, 
Cham. 

Oh, J., Borbora, Z.H., Sharma, D. and Srivastava, J. (2013) ‘Bot detection based on social 
interactions in MMORPGS’, in 2013 International Conference on, Social Computing 
(SocialCom), IEEE, pp.536–543. 

Paulson, R.A. and Weber, J.E. (2006) ‘Cyberextortion: an overview of distributed denial of service 
attacks against online gaming companies’, Issues in Information Systems, Vol. 7, No. 2, 
pp.52–56. 

Quandt, T. and Kröger, S. (2013) Multiplayer: The Social Aspects of Digital Gaming, Vol. 3, 
Routledge, Routledge Studies in European Communication Research and Education, Taylor & 
Francis, London, UK. 

Rav, D., Wong, C., Deligianni, F., Berthelot, M., Andreu-Perez, J., Lo, B. and Yang, G.Z. (2017) 
‘Deep learning for health informatics’, IEEE Journal of Biomedical and Health Informatics, 
January, Vol. 21, No. 1, pp.4–21. 

Ruck, D.W., Rogers, S.K. and Kabrisky, M. (1990) ‘Feature selection using a multilayer 
perceptron’, Journal of Neural Network Computing, Vol. 2, No. 2, pp.40–48. 

Seay, A.F., Jerome, W.J., Lee, K.S. and Kraut, R.E. (2004) ‘Project massive: a study of online 
gaming communities’, in CHI’04 Extended Abstracts on Human Factors in Computing 
Systems, ACM pp.1421–1424. 

Taylor, T.L. (2009) Play between Worlds: Exploring Online Game Culture, MIT Press, Cambridge, 
MA, USA. 

Thawonmas, R., Kashifuji, Y. and Chen, K-T. (2008) ‘Detection of MMORPG bots based on 
behavior analysis’, in Proceedings of the 2008 International Conference on Advances in 
Computer Entertainment Technology, ACM, pp.91–94. 



   

 

   

   
 

   

   

 

   

    A deep-learning approach to game bot identification 29    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

Varvello, M. and Voelker, G.M. (2010) ‘Second life: a social network of humans and bots’, in 
Proceedings of the 20th International Workshop on Network and Operating Systems Support 
for Digital Audio and Video, NOSSDAV ‘10, ACM, New York, NY, USA, pp.9–14. 

Wang, Y., Zhang, Y., Hei, X., Ji, W. and Ma, W. (2017) ‘Game strategies for distributed denial of 
service defense in the cloud of things’, Journal of Communications and Information Networks, 
Vol. 1, No. 4, pp.143–155. 

Wellman, B. and Gulia, M. (1999) ‘Virtual communities as communities’, Communities in 
Cyberspace, pp.167–194, Taylor & Francis, London, UK. 

Yampolskiy, R.V. and Govindaraju, V. (2008) ‘Embedded noninteractive continuous bot 
detection’, Computers in Entertainment (CIE), Vol. 5, No. 4, p.7. 

Yee, N. (2008) ‘Maps of digital desires: exploring the topography of gender and play in online 
games’, Beyond Barbie and Mortal Kombat: New Perspectives on Gender and Gaming, 
pp.83–96, Cambridge, MA, USA. 

Zhao, Y. and Zhang, Y. (2008) ‘Comparison of decision tree methods for finding active objects’, 
Advances in Space Research, Vol. 41, No. 12, pp.1955–1959. 


