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Abstract: Influence maximisation is trying to select a small set of seed users in the social
network to maximise the spread of influence. An individual’s decision to adopt a product or
innovation will be highly dependent on the choices made by the individual’s neighbours in the
social network. In CIM, competitors need to decide which nodes would be an influential one
and how many resources should be allocated to this member. Identifying the best algorithm for
the influence maximisation under budget constraint has become a demanding task. Predicting,
and controlling social influence is an exciting topic in social network analysis. We are interested
in multi-round CIM where each competitor needs to decide the location and the amount of
budget to invest in the most influential members simultaneously and repeatedly under a given
total budget. This paper proposes a tree-approximate game-theoretical framework and introduces
the new measurement as a dynamic node weight.
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maximisation is one of the most fundamental algorithms in
social influence analysis. Over the last decade, significant
effort has been put into the development of efficient
algorithms for influence maximisation (Kempe et al., 2003;
Nguyen and Zheng, 2013; Liontis and Pitoura, 2016; Zheng
and Wu, 2017; Wang et al., 2021; Tong et al., 2018;
Molinero and Riquelme, 2021). The main objectives in the
IM problem are to discover which potential members, seed
set, to select and how many resources to allocate to these

1 Introduction

Viral marketing (Domingos and Richardson, 2001) is one 
of the most effective marketing tactics in advertising. 
Facebook and YouTube are two social networks that help 
promote products (Li et al., 2015b). Influence of social 
networks among individuals plays an essential role in 
viral marketing. The growth of online social networks has 
enabled them to spread quickly (Ohsaka, 2020). Influence
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potential members to maximise the competitors’ influence.
In the IM problem, all the nodes in seed set ξ are activated
directly, and the remaining nodes are inactive. According to
some probability distribution, when a node is activated at
timestamp i, it may activate its out-neighbours at timestamp
i+ 1. When no node can activate any other node, the
influence propagation ends.

In the real world, there are many competitors at
the same time implementing their strategies to find
a considerable influence on the same social network.
Actually, each rational player tries to spread its influence as
maximal as possible and make its opponents as minimal as
possible. That is why competitive influence maximisation
(CIM) (Bharathi et al., 2007; Wu et al., 2015; Masucci
and Silva, 2017; Huang et al., 2021; Shirazipourazad
et al., 2012) has received a lot of attention recently.
A CIM problem involves selecting the most effective
seeds based on decisions made by other competitors in
order to maximise their influence. The CIM model allows
the influences of each player to cascade simultaneously
throughout the social network, which can interfere with
each other.

Considering a competitive game with two competitors,
red and blue, in the given social network G(V,E, P ),
where V is the vertex set, and E is the edge set. P
is a set of edge propagation probabilities, where p(u, v)
represents the influence probability of the edge between
u and v, where

∑
u p(u, v) < 1. When there is no edge

between u and v, p(u, v) = 0. The given social network is
defined as a network of connections and interactions among
entities. Nodes can take on one of the following states:
activated by red, activated by blue, and inactive. First,
competitors identify the nodes with the most influence.
They compete for only these influential nodes based on
the amount of budget each of them allocates to each node.
After activation of a node, its influence propagates with a
certain probability to their not yet activated neighbours. At
each step t, each node u activated at step t− 1 activates
its neighbour v with probability p(u, v). Once activated,
they stay activated. Influence maximisation under both
independent cascade (IC) (Kempe et al., 2003) and linear
threshold (LT) (Kempe et al., 2005; Granovetter, 1978)
models are NP-hard. These propagation models satisfy two
important properties, submodularity, and monotonicity, in
terms of their influence spread function. We will use IC
in this paper. The key characteristic of this model is that
diffusion events associated with every edge in the given
social graph are mutually independent, and the success of
the seed node u to influence one of its inactive neighbours
v only depends on the propagation probability of the edge
from u to v.

Consider the social network in Figure 1(a). Players
red and blue compete over the nodes of this network.
These players select v1, v3 , and v8 as the most influential
members in this network. Blue player allocates ($2, $2, $2)
and red player allocates ($1, $3, $2) on members v1, v3, and
v8, respectively. The winning probability is proportional
to the budget allocation of two parties. Red player wins
v1 with the probability of 2/(1 + 2) = 2/3. Blue player

wins v3 with the probability of 3/(3 + 2) = 3/5. Players
have the same budget allocation on v8. Figure 1(b) presents
the result of this competition until this step. If player red
adds more money, say $1 extra on his investment over
v8, his chance to win this node will be 3/2 + 3 = 3/5.
By doing so, he wins v8. After finding these seed nodes,
the propagation process which is based on the influence
probability of relations or links between seed nodes and
their friends in the given network will start. The player
finding the maximum number of influenced members would
be the winner of this game.

Figure 1 Budget allocation in case of tie in the CIM,
(a) S = {v1, v2, v3} (b) no winner in v3 (c) red wins
v3 (see online version for colours)

(a) (b)

(c)

Such a scenario can be modelled by the multi-round CIM.
The goal of each player in the competitive environment
is to find an optimal combination of strategies to utilise
their budget efficiently. The idea is to take a more realistic
and practical setup, rather than selecting seeds only in the
first round. In a multi-round CIM, players keep selecting
seed nodes according to the current network state and the
expected reactions of other players within given rounds.
In addition, each player can spend a limited amount of
budget in all rounds on seed nodes. Nodes with the greatest
influence in a given network are selected according to
different strategies. In each round, players choose a seed
node ξt, decide the amount of budget that should be
allocated to this seed node, then wait until the end of
the propagation process. This assumption can be extended
to multiple seed nodes in each round. Note that during
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each round, players take action simultaneously, but there
are sequence rounds (Figure 2). As influence maximisation
is NP-hard, we introduce a new notation of most reliable
influence path (MRIP) as an approximation.

Table 1 Main notations

Symbol Meaning

B1/B2 Total budget of player 1/2
B1(u)/B2(u) Allocated budget of player 1/2 on node u

T Total number of rounds
N(u) neighbour set of node u

V Set of nodes in the network
V 1/V 2 Set of activated nodes by player 1/2
w(u) Weight of node u

w′(u) Estimated total influence weight of node u

p(u, v) Influence probability of edge between u and v

R(u, v) Influence value of the MRIP between u and v

ξ Seed set
s State of network in reinforcement learning
π(s) Policy in state s

rt Reward in round t in reinforcement learning
a1/a2 Player 1/2’s action
V(s) Value of state s in reinforcement learning

The value of influencers varies, and competitors want to
find the best value for their overall social advertising
budget. It is obvious that an equal budget at each round
does not sufficiently model the willingness to choose a
cost-efficient seed set. Indeed, we see that the choice to
use a fraction of the budget for round t is crucial: a too
large budget allocation translates into a waste of budget,
and a too small budget allocation translates into a waste of
time (a whole round is used to influence only a few users).
To circumvent this issue, instead of a budget per round, in
our framework, we allow the agent to have the competition
of the most influential nodes at each round under an
overall budget constraint. In this paper, compared to the
conference version (Niknami and Wu, 2022), we make a
set of extensions in the case of explaining the approach
and evaluation. We evaluate our proposed approach under
different parameters such as different amount of total
budget, various network structures, different densities, and
different competition strategies. The contributions of this
paper are summarised as follows:

• We define a new measurement called dynamic weight
for nodes. Considering both fixed and dynamic
weights in selecting seed nodes helps players have a
more accurate selection.

• We discuss the influence spread in the social network
by considering the MRIPs for each node in the
process of seed selection as an approximation. MRIP
is inspired by the notion of a critical path in the
scheduling community.

• We consider three new features maximum weight of
inactive nodes, the ratio of budget, and the weight of
nodes, in case of reachability to describe the state of
the network in reinforcement learning (RL).

Figure 2 A multi-stage game with two competitive players
(see online version for colours)

• We propose a CIM model which selects the winner of
the node in case of breaking tie based on the budget
proportion, rather than randomly. Players can compete
on the given node by increasing their investment in
this node to increase their chance.

• We evaluate the effect of our model experimentally
using real datasets and some synthetic ones.

1.1 Organisation

The remainder of the paper is organised as follows.
Section 2 briefly surveys the related works. In Section 3,
we describe some preliminaries. Section 4 presents details
of seed selection, budget allocation, and our proposed
algorithm. Section 5 demonstrates experiment results on
the proposed model in the case of different important
parameters. Finally, Section 6 offers conclusions and some
directions for future work.

2 Related work

In this section, we review related research efforts on
the CIM problem, which analyses the implications of
competing products interfering with each other. In addition,
we review some reinforcement approaches in the CIM
problem.

2.1 Competitive influence maximisation

CIM aims at finding strategies that maximise one’s
influence while minimising his opponents’ influence in a
social network (Masucci and Silva, 2014; Zhang et al.,
2015). There are different extensions of the IC model and
the LT model to accommodate multiple competing ideas
in social networks instead of focusing on spreading a
single ideas (Tong et al., 2018; Bharathi et al., 2007; Sun
et al., 2018). Li et al. (2015a) consider a model for CIM.
According to a graph G and diffusion model, the strategy
space comprises all IM algorithms that players can adopt.
For each player, the objective is to find a Nash equilibrium
strategy that maximises his own influence. Rahaman and
Hosein (2016) addressed a multi-stage version of the
influence maximisation problem. They provided a new
formulation and compared their approaches in terms of
accuracy and computation run time.

2.2 Reinforcement learning

An important line of work that uses RL to solve NP-hard
optimisation problems on graphs is (Zhu et al., 2019; Wei
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et al., 2021). Lin et al. (2015) model a multi-party CIM
problem and propose a different model with the help of
RL and based on the multi-round CIM method. Chung
et al. (2019) propose a novel deep RL-based framework
to tackle the MRCIM problem considering the network
community structure under a quota-based ϵ-greedy policy.
Ali et al. (2020) propose a deep RL-based model to tackle
the CIM on unknown social networks. Harshavardhan
et al. (2020) using automatically learned node and graph
representations that encode important network structural
properties, Kamarthi et al. propose a RL framework for
discovering effective network sampling heuristics. Ali et al.
(2018) propose a novel RL-based framework that is built
on a nested Q-learning algorithm. They derive the optimal
solution in both budget allocation and node selection that
results in the maximum profit with time constraints.

2.3 Resource allocation against opponents

Parties in a CIM problem perform like a player in a Colonel
Blotto game (CBG). CBGs are a class of two-player
zero-sum games, in which both players need to allocate
limited resources over several objects simultaneously.
Masucci and Silva (2014) focused on competitive influence
when players need to decide on resource allocation against
their opponents. They proved that competition’s price is
unbound in such a CBG. Maehara et al. (2015) address
the budget allocation scenario in maximisation influence
problem. Companies can allocate different budgets to nodes
in the network, and nodes will be attracted to companies
whose products offer a higher value. In this case, companies
compete by allocating a certain amount of budget to each
node in the network. A Nash equilibrium-based model is
proposed by Masucci and Silva (2017) to compete for
obtaining more customers in online social networks.

Unlike most of the existing works, in this paper, we
study the problem of multi-round CIM within budget
constraints and while considering the remaining budget
of opponents. We consider a different approach from the
Blotto game for budget allocation strategy. There is a
dependency between targets, and players can continue their
investment in case of tie-breaking. In addition, there is
propagation after any activation. In comparison with ML
approaches, we consider new features to describe the state
of the network.

3 Preliminaries

A social network can be modelled with a weighted and
directed graph G(V,E, P,W ), where we define W as a set
of weights associated with each vertex in V . Activating a
node u in G means accepting an idea from the player i.
Once a node u accepts the idea of being occupied by a
player i, it cannot change occupation to another party. If
the given node does not accept any idea, it means that the
state of the node u is inactive.

3.1 Competitive influence maximisation

In a multi-stage CIM problem, competitors need to select
seed nodes simultaneously in each of the sequence stages.
Suppose that there is a CIM game with two players, 1 and
2, and n nodes in a social network G. Player 1 has a budget
of size B1, and player 2 has a budget size of B2. Each node
u has a value, W (u) > 0, which can be regarded as the
reward of taking this node for players. The total value of
n nodes in this social network is W =

∑
u∈V W (u). The

winner of this game would be the player who can obtain
the most reward by influencing the more important nodes.
Players have competition with the amount of budget they
allocate in seed nodes (the most influential nodes).

In this game, three types of competition can occur.
The first competition is players’ competition on seed nodes
by the amount of allocated budget, which can be called
node-node competition. The second one is link-link, which
is the competition of influence when two different links
with different influences try to activate the given node in
their favour. The last one is node-link. This will happen
when one of the competitors allocates some budget on the
given node, and the influence of another competitor reaches
this node by the influence of the link.

3.1.1 Node-node influence competition

Considering a node-node competition on the node u.
Suppose that B1(u) and B2(u) are the amount of budget
that players 1 and 2 have allocated to node u. The winning
probability of player 1 for this competition is as follows:

B1(u)

B1(u) +B2(u)
(1)

3.1.2 Link-link influence competition

Link-link influence competition will happen after the
budget allocation process and determining the winner of this
stage in the case of taking the given seed node. During the
propagation process, suppose that node u has the influence
of player 1 from one of its neighbours with p1 = p(v, u).
In addition, node u has influence of player 2 from another
neighbour, node w, with p2 = p(w, u). The probability that
node u would be activated by player 1 is as follows:

p1
(p1 + p2)

× (1− p1p2), (2)

where (1− p1p2) considers the probability of activation of
node u by at least one of the players. The probability that
node u would be activated by player 2 is as follows:

p2
(p1 + p2)

× (1− p1p2) (3)

3.1.3 Node-link influence competition

In a multi-stage competition, competitors are able to
allocate a budget at the same moment at the beginning of
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each stage rather than during the stage. At the beginning of
each stage, competitors decide on their budget allocation,
then influence propagation starts. At the end of the
propagation, competitors can start the next stage and make
a decision about new budget allocation. Therefore, there is
node-node competition at the beginning of each stage and
link-link competition during each stage. Consequently, we
will avoid considering the link-node competition for the
multi-stage CIM problem.

3.2 Multi-agent RL

In sequential games, players need to look forward and
reason back to find the best decision. In simultaneous
games, players look for the best response when they cannot
see the other side’s strategy. Therefore, players need to
learn more about the strategies of opponents. RL is a
subfield of machine learning that addresses the problem of
learning optimal decisions over time. In RL, the agent keeps
interacting with the environment to find the optimal policy
π to maximise his expected accumulated rewards (Sutton
et al., 1998). The goal of an RL is to learn a policy π(s) to
determine which action to take given a specific environment
represented by state s.

The reward obtained by an agent should reinforce his
behaviour. Reward reflects the success of the agent’s recent
activity and not all of the successes achieved by the agent
so far. The agent’s objective is to learn the policy that
maximises the expected value of the return. The return is
the measure of future cumulative reward during the rounds.

rt+1 + γrt+2 + γ2rt+2 + ... =
∑∞

k=0
γkrt+k+1. (4)

RL formulates the expected accumulated rewards of a state
which is called the V function. Also, it formulates the
expected accumulated rewards for each state-action pair
which is called the Q function. Q function estimates how
efficient the policy π is at maximising the accumulated
reward rt. The V function Vπ(s) associated with a policy
π tells the agent how good the policy is. The state-value
function is defined as:

Vπ(s) = Eπ{rt|st = s}

= Eπ

{∑∞

k=0
γkrt+k+1|st = s

}
,

(5)

where γ is the discount factor. The action-value function
Q(s, a) is expected return starting from action a in state s,
and then following policy π:

Qπ(s, a) = Eπ{rt|st = s, at = a}

= Eπ

{ ∞∑
k=0

γkrt+k+1|st = s, at = a

}
.

(6)

The state value and action value in equations (5) and
(6) can be learned through the interaction of agents
with the environment. The optimal policy π(s) can be
obtained given the Q function and find the maximum value.
Figure 3 displays the details of RL for a multi-round CIM.
According to this diagram, at the end of each round, players

can see the result of the competition in terms of reward and
the current state. Then, they update their learning, compute
new policy against the opponent’s strategy, and select a new
seed set. In Algorithm 1, we can see this process step by
step. In the case of multi-agent RL, agents learn the policies
through experience in the environment and interaction with
each other. We assume that there are only two parties
that compete with each other. We need first to define the
environment, the reward, the action, and the state.

Figure 3 Approach during training process

Algorithm 1 RL
1: Q(s, a) ← initial value
2: while training is not terminal do
3: st ← s0
4: while st is not a terminal state do
5: Determine Qt(st, at)
6: Take strategy at based on Qt(st, at)
7: Simulate opponent’s action
8: Propagate influence to obtain reward rt+1

9: Compute next state st+1 based on network features
10: Update Q(st, at)
11: st ← st+1

Table 2 Computing R(v) from source node v2

A N(A) R(s) ∗ p(s,v) R(v)

{v2} v1 1 ∗ 0.2 = 0.2 R(v8)

1 ∗ 0.4 = 0.4
{v2, v8} v1 1 ∗ 0.2 = 0.2 R(v7)

v5 0.4 ∗ 0.1 = 0.04
v7 0.4 ∗ 0.7 = 0.28

{v2, v8, v7} v1 1 ∗ 0.2 = 0.2 R(v1)

v5 0.4 ∗ 0.1 = 0.04
{v2, v8, v7, v1} v1 0.4 ∗ 0.1 = 0.04 R(v3)

v5 0.2 ∗ 0.5 = 1
0.2 ∗ 0.4 = 0.08

{v2, v8, v7, v1, v3} v1 0.4 ∗ 0.1 = 0.04 R(v5)

v5 0.2 ∗ 0.4 = 0.08
1 ∗ 0.1 = 0.1
1 ∗ 0.3 = 0.3

{v2, v8, v7, v1, v3, v5} v4 1 ∗ 0.1 = 0.1 R(v6)

v6 0.3 ∗ 0.4 = 0.12
{v2, v8, v7, v1, v3, v5, v6} v4 1 ∗ 0.1 = 0.1 R(v4)

v9 0.12 ∗ 0.2 = 0.024
{v2, v8, v7, v1, v3, v5, v6, v4} v9 0.12 ∗ 0.2 = 0.024 R(v9)

In the given social network, considering V 1 and V 2 as
the total number of activated nodes by players 1 and
2 respectively. The multi-round CIM can be considered
as a zero-sum game for players 1 and 2 since (V 1 −
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V 2) + (V 2 − V 1) = 0, where V 1 − V 2 and V 2 − V 1 are
the goals of players 1 and 2, respectively. In such a game,
the Nash equilibrium is guaranteed to exist with mixed
strategies. The MINMAX theorem would be useful to find
the equilibrium (Morgenstern and Von Neumann, 1953).

4 Methodology

Traditional RL has been successful in dealing with
multi-round CIM (Lin et al., 2015). Nevertheless, this
approach did not address the effect of budget on player
seed selection strategy. In our approach, we integrate seed
selection and budget allocation into the RL model. In the
budget allocation phase, we consider convincing influential
nodes to act as seeds, as well as selecting seed nodes. The
player in this framework learns how to maximise the value
of accumulated rewards by choosing the optimal policy
π. The first step is identifying influential nodes within
the network. Players then compete over only the selected
nodes, rather than the entire network, depending on the
budgets they allocate to each influential node. During each
round t, the agent observes a set of features representing
the network state st ∈ S, and selects one of the legal
actions from the set at. In each round, the agent selects a
seed set, ξt ⊂ V , based on its past observations. Note that
ξt is the seed set selected by π at round t. The goal for
the agent is to follow a learning policy π maximising the
total number of activated nodes. When no budget remains
or no node can be added to the seed set ξ, the algorithm
terminates.

Definition 1 (budgeted multi-round CIM): Given the
network G, each player chooses seed nodes in turn, and
then influence propagation is performed at round t. Players
compete based upon the budgets they allocate to the most
influential nodes in order to win these nodes as seed sets.
The objective of each player is to maximise its overall
relative influence V i after T rounds, where V i is the
difference among activated nodes of different players.

Algorithm 2 Finding seed set by MRIP
1: S ← ∅
2: for all u ∈ V do
3: w′(u)← 0
4: for u ∈ V do
5: Construct Tu via Algorithm 3
6: for each leaf v in reverse Tu do
7: z ← parent(v)
8: while v ̸= u do
9: Compute w′(z) = w′(z) +R(v)× w(z)
10: v ← z
11: z ← parent(v)
12: new seed← argmaxu∈V / S w′(u)
13: S ← S ∪ {new seed}
14: VA ← activated nodes by new seed node
15: Constructing G′ with vertex set V − VA

16: Recalculate T and w′ in G′

Algorithm 3 Computing Tu
Require: G(V,E, P ), source node u
1: A = {u}, R(u) = 1
2: while A ̸= V do
3: Find node v ∈ N(A) and v ∈ V −A such that
4: R′(v) = max(s,v):s∈A,v∈V −A R(s)× p(s, v)
5: R(v) = R′(v)
6: A = A ∪ {v}
7: Set s as the parent of v in spanning tree Tu
8: return Tu

4.1 Selecting seed nodes and propagation model

Consider a static social network G and B1 and B2 for
players as their fixed budget. Each round, one seed node
will be chosen. The goal of each player is to reach and
activate as many nodes as possible within their total budget.
Each player can decide to implement the specific strategy
to maximise its overall influence in G. The strategy refers
to how the player spends their budget on selecting the seed
nodes at each round. Maximal influence with a spanning
tree restricts node u’s influence diffusion to a local tree
structure rooted at u. The influence of a node in a tree
can be calculated efficiently and precisely. Note that the
conflict rule is slightly different from other works. In
contrast to other approaches, which prioritise one of the
players or select the winner of conflicting randomly, our
approach allows players to increase their investment in case
of tie-breaking. The winner will be determined with the
help of budget proportion.

4.2 Most reliable influence path

Since influence maximisation is NP-hard, we use the idea of
the critical path in the scheduling community. Following the
style of Dijkstra and Prim’s greedy algorithm, an inactive
node will get a chance to become active only through the
shortest path from the initially active nodes. In order to
find the shortest path in a maximum influence problem, we
can consider the maximum influence probability of edges.
The distance between node u and v can be computed as
the logarithm of the inverse of the influence probability of
edge (u, v). Influence propagates through the most probable
paths, and the notion of the MRIP can be considered as an
approximation. It is helpful to estimate the local influence
of nodes for seed selection. The influence of each node
when considering the most reliable paths that originate from
the given node can be regarded as a new measurement
for ranking nodes. This paper calls this value the weighted
influence of each node u, w′(u). Considering R(v) as
the influence value of the most reliable path on node v
originated from the source u, we construct a spanning tree
T with the most reliable paths helps us to find w′ for all
nodes.

In fact, Prim’s algorithm allows us to determine the
spanning-tree Tv rooted at v such that each node is reached
from the source node v via MRIP. The value of R(v) for
any two nodes u and v in V is the value of the shortest path
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from node u to v, where Pu,v = (u = u1, u2, ..., um = v),
and there is no duplicate nodes. The probability that node
v is activated by u through the path Pu,v is calculated as∏m−1

i=1 p(ui, ui+1). All nodes along the path from u to v
need to be successfully activated, then node v would be
activated. As an extension, to more efficiently compute the
increased influence spread within the tolerance of error, we
can use an influence threshold to filter out the insignificant
maximal influence paths whose values are less than due
to having a very small impact on the influence spread
computation.

For all v ∈ V in the G, we need to find T . For
simplicity, we explain the process of computing w′ just
by considering node u as the tree’s root node. Suppose
that R(u) = 1, among all of the neighbours of node u
finding the edge (u, v) with maximum R(u)× p(u, v) is
the first step. This is a greedy algorithm. In each step,
we consider all of the edges that the source of them is in
the explored node set A, and its destination is in V −A.
We continue this process until A includes all of the nodes
in V . Algorithm 3 represents these steps in detail. After
constructing the spanning-tree Tu, we compute the influence
weight of each node by traversing this tree reversely. For
each node v, the parent of v is u, and the weight of node
u, which is illustrated as the weighted influence, will be
measured by:

w′(u) =
∑

∀v∈V
R(v)× w(u), (7)

where w(u) is the weight of node u and R(v) presents
the value of shortest originated from u to v. If we
consider w(u) as the fixed weight for node u, which can
be show the importance of node in the case of degree
or centrality, w′(u) can be called dynamic weight of this
node. Considering the example in Figure 4, for any pair of
nodes u and v, we need to find the maximum influence
path from u to v and construct a spanning tree T . Figure 4
shows the process for node v2. Table 2 presents some early
steps of finding R(v) for each nodes when v2 is the source
node. Using the calculated R(v) and reverse traversing the
Tv2 in Figure 4(b), the influence weights of all nodes are
shown in Figure 4(c). The intuition behind the proposed
algorithm comes from Dijisktra’s algorithm. We can prove
the proposed algorithm can find the most reliable path
correctly.

Theorem 1: If Ts is the spanning tree selected by MRIP’s
algorithm for source node s in the social network G =
(V,E, P,W ), then Ts is a most reliable influence tree
rooted in s in G and R(v) for each node v ∈ V shows the
influence value of the most reliable path on node v.

Proof: In Figure 5, the grey area includes the explored
nodes. Suppose that w is the next vertex added to T and
P ∗ be the path from source s to destination w through node
v. Considering any other path P from s to w, node x be the
first node on path outside T . Path P is already as long as
P ∗ as soon as it reaches x by greedy choice. Thus, R(w)

is the length of the most reliable path from s to w. This
completes the proof. �

Figure 4 Computing shortest paths and influence weights,
(a) original graph (b) constructing Tv2 (c) calculating
w′ (see online version for colours)

(a) (b)

(c)

Figure 5 Correctness of MRIP algorithm (see online version
for colours)

Algorithm 2 presents the processes of selecting the seed
node based on the influence weight of nodes. After finding
Tv for each node v in Algorithm 3, by considering w(v)
of nodes as the weight of node or ranking measurement in
the case of the importance of node and R(v) as the value
of the most reliable path, the influence weights w′(v) of all
of the nodes can be calculated. The node with the highest
w′ would be selected as the seed node in each round. After
choosing a seed node and propagating its influence, the next
step is to recalculate T and the weighted influence of nodes
in the graph G′ with V − VA nodes, where VA is the set
of activated nodes. Therefore, after selecting any seed node
and the propagation process, there are new w′s for nodes.
That is because we called this weight as dynamic weight.

The time complexity of Dijkstra’s algorithm is O(|E| ·
log|V |), but here we need to find the shortest paths for all
pairs of nodes. Now, the time complexity becomes O(|E|2 ·
log|V |). After selecting a seed node, we need to remove
the activated nodes, VA, from G and consider a new social
network G′ including the set of nodes V − VA to recalculate
Tv for each node v as well as new weight w′. Therefore, the



MB-CIM: a multi-round budgeted competitive influence maximisation 37

total number of nodes in these paths should be considered
in the algorithm’s time complexity as well.

4.3 RL settings

As we are considering a multi-round scenario, the
opponent’s past decisions can be taken into account, but
the opponent’s future decisions are not known. There
are several parameters we need to define in order to
implement RL. The propagation of influence is treated as
an environmental effect, whereby activated nodes spread
their influence to their neighbours and activate new ones.
The reward we receive after T steps is the number of
nodes that have been influenced in the entire graph.
Through Q-function updates, rewards are propagated back
to previous states.

4.3.1 Action

Players can allocate different amounts of budget to nodes in
G. Competition is based on how much budget each player
allocates to each node. The possible actions are allocating
budget on new seed nodes or feeding an activated seed node
to increase its influence on neighbours. We use the idea of
meta-learning (Lin et al., 2015; Ali et al., 2018) in RL. We
consider the following actions:

1 selecting a new seed node

2 feeding a node in case of tie.

Selecting seed nodes can include max-degree, max-weight,
centrality, randomly, voting, and learning-based strategies.
In case of investment, we consider investing $1 or all of
the remaining budget.

4.3.2 State

In order to represent the network and environment status,
we must model the state. The design of features will reflect
both the current status of the network and the current
occupation status. Correlations with rewards, the choice
of actions, and the condition of networks require certain
features. Below are the features we have designed:

1 number of inactive nodes

2 summation of degrees of all inactive nodes

3 maximum degree among all inactive nodes

4 summation of the weight of the edges for which both
vertices are inactive

5 summation of the inactive out-edge weight for nodes
which are the neighbours of player i

6 maximum sum of the inactive out-edge weight of a
node among all nodes

7 ratio of budgets

8 weight of nodes in case of reachability.

Features 1 to 5 help players find the condition of
network in terms of the status of nodes as well as the
weight of edges. Features 6, 7, and 8 are new ones
to describe the states of the network. These features
help players to learn more about the environment, as
well as the opponent’s strategy. As a result of the
dependence between some features, not all combinations
of states are possible. There is a correlation between the
candidate strategies we use to choose our actions and these
features. The player continually updates both Q-tables, that
is, seed-selection, and budget-allocation Q-tables, during
the training. Meanwhile, it updates its policy throughout
the training in order to find an optimal policy for
budget utilisation from budget-allocation and seed-selection
Q-tables.

Table 3 Q-table for strategies

(a) Budget-allocation

State Budget Q-value

33311001 Unit 0.7
33311001 All 0.2

(b) Seed-selection

State Seed Q-value

333110010 Degree 0.26
333110010 Weight 0.24
333110010 MRIP 0.3
333110010 Compete 0.6
333110011 Degree 0.26
333110011 Weight 0.24
333110011 MRIP 0.3
333110011 Compete 0.6

5 Experiments

We conducted experiments to evaluate the efficiency of
the proposed models in terms of influence spread to other
algorithms. Also, we evaluate our algorithm for different
datasets with different densities.

5.1 Experiment setup

We used the igraph Python library to represent the graphs
and the shortest path calculations. The datasets consist of
two real-world social networks and two synthetic ones.
We used the IC as the diffusion model. The edge weights
are set randomly in a range between 0 and 1. In order
to check the impact of influence propagation, we consider
normal distribution, with the same µ = 0 and different
σ2. We train the model by doing 1,000 runs and then
selecting the best result as the final result of the model. We
use the random tree generation algorithm, as discussed in
experimental settings.
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Table 4 Social networks

Name Nodes Edges Description

Facebook 4,039 88,234 Facebook social network
Ca-HepTh 9,877 51,971 Arxiv high energy physics
Cit-HepPh 620 827 Paper citation network
Synthetic 100 500 Randomly generated network

Table 5 Evaluation of different features

Dataset Reward Dataset Reward

Facebook OPT-F6 49% Synthetic OPT-F6 45%
OPT-F7 52% OPT-F7 53%
OPT-F8 55% OPT-F8 50%
OPT-F6F7 58% OPT-F6F7 48%
OPT-F7F8 56% OPT-F7F8 58%
OPT-F6F8 58% OPT-F6F8 51%

OPT 65% OPT 68%

5.2 Comparison methods

To find the performance of our approach, we consider
different baseline IM methods and the state-of-the-art
multi-round competitive approach, which is called STORM
(Lin et al., 2015). OPT is the name of the current paper’s
approach, which selects seed nodes based on both the fixed
and dynamic weight of nodes. We consider the following
approaches:

• STORM: A RL-based algorithm that finds an optimal
seed selection using Q-learning.

• Max-degree: Traditional influence maximisation
strategy as the algorithm selects nodes with the
highest degree in the network as seed nodes.

• Centrality: This strategy select seed nodes based on
the location of nodes in the network.

• Max-weight: One of the baseline methods that finds
the seed node based on the maximum summation of
out-edge weights.

• Random: This strategy is a baseline algorithm that
randomly chooses one of the seed selection methods.

• Voting: This method lets the other three strategies
vote for a node as the seed node.

• MRIP: The algorithm selects seed nodes based on
both the node’s fixed and dynamic weight.

• OPT: Our proposed learning-based approach.

5.3 Experiment results

We compare the influence spread of different algorithms
on real-world datasets. Table 4 shows the details
of these real datasets, which are accessible from

http://snap.stanford.edu/data/. Each round is defined as
players choosing a seed node and propagating influence.
The number of active nodes after the diffusion process is
used to evaluate the effectiveness of influence maximisation
algorithms. We consider the evaluation of our approach
in the cases of different budgets, network structures,
competing strategies, and ranges for the weight of the
edges. Table 5 shows the evaluation of approaches in
the case of different combinations of features. OPT-F6
is the approach that we do not consider features 7 and
8. Similarly, others show the approaches with different
features. It can be seen from Table 5 with the three features
6, 7, and 8 there is the best result in real datasets. We call
our approach as OPT.

5.3.1 Evaluation on budget setting

In the first experiment, we examine the effectiveness of
the proposed models’ performances in terms of reward by
assuming players have a different budget. We consider a
fixed budget for one of the players, then analyse the result
of competition with a varied amount of budget for the
opponent side. Clearly, the larger the budget, the more the
increase of spread. Figures 6(a) and 6(b) shows the result of
this experiment for the network with a topology that is like
a tree. Figures 6(c) and 6(d) display the result in a network
with a fat-tree topology. Figures 6(a) and (c) illustrate the
effect of varying budget for player 2 when player 1 has
a fixed budget of $10 for three algorithms of random,
STORM, and OPT. Moreover, Figures 6(b) and 6(d) present
the effect of varying budget for player 1 while player 2 has
a fixed budget of $10 on the spread of player 1’s influence.
It should be noted that we have trained the models by
assuming both parties have the same budget. It can be seen
from the figures that OPT achieves better performance in
comparison with other models.

5.3.2 Evaluation based on different topologies

We examine the effectiveness of the proposed models’
performances on different networks in terms of reward
by assuming players have different budgets. We consider
a fixed budget for one of the players, then analyse the
competition result with a varied budget for the opponent
side. Clearly, the larger the budget, the more the spread
increases. It should be noted that we have trained the
models by assuming both parties have the same budget.
It can be seen from the figures that OPT achieves better
performance in comparison with other models. Also, we
illustrate the performance of the proposed framework on
networks with different structures. It can been seen from
Figure 7 that in different real datasets with different
topologies, OPT has better results than STORM. In addition,
OPT can find more rewards when a player has a higher
amount of budget.
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Figure 6 Evaluation of player 1’s reward with varying budget setting in synthetic dataset with different height, (a) fixed player 1
budget 10 (b) fixed player 2 budget 10 (c) fixed player 1 budget 10 (d) fixed player 2 budget 10 (see online version
for colours)

(a) (b) (c) (d)

Figure 7 Evaluation of player 1’s reward with varying budget setting in real datasets, (a) Facebook (b) Ca-HepTh (c) Cit-Hepph
(d) average all networks (see online version for colours)

(a) (b) (c) (d)

Figure 8 Evaluation of player 1’s reward with different influence distributions in average all network, (a) edge weights in (0.4, 0.7)
(b) edge weights in (0.1, 0.4) (c) edge weight U (0, 0.2) (d) edge weight U (0, 1) (see online version for colours)

(a) (b) (c) (d)

Figure 9 Evaluation of player 1’s reward with competing strategies in case of different budget, (a) Facebook (b) Ca-HepTh
(c) Cit-Hepph (d) average all networks (see online version for colours)

(a) (b) (c) (d)

5.3.3 Evaluation on edge-weight setting

We analyse the effect of different edge-weight settings on
the proposed model. We consider the weight of the edges
in the range of [0.1, 0.4] and [0.4, 0.7]. In addition, the
weight for edges are randomly sampled from the normal
distribution of U (0, 0.2) and U (0, 1). In addition, we
consider different densities for the network to evaluate the

performance of the approach in the case of the sparsity of
the network. From Figure 8 can observe that the influence
will diffuse more nodes when there are higher weights for
edges. That happens because seed nodes can affect mode
nodes. Also, the results show that OPT performs better if
there is a high-density network.
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5.3.4 Evaluation on different competing strategies

We evaluate our approach for player 1 against a competitor
with a different strategies such as degree, weight, MRIP, as
well as the learned-based strategy STORM. In this part of
experiment, we consider some baseline strategies such as
degree, weight, MRIP, as well as the learned-based strategy
STORM. For example, in the second to last column in
Figure 9, the blue one shows the result of the competition
when players 1 and 2 have STORM approach, and the red
one shows the result of the competition when player 1
uses OPT and player 2 uses STORM approaches. The blue
one in the last column in Figure 9 shows the results when
player 1 uses STORM and player 2 uses OPT approach. The
red one shows the result when players 1 and 2 has OPT
approaches. We can conclude from Figure 9 that OPT has
the best performance against all the competing strategies,
even against the STORM which is the learned-based model.
According to the result of this experiment, based on the
network structure, there are different results with baseline
competing strategies.

In summary, according to the results of experiments
considering the new extra features to describe the state
of the environment when there is a budget constraint for
the players would be helpful to find better final rewards.
In the case of different datasets with different topologies
and different numbers of nodes and edges, MRIP helps
players have maximum influence against the opponent’s
propagated influence. Considering the total amount of
budget, density of dataset, weight distribution of edges,
and competitions strategies as the different parameters
of simulations illustrate this learning approach is helpful
in different network structures, influence probabilities
distributions, and different amounts of budget for players.

6 Conclusions

In this work, we propose a RL framework to tackle
the multi-round CIM problem considering budget ratio
for players. A large body of related research did not
focus on the impact of different budgets for players
in a CIM problem. We look into identifying the set
of seed nodes to maximise the spread by considering
opponents’ capabilities. In fact, our framework considers
the combination of seed-selection and budget-allocation
strategies to invest the budget efficiently to achieve better
rewards considering budget constraints. To summarise, our
main contribution is designing and evaluating a budgeted
learned-based framework that handles the multi-round
CIM. Our experimental results show that our approach
successfully increases the influence on the given network
compared to some known baseline approaches and a
learned-based CIM approach. One possible future research
is to investigate whether it is possible to accelerate the
process of learning and study which parameters have
significant in fact in the speed of learning. We also plan
to study the partial-observed MDP (POMDP) algorithms

to handle the players’ partial information about the
environment, opponents’ strategies, and diffusion process.
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