

International Journal of Grid and Utility Computing

ISSN online: 1741-8488 - ISSN print: 1741-847X
https://www.inderscience.com/ijguc

An effort to characterise enhancements I/O of storage
environments

Laercio Pioli, Victor Ströele, Mario A.R. Dantas

DOI: 10.1504/IJGUC.2023.10054824

Article History:
Received: 11 November 2020
Accepted: 14 May 2021
Published online: 21 March 2023

Powered by TCPDF (www.tcpdf.org)

Copyright © 2023 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijguc
https://dx.doi.org/10.1504/IJGUC.2023.10054824
http://www.tcpdf.org

Int. J. Grid and Utility Computing, Vol. 14, No. 1, 2023 51

Copyright © 2023 Inderscience Enterprises Ltd.

An effort to characterise enhancements I/O of
storage environments

Laercio Pioli*, Victor Ströele and
Mario A.R. Dantas
Department of Computer Science,
Federal University of Juiz de Fora - UFJF,
Juiz de Fora, MG, Brazil
Email: laerciopioli@ice.ufjf.br
Email: victor.stroele@ice.ufjf.br
Email: mario.dantas@ice.ufjf.br
*Corresponding author

Abstract: Data management and storage are becoming challenging nowadays due to the huge
amount of created, processed, and stored data. The growing gap between power processing and
storage latency increases this performance disparity. Targeting reducing I/O bottleneck in storage
environments, researchers are proposing interesting improvements in I/O architectures. High-
Performance Computing (HPC) and Data-Intensive Scalable Computing (DISC) applications are
kinds of such systems that are faced with data challenges due to the need to deal with many
parameters when managing data. This study describes our characterisation model for classifying
research works on I/O performance improvements for storage systems and devices that improve
HPC and DISC overall application performance. We present a set of experiments using a
synthetic I/O benchmark performed inside the Grid’5000. We show that the latency when
performing I/O operations can undergo many variations if we take into account the presented
factors evaluated in the experiments.

Keywords: I/O characterisation; I/O performance; I/O improvement; I/O model; HPC; DISC;
Big Data; GRID5000; storage system; storage environments.

Reference to this paper should be made as follows: Pioli, L., Ströele, V. and Dantas, M.A.R.
(2023) ‘An effort to characterise enhancements I/O of storage environments’, Int. J. Grid and
Utility Computing, Vol. 14, No. 1, pp.51–61.

Biographical notes: Laercio Pioli is currently a PhD student of the computer science course at
the Federal University of Santa Catarina (UFSC). He received his master’s degree (2020) and
bachelor’s degree (2017) also in computer science from the Federal University of Juiz de Fora
(UFJF). His interesting researches areas are distributed systems, high-performance computing,
storage environments, IoT, and software engineering.

Victor Ströele received the BSc degree in computer science from the Federal University of Juiz
de Fora, in 2005, and the master’s and PhD degrees from the Systems Engineering and Computer
Science Program, Federal University of Rio de Janeiro, 2007 and 2012, respectively. He is
currently an Associate Professor with the Federal University of Juiz de Fora. He has experience
in computer science, with emphases on data mining and complex networks, working mainly on
the following themes: e-Learning, recommender systems, clustering algorithms, social network
analysis, streaming data, and Informatics in Education.

Mario A.R. Dantas, is a Professor in the Department of Computer Science (DCC) at the Exact
Sciences Institute (ICE) at the Federal University of Juiz de Fora (UFJF) and in the Graduate
Program in Computer Science (PPGCC), at the Technology Centre (CTC), Federal University of
Santa Catarina (UFSC), with a PhD in Computer Science from the University of Southampton
(UK), Visiting Professor at the University of Western Ontario (Canada, 2012) and Senior
Visiting Researcher in Riken (Japan, 2017–2018). He is the author of hundreds of scientific
articles, dozens of chapters in books, and three books. He has advised numerous undergraduate,
specialisation, master, and doctorate research works.

This article is a revised and expanded version of a paper entitled ‘Research Characterisation on
I/O Improvements of Storage Environments’ presented at the ‘14th International Conference
on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC)’, Antwerp, Belgium,
7–9 November 2019.

52 L. Pioli, V. Ströele and M.A.R. Dantas

1 Introduction

The ever-increasing data production and consumption have
changed how enterprises and academies are dealing with
information. Engineering (e.g., molecular nanotechnology,
and earthquake), business (e.g., computational finance, and
information retrieval), natural sciences (e.g., bioinformatics,
and astrophysics) are some of the many data study fields
which contribute to this increasing scenario. However, these
research studies not only require high power processing but
also generate a massive volume of data. Data acquisition,
storage, analysis, and visualisation have an important role in
this data deluge found nowadays. For instance, in the
astrophysics field, data acquisition is very well-known. Data
that came from the exploration of galaxies which tries to
capture as much as possible propagated wave signal over the
space to find patterns and discover how the galaxies are
evolving are captured from huge telescopes endlessly. The
analysis of these large volumes of data is another important
step in this scenario. It consumes much power processing
from resources to generate understandable information
through the visualisation process for post-human analysis.

With this big data usability, a data management problem
arises. I/O-related characteristics, indeed, are important for
application performance. Researchers are proposing solutions
to improve the I/O architecture from different perspectives.
Many contributions focus on data distribution over the years.
Some of them consider heterogeneous storage systems
(Zhou et al., 2016a, 2016b; Xie et al., 2015) others present
hash tables algorithms for data mapping (Liu et al., 2014;
Wozniak et al., 2010) or even focus on le stripe layout in
heterogeneous environments (He et al., 2015a, 2015b). Other
works consider hardware combinations to enhance data
access. Some of these solutions utilise hash memory, as SSD
(Solid-State Disk) together with HDD (Hard Disk Drive) to
support the I/O management problems, improving then the
performance of these applications. Finally, other dimensions
adopt the software improvement in the upper layer to enhance
the I/O performance, as illustrated in Gorton and
Klein (2014).

The overall overview of the actual efforts could be
divided into a macro view of three basic elements (i.e.,
software, hardware, and storage systems). Our proposal can
be understood, as Figure 1 shows, as a characterisation model
related to the I/O improvements, studying each component
separately and their interconnections. In a previous literature
review, we found a gap that indicates a necessary set of
experiments to better understand the relation between the
three components. To evaluate our proposal, we present a set
of experiments performed inside the Grid’5000, a large
distributed computational environment, which targeted to
indicate aspects related to I/O performance especially
considering the view of scientific and industrial applications.

The remainder of this paper is structured as follows:
Section 2 presents some elements related to high-performance
storage and applications. Related works are illustrated in
Section 3. Section 4 highlights the proposed research work of
the paper. The used environment and the factors used in the

experimentation process are presented in Section 5.
Experimental results in the Grid’5000 are presented in
Section 6. Finally, Section 7 presents conclusions and future
works after this investigation effort.

2 High-performance storage and applications

High-performance environments and applications are usually
faced with I/O bottleneck issues. A factor that increases this
issue is the existing gap between power processing and
storage latency. As predicted by Moore’s Law in the 1960s,
the number of transistors on an integrated circuit would
double every eighteen months. However, computing systems
are composed not only by processing but also by memory and
storage hierarchy that support this processing.

The storage technologies evolve at a slower velocity than
processing and this contributes to the increasing of the main
I/O performance problem. High-performance applications
usually move exabytes of computed or generated data
between environmental nodes, specifically computed nodes
(CN) and storage nodes (SN), and their performance depends
on the I/O process. Typically, a clustered architecture is
used to execute these applications. Because of that, I/O
performance bottlenecks are a hot area of study, and
researchers propose solutions to increase the I/O performance
architecture from many perspectives.

2.1 Data-intensive scalable computing (DISC)

Data-Intensive Scalable Computing (DISC) systems usually
deal with a massive and expressive amount of data. The
necessity to employ a system that processes and organises
these data arises nowadays. To acquire, update, share and
archive these datasets in an organised way is a challenging
task. DISC systems came to fill these requirements that
emphasise data management. An inspiration factor to DISC
systems creation is the increased growth of the internet
infrastructure companies. These leader companies create new
methods and technologies to solve and deal with their
particular problems. Scalability, fault-tolerance, availability,
and cost-performance are some goals that are target to these
systems and applications. These applications come from
diverse scientific domains and are usually concerned with the
role of data management and computation.

Bryant (2011) pointed some key principles related to
DISC systems. Some of them are related due to the hardware
nature. The first principle relates to the intrinsic data. Instead,
associate the data with the users, the system has to collect and
maintain these data.

Another characteristic of these systems is that they should
implement reliability functionalities such as replication and
error correction. The second is directly related to the high-
level programming models. Targeting data processing
consistently and independently, those systems usually employ
high-level programming models considering parallelisation.
Interactive access is another considered vital principle of
DISC systems. It states that the requirement for computing

 An effort to characterise enhancements I/O of storage environments 53

and storage should be independent and allow variety of set
up. Using these provided resources, users can execute these
programs interactively, and the system should return an
input query quickly while performing computations in the
background without losing systems performance. The last
principle relates to reliability and availability. Implementing
mechanisms that ensure these principles increases the quality
of the system. As mentioned before, DISC systems came to
fill data requirements and making these last principles more
important.

Usually, data-intensive computing facilities are
specifically projected to provide higher data performance
without losing cost performance. Although DISC
infrastructure varies depending on the objective, they
presented common hardware aspects already found in
Warehouse-Scale Computers (WSC) environments. These
environments are usually composed of servers grouped into
racks. These agglomerated racks create a cluster. Each server
is composed of several processor sockets, each with its
microprocessors and cache hierarchy attached to the local
RAM chip. The servers are connected to the racks through a
1-gigabit-per-second (Gbps) Ethernet switch and the racks are
connected to the cluster-level switch through a 1 or 10 Gbps
Ethernet switch. This architecture connects all servers. All of
them contain its memory hierarchy, processing core, and
storage media locally forming a clustered environment.

2.2 High-performance computing (HPC)

HPC is associated with the class of compute-intensive
workloads, applications, and performance-critical tasks that
use a highly powerful, multilevel, hierarchically organised
computing resource designed to address problems that require
exhaustive processing. These workloads usually refer to
simulations and modelling problems commonly found in the
scientific and industrial fields that are infeasible to be
processed on a unique hardware capability. Their design
mainly focuses on providing high processing power for large
scale distributed and parallel applications, even though low
communication and data access latency is considered
increasingly important requirements (Lucas et al., 2014;
Chang et al., 2017a).

Usually, this environment-class targets aggregating
computing power in a way that provides much higher
performance than a single computational machine. One
observed characteristic in these environments is the
separation of computing and storage resources, which results
in massive data movements through layers of the I/O path
during the execution of a data-intensive application. In such
complex computing environments, many factors can affect
the I/O performance perceived by an application: workload
characteristics, system architecture and topology model,
configurations in the many layers of the parallel I/O software
stack, properties of hardware components, interference and
system noises, to name a few.

Research works that address I/O performance variability
proposed inter-application coordination approaches focusing on
reducing the impact of multiple applications simultaneously

executing on the HPC system (Dorier et al., 2012; Kuo et al.,
2014; Dorier et al., 2014; Yildiz et al., 2016; Wan et al., 2017).
However, on extreme-scale computational science applications,
denoting applications with dedicated access to all resources of
the HPC environment for execution, I/O performance
variability can be mostly attributed to intra-application
interference. One major, yet intrinsic, source of intra-
application interference in this context relates to the load
balance on PFS’s data servers.

3 Related work

Conducting performance studies on storage devices and
systems is challenging for researchers as they need to deal
with various low-level concepts and new technologies.
Applications that produce and process many data in a short
time interval almost always need to store and retrieve data
and usually they encounter latency problems to perform such
operations. Much of these problems are related to the device
and technology that are being used. The related works shown
below exemplify some issues that are being addressed by
researchers to improve I/O performance.

Saif et al. (2018) presented an I/O tracer, called IO scope,
for uncovering I/O patterns of storage management systems’
workloads. Helping to achieve a better troubleshooting
process, their solution contributes to having an in-depth
understanding of I/O performance throughout, altering-based
profiling over fine-grained criteria inside Linux kernel. They
evaluated their proposal using two different databases, a
document-based MongoDB and a wide-column Cassandra
storage database. They achieved interesting results showing
that the clustered MongoDB suffers from a noisy I/O pattern,
regardless of the storage device used (HDDs or SSDs).

Calzarossa et al. (2016) also presented a survey
considering a characterisation model but differently from the
previous one, they consider the importance of the workload
characterisation exploiting its importance in popular
applications domains. Their focus is directed to workload
from the web and also with workloads associated with online
social networks, video services, mobile apps, and cloud
computing infrastructure. They also present and analyse a
modelling technique applied for this characterisation. Their
proposed characterisation model does not consider the three
basic elements (e.g. software, hardware, and storage systems)
as in our presented model. They present studies in a cloud
computing infrastructure, but their concerns are also related to
the characteristics of cloud workloads.

Finally, Traeger et al. (2008) described and presented a
survey considering a nine-year examination of a range of file
system and storage benchmarks. They survey a range of 106
file-system and storage-related research papers in this study.
They also described the positives and negatives qualities of
both and presented a way to choose the appropriate
benchmark for performance evaluation. As in the previous
related works, the authors did not consider hardware
characteristics and how they can influence the performance in
an evaluation process of a storage system.

54 L. Pioli, V. Ströele and M.A.R. Dantas

4 Characterisation model

A characterisation model for classifying research works on
I/O performance is presented in this section. Several
researchers are proposing solutions to overcome the
existential gap between power processing and storage latency.
They combine different hardware devices and software
applications in the most varied way possible. Sometimes
these new approaches require the development of new
software drivers to interface the proposed architecture. Figure
1 presents the characterisation model that was given in Pioli
et al. (2019). It is composed of three basics elements:
software, hardware, and storage systems.

Software investigations could be understood as an
improvement where the object that is being proposed as a
solution is an algorithm, method, framework, or any
programmable solution. Hardware investigations could be
characterised as improvements when the object that is
proposed as an improvement is a physical component or
something palpable. We found that these two groups can
relate and improve each other or a storage system targeting
the improvement of I/O performance. With this approach, we
argue that if researchers classify their papers before
publishing, it could improve and save time by the other
researchers when trying to improve objects in this field.

Previous works exemplify some issues that are being
addressed by researchers to improve I/O performance on
storage devices and systems. These works were selected
because it is being realised a systematic review concerning
I/O improvements on storage devices and systems that were
proposed in the last ten years. There is no additional intention
in the presentation of the works exposed besides showing that
they have purposes in improving a similar class of objects.
These solutions were divided into numbered groups for better
viewing.

Figure 1 Proposed characterisation I/O improvements

4.1 Group 1 – software solution to improve I/O
performance on hardware (S2H-IO)

All the contributions presented in group 1 are some kind of
‘software’ solution and could be characterised as a ‘solution’

that is being proposed to improve I/O performance on a
storage device. This group of improvements was
characterised and shown in Figure 1 as the arrow that leaves
the red circle (Software) and arrives in the green circle
(Hardware). For better viewing, the acronym S2H-IO which
means ‘Software solution to improve I/O performance on
Hardware’ was created and added above the arrow.

Below we expose some researches that are part of group
1. Chang et al. (2017b) proposed an approach to operate wear
levelling on virtual erase counts instead of real erase counts
using SSD devices. Kim et al. (2016) proposed an I/O
architecture that optimises the I/O path to take full advantage
of NVMe SSDs. The authors’ approach works by eliminating
the overhead of user-level threads, bypassing unnecessary
I/O routines, and enhancing the interrupt delivery delay.
Ramasamy and Karantharaj (2015) proposed an algorithm
called random first flash enlargement to improve the
performance of write operation on the flash-memory-based
SSDs. Shen and Park (2013) proposed an I/O scheduler
where the design of the solution is motivated by unique
characteristics on Flash-Based SSDs. Yang et al. (2019)
proposed (WARCIP) which means ‘write amplification
reduction by clustering I/O pages’ to minimise the negative
impact of garbage collection (GC) on SSD devices. They
used a clustering algorithm to minimise the rewrite interval
variance of pages in a flash block.

4.2 Group 2 – hardware solution to improve I/O
performance on hardware (H2H-IO)

Papers presented in group 2 relate to improvements targeting
I/O performance on the hardware device. The authors do that
using hardware technology as an object to perform this
improvement. In all of these cases, the solution involves
different hardware technology as a solution. This group of
improvements was characterised and shown in Figure 1 as the
arrow that is circling the hardware circle. The acronym H2H-
IO which means ‘Hardware solution to improve I/O
performance on Hardware’ was created and added below the
green circle (Hardware).

Below we expose some researches that are part of
group 2. Lee et al. (2014) proposed a Stacked DRAM with a
microbump interface. They built a High-Bandwidth Memory
(HBM) introducing four DRAM memories into a chip-on-
wafer. Kim et al. (2015) proposed the insertion of the
frequency-boosting interface chip (F-Chip) into the NAND
multi-chip package (MCP) including a 16-die stacked 128 Gb
NAND flash. Lee et al. (2017) proposed the design of FESSD
that uses an on-chip access control memory (ACM)
introducing any nature of on-chip non-volatile memory
(NVM) into the micro-controller of an SSD.

4.3 Group 3 – software solution to improve I/O
performance on software (S2S-IO)

All contributions presented in group 3 are some kind of
‘software’ approach which could be characterised into a
‘solution’ that is being proposed to improve I/O performance
on another ‘software’ object differently from group 1. It is

 An effort to characterise enhancements I/O of storage environments 55

important to notice that although the improvements are from
software to software, they take into account the storage
technologies that they are using. This group of improvements
receives the acronym S2S-IO which means ‘Software
solution to improve I/O performance on Software’. It was
created and added below the red circle (Software) in Figure 1.

Below we expose some researches that are part of
group 3. Yang et al. (2017) proposed a content look-aside
buffer (CLB) for simultaneously providing redundancy-free
virtual disk I/O and caching. They implemented a CLB on the
KVM hypervisor and demonstrate that CLB delivers
considerably improved I/O performance with realistic
workloads. Huo et al. (2015) proposed a caching management
algorithm, sometimes called a framework named ACSH,
which is based on SSD devices and DRAM and is focused on
the improvement of metadata I/O on the le systems. Ou et al.
(2015) proposed a le index scheme for a flash file system
called NIS. In this scheme, they are concerned about the
performance of le systems when using NAND ash as a
storage device. Wu et al. (2018) proposed a priority-based
data placement method for databases using SSDs. They
consider a mechanism and a migration rule for performing
migrations between HDDs and SSDs.

4.4 Group 4 – hardware solution to improve I/O
performance on software (H2S-IO)

Papers presented in group 4 relate to improvements targeting
I/O performance into the software. Different from group 3, in
this group, they consider some ‘hardware’ objects as a
‘solution’ to perform its improvement. Although this approach
is less common than the others, it was classified and
characterised as presented below. This group of improvements
receives the acronym H2S-IO which means ‘Hardware solution
to improve I/O performance on Software’. It was created and
added below the arrow that leaves the green circle (Hardware)
in Figure 1.

Below we expose some researches that are part of group 4.
Min et al. (2015) proposed a method using NVMe SSDs to
enhance I/O resource management of Linux Cgroup on NUMA
systems. Ouyang et al. (2010) proposed a method which is an
aggregation staging I/O to enhance checkpoint writing
performance using staging I/O and SSD on the data server
archiving better write bandwidth. Kannan et al. (2011)
proposed a mechanism using an Active NVRAM-based
approach for I/O staging. In the considered method, each
physical node has an additional active NVRAM component to
stage I/O. Bhattacharjee et al. (2011) proposed utilising SSD to
enhance recovery and restart through random access capability
in a database engine. Nakashima et al. (2018) proposed a
method for improving the I/O performance of a big data
application using SSD as cache. The results presented by the
authors demonstrate that the method can improve I/O
performance.

Group 5 and 6 are concerned about the I/O improvements
targeting storage systems. It is important to notice that in
these characterisations “Storage Systems” does not mean
some software that is present in a storage device but rather a
group of technologies and software working together and
asynchronously in an environment. Because the Storage

Systems are composed of both hardware and software, the
improvements proposed by researchers can be either software
or hardware improvements or both of them.

4.5 Group 5 – software solution to improve I/O
performance on storage systems (S2SS-IO)

Papers presented in group 5 relate to improvements targeting
I/O performance into a ‘storage system’. As well as groups 1
and 3 this group considers some ‘software’ object as a
‘solution’ to perform its improvement, but unlike them, the
object which is receiving the improvement is composed of
software and hardware respectively, in other words, a Storage
Systems. This fact leads us to relate group 5 with the arrow
that leaves the red circle (Software) and arrives in the blue
circle (Storage Systems) presented in Figure 1. The acronym
S2SS-IO which means ‘Software solution to improve I/O
performance on Storage Systems’ was created and added
above the related arrow.

Below we expose some researches that are part of group
5. Zhou et al. (2018) proposed an algorithm that can make
better use of heterogeneous devices for storage systems and is
based on consistent hashing. Du et al. (2015) proposed a
balanced partial stripe (BPS) write scheme to improve the
write performance of RAID-6 systems. Oh et al. (2012)
proposed a schema that organises the cache space into
reading and writes and manages these spaces according to the
workload characteristics for improving the performance of
hybrid storage solutions.

4.6 Group 6 – hardware solution to improve I/O
performance on storage systems (H2SS-IO)

In group 6 the papers also concern about I/O improvements
targeting storage systems, but unlike group 5, it considers
some ‘hardware’ objects as a ‘solution’ to perform the
improvement into a storage system. This fact leads us to
relate group 6 with the arrow that leaves the green circle
(Hardware) and arrives in the blue circle (Storage Systems).
The acronym H2SS-IO which means ‘Hardware solution to
improve I/O performance Storage Systems’ was created and
added above the related arrow presented in Figure 1.

Below we expose some researches that are part of
group 6. Kannan et al. (2011) proposed using a nonvolatile
random access memory (NVRAM) to enhance the memory
capacities of computing and staging nodes. Each node has an
additional Active NVRAM component. Bu et al. (2012)
introduce a Hybrid SSD approach that combines DRAM,
phase changed memory (PCM), and flash memory into a
hierarchical storage system. Dae-Sik and Seung-Kook (2009)
designed and analysed a high-end class DRAM-based SSD
storage using DDR-1 memory and PCI-e interface.

5 Empirical scenario and factors definition

The experimental environment and the used factors to carry
out the experiments are presented in this section. We also
relate some of these factors with the elements presented in
Figure 1.

56 L. Pioli, V. Ströele and M.A.R. Dantas

5.1 Empirical scenario

Grid’5000 which is a large-scale testbed was considered in
our experimentation process. It focuses on parallel and
distributed computing including cloud computing, HPC, and
big data. Each cluster provides a huge amount of technologies
including different CPU processors, GPUs, storage devices
such as SSD, HDD, NVMe, and Ethernet, Infiniband, and
Omni-Path network interconnectors. The Grid’5000 testbed is
a secure and powerful environment composed of 8 different
sites located in France providing a huge amount of devices
and technologies working in parallel to solve huge problems
of science.

In our experimental process, we used 24 nodes of the
dahu cluster located in Grenoble. The nodes are composed of
a Dell PowerEdge C6420 model interconnected with a
Gigabit Ethernet network. Each node has 2 CPUs Intel Xeon
Gold 6130 2.10GHz with 16 cores/CPU. The storage of each
of them has 240GB SSD SATA, 480 GB SSD SATA, and 4.0
TB HDD SATA, and the memory RAM 192 GiB. Centos7
was used as an Operational System, kernel 3.10.0-
957.21.2.el7.x86 64 and ext4 le system. In this experiment,
16 nodes were used as Compute Nodes (CN) and 8 as Storage
Nodes (SN).

The used file system was the OrangeFS (version 2.9.7).
The software used to perform the experimentation was the
IOR-EXTENDED (IORE) benchmark (Inacio and Dantas,
2018). IORE benchmark is a flexible and distributed I/O
performance evaluation tool that was designed for hyperscale
storage systems. It supports a whole experimental variety of
workloads. The requests were generated running IORE on a
CN with MPICH 3.0.4 version.

5.2 Factors definition

This subsection presents the factors that we used in the
analysis. Below we explain and correlate some of these
factors to the model presented in Figure 1.

5.2.1 Storage device

Providing incentives for researchers to continue proposing
hardware solutions that improve IO performance, this factor
relates to the hardware storage devices used in the experiment
with the green circle Hardware in Figure 1. The right usability
of the storage can improve the I/O performance of
applications that needs to execute I/O operations frequently.
To verify that the technology device usually can influence the
performance, this research takes care of three common
approaches to store data. The first one is to store all kinds of
data, and metadata, on an HDD device. The second is to use
SSD to store metadata while the data are stored on the HDD
devices. Finally, we used an SSD device to store data and
metadata.

5.2.2 Linux I/O schedulers

Three Linux I/O schedulers were considered in this
experiment. Complete Fairness Queuing (CFQ) (Axboe,
2004), deadline, and noop are these schedulers that were used

as factors to the experiment complementing the scenario to
store data shown above. Schedulers are algorithms that
distribute works such as threads, processes, data flows, etc. to
computational resources. They are normally a programmable
method with some main idea to distribute these works. This
factor relates to the schedulers, with are software line codes,
with the red circle (software) presented in Figure 1. Many
contributions are performed by researchers to improve
schedulers because I/O schedulers play an essential role in
those environments.

5.2.3 Task numbers

The number of tasks that we used on the experimentation is
an important factor that we considered. In this experiment, we
consider 32 and 64 as the number tasks because we believe
that different workloads and size numbers can be easily
found in DISC applications and it probably influences the
performance results.

5.2.4 Access pattern

The last experimental parameter is related to the access
pattern. The workload access patterns used in this
experimentation were ‘random’ and ‘sequential’ for each
scenario. We performed the experimentation with these two
options because it could give us different information and
present broader results. The data access pattern is among the
most important characteristics of disk drive workloads
because it is related to the disk service process (Riska and
Riedel, 2006). This factor could be related to the arrow that
leaves the red circle (software) and arrives on the green circle
(hardware) presented in Figure 1 because some software
improvement could be proposed to improve the data
management workload access on the storage devices.

In conclusion, we performed the experimentation with a
total of 36 different scenarios where 3 came from the
different approaches to store data and metadata, 3 came from
the different I/O schedulers used on the requests, 2 came from
the number of tasks used and 2 came from the data access
pattern used by the benchmark. In order to improve the
results, each experiment was performed 5 times and at the
end, the average of them was calculated as the final result.

6 Evaluation results

Through this section, we present the results obtained through
the experimentation process. In all of them, we are looking
for understanding how latency behaves when the benchmark
performs I/O read and write operations.

The selected schedulers defined in section 5 were set to
the respective device that was being used to store the data and
metadata in each running execution. Indeed there are many
ways of analysing the presented results due to the huge
number of factors defined in section 5, but we are concerned
with analysing through two different perspectives. The results
were classified into two different groups with different
analysis purposes.

 An effort to characterise enhancements I/O of storage environments 57

The first group is concerned to present results in a view of
the storage approach, which is in some way a hardware
approach, to store data. Presenting results from this
perspective we believe that researchers could keep increasing
and proposing hardware devices to increase the I/O layer.

The second group presents results considering the
schedulers presented on Linux operational system. Presenting
results from this perspective, the results could lead
researchers to keep increasing the schedulers presented on
Linux that could be related as a software improvement
solution in Figure 1.

We provide a brief discussion of how the data and
information were disposed of in the graphics. In each figure
presented, 24 outcomes for the read and write operations are
shown. In the first three figures, all bars with hatches present
the latency value for the read operation that is related to one
specific scheduler, and all bars without hatches, located after
the hatched bar, present the latency value of the write
operation for the same scheduler. In the last three figures, all
bars with hatches present the latency value for the reading
operation that is related to the way the data were stored, and
all bars without hatches, located after the hatched bar, present
the latency value of the write operation. The latency value for
the write operation always comes after the related latency for
the read operation.

6.1 Scheduler overview

Figures 2, 3, and 4 present the average latency time for the
read and write operations switching the three presented
schedulers in section 5 (CFQ, deadline, and noop).

Figure 2 presents the latency time for the read/write
operations storing data and metadata in different ways using
the CFQ scheduler. It’s possible to verify that in all cases the
latency value for the write operation is greater than the read
operation no matter which storage approach we use. Indeed, it
is known that the time to read, in a normal circumstance, is
smaller than the time to write. It might be related to some
facts. For instance, how the hardware is handled or the
characteristics of a specific operating system, or even the way
the file system operates could be cited. Normally, to read
some file, a file system should find the file through the
directory tree and read the respective file. To write a file,
however, the same operation through the tree should be
performed, but, after reading, differently from the read
operation, the file system has more additional functions such
as updating in someplace the metadata information related to
the written file. This updating place could be any place such
as a standard place, a new path through the tree directory, a
new device, or even a geographically distant location.

Using the CFQ scheduler, it is also possible to notice in
Figure 2 that when setting the number of tasks equal to 32,
the approaches presented to storage the data were very similar
when relating the latency time for the read operation.
However, when setting the number of tasks equal to 64, the
worst approach was storing both data and metadata on HDDs
while the best was storing data on HDD and metadata

on SSD. Analysing the write operation, the results presented a
huge difference when storing data and metadata using an SSD
in all cases. More than three times less to perform write
operations was achieved when using the only SSD compared
with the hybrid approach when the access pattern equal to
sequential and the number of tasks equal to 64.

Figure 2 Latency analysis using CFQ scheduler

Table 1 presents the average latency value for all the
scenarios presented in Figure 2 when using the deadline
scheduler. It is possible to see that storing data on HDD and
metadata on SSD was the configuration storage that gave us
the lowest read latency time. To the write operation, the best
configuration storage was storing both data on the SSD
device with almost three times less than the lowest
configuration which uses HDD.

Table 1 Average of latency presented in Figure 2

Storage approach Read Write

Data and Meta on HDD 0.3643 2.0151

Data on HDD and Meta on SSD 0.2560 2.0871

Data and Meta on SSD 0.2815 0.6827

Figure 3 presents the results using the deadline Linux
scheduler. The presented results were similar to the results
presented by the CFQ scheduler. However, comparing
Figure 2 with Figure 3 we verify that when using a number of
tasks equal to 64, the deadline scheduler has presented a
smaller latency time to write operation when using the
approach data on HDD and metadata on SSD. With deadline
scheduler, almost in all write results, storing data and
metadata in an HDD was the worst approach providing the
higher latency time.

Table 2 presents the average latency value for all the
scenarios presented in Figure 3 when using the deadline
scheduler. Just like Table 1, Table 2 also presented the
approach of storing data on HDD and metadata on SSD as
the best results with a smaller latency time to read operation
and the approach which stores both data and metadata on
SSD as the best approach to decrease the latency time for
the write operation.

58 L. Pioli, V. Ströele and M.A.R. Dantas

Figure 3 Latency analysis using deadline scheduler

Table 2 Average of latency presented in Figure 3

Storage approach Read Write

Data and Meta on HDD 0.3468 2.0183

Data on HDD and Meta on SSD 0.2708 1.9147

Data and Meta on SSD 0.2841 0.7274

Figure 4 presents the latency results when using the Linux
noop scheduler. It is possible to verify in this figure that the
write operation latency when using only HDD as a device to
store both data and metadata was the worst storage approach.
An important fact that we noticed is that Figure 4 follows the
same latency pattern presented by Figure 2 for the read
operation in all cases. For instance, in Figure 2 when the
storage configuration is access pattern equal to sequential and
the number of tasks is 32, the storage approach which
presented the worst latency for reading operation was when
storing both data and metadata on SSD.

Figure 4 Latency analysis using noop scheduler

Table 3 presents the average latency value for all the
scenarios presented in Figure 4 when using the noop
scheduler. As Table 1 and Table 2, Table 3 also presented the
approach of storing data on HDD and metadata on SSD as the
best results with a smaller latency time to read operation and
the approach which stores both data and metadata on SSD as

the best approach to decrease the latency time for the write
operation.

Table 3 Average of latency presented in Figure 4

Storage approach Read Write

Data and Meta on HDD 0.3638 2.2576

Data on HDD and Meta on SSD 0.2493 1.8570

Data and Meta on SSD 0.3088 0.6839

It seems that regardless of the scheduler we are using, the
way data storage is done greatly influences how latency will
behave. We observed that in all the cases presented above
when using the number of tasks equal to 64, the approach that
stores data and metadata in a mechanical device such as
HDD, presented the worst latency result. In general, the
deadline scheduler seems to perform steadily with a low
difference between the latency of each set of parameters if
compared with the other two schedulers.

6.2 Storage overview

In Figures 5, 6, and 7, we present the average latency time for
reading and writing operations switching the three storage
approaches presented in section 5 (Storing Both Data and
Metadata on HDD, Storing Data on HDD and Metadata on
SSD and Storing Both Data and Metadata on SSD.)

Figure 5 Data and metadata on HDD

The latency results when storing both data and metadata on
the HDD device switching then the I/O schedulers are
presented in Figure 5. Analysing it we verify that when the
number of tasks is equal to 64, the read latency increases
significantly regardless of the chosen access pattern for the
three schedulers. Each storage configuration presented has a
scheduler that performs better latency time according to the
parameters selected. For instance, if the number of tasks is
equal to 32 and the access pattern is similar to sequential, the
scheduler which presented the lowest latency for the reading
operation was the noop scheduler, and for the write operation
was the CFQ scheduler. Analysing the same number of tasks
equal to 32, but changing the access pattern to random, the

 An effort to characterise enhancements I/O of storage environments 59

schedulers which presented the lowest latency time for
reading operation was the CFQ scheduler and for write
operation was the deadline scheduler.

In Table 4 we present the average latency time for all the
scenarios presented in Figure 5. We present this average
because DISC and HPC applications can treat and use
heterogeneous kinds of data with different access patterns and
the number of tasks on the same application. Considering
this, it’s possible to see in Table 4 that when we are storing
both data and metadata on the HDD device the scheduler that
presents the big latency time to execute read operation is the
CFQ, and to perform the write operation is the Noop
scheduler.

Table 4 Average of latency presented in Figure 5

Scheduler Read Write

CFQ 0.3643 2.0151

Deadline 0.3468 2.0183

Noop 0.3637 2.2576

The results when storing data on HDD and metadata on SSD
device switching then the I/O schedulers are presented in
Figure 6. Just as it happened in Figure 5, in Figure 6 all
latency values to perform the write operation are greater than
the value to perform the read operation. However, we verify
that the latency rate when storing by this way was lower in
almost all read operation cases compared to the values
presented in Figure 5. The unique configuration where the
read latency was bigger than the presented in Figure 5 was for
the deadline scheduler with the number of tasks equal to 32
and access pattern equal to random. In general, the latency
when performing write operations has decreased compared
with the first storage approach. The cases where it has not
happened were the twice for the CFQ scheduler with the
sequential access pattern and the deadline scheduler with the
64 number of tasks equal and random access pattern. All the
other write values have the latency time decreased when
changing the way to store data and metadata.

Figure 6 Data on HDD and metadata on SSD

We noticed that in Table 5 the latency average to execute the
read operation for all schedulers are smaller than when

storing data on HDD presented in Table 4. It means that for
all schedulers, all corresponding latency times for the read
operation were decreased when the use of an SSD was
applied. However, for the write operation, unlike the values
presented in Table 4, Table 5 shows that when using an SSD
device the CFQ does not perform with the same lowest
latency as before. In fact, it was the unique value that had the
worst latency value compared with the previous storage
approach. It is also possible to notice that when we are storing
data on HDD and metadata on SSD the scheduler that
presents the lowest average latency time to perform read and
write operation is the noop scheduler.

Table 5 Average of latency presented in Figure 6

Scheduler Read Write

CFQ 0.2560 2.0871

Deadline 0.2707 1.9146

Noop 0.2493 1.8570

The results when storing both data and metadata on SSD that
is a device that does not have mechanical components are
presented in Figure 7.

Figure 7 Data and metadata on SSD

Comparing the latency time for the read operation with the
values presented in Figure 6, we noticed that almost no
significant improvement has been made, only three read
latency values were improved using this storage approach. A
curious result happened when the number of tasks is equal to
32 and the access pattern is sequential. Comparing the read
latency time with the values presented in Figure 5 we verify
that when using only an SSD device to store data and
metadata, all schedulers presented a higher latency time.
These same pattern results we verify if compared to Figure 6.
By these interesting results, we argue that the use of an SSD
device to store both data and metadata has increased the
latency time to read operations when the number of tasks is
32 and the access pattern is sequential. However, when the
number of tasks is equal to 32, the use of an SSD to store only
metadata, presented in Figure 6, presented better results from
six if compared to Figure 5.

60 L. Pioli, V. Ströele and M.A.R. Dantas

Despite no significant improvement in latency when
performing a read operation, perhaps the most expressive
results are related to the write operation. All values were less
than one in all scenarios. It is possible to verify that the
latency for the write operation in this storage configuration
was significantly decreased compared to the two previous
storage approaches. Although the storage solution provided
an important performance improvement when using the
number of tasks equal to 32, perhaps the improvement
presented for the number of tasks equal to 64 was more
expressive if compared to the previous results.

It is possible to notice in Table 6, that when performing
the read operation, the latency ratio was higher for all
schedulers if compared to Table 5. It enforces our analysis
that this storage approach did not present significant
improvement as the previous results when performing read
operations. However, when compared to Table 4, it presented
a smaller and better overall latency time. Analysing the write
value presented in Table 6 we verify that the results for all
schedulers were better than for the previous storage
approaches. In this case, the scheduler which presented the
better read and writes latency time was the CFQ scheduler.

Table 6 Average of latency presented in Figure 7

Scheduler Read Write

CFQ 0.2815 0.6827

Deadline 0.2841 0.7274

Noop 0.3087 0.6839

These results could lead us to think that if the device that is
storing the data is an SSD device, it’s very likely that the
latency time will be decreased and thereby improve the
performance of write operations.

7 Conclusion

The huge amount of created data together with the growing
gap between power processing and storage latency imposes a
challenge in terms of data transfer and storage. Researchers
are proposing interesting and important solutions to reduce
and approximate the power processing to the memory and
storage development. HPC and DISC applications are kinds
of such systems that are faced with data challenges due to the
need to deal with many parameters when managing data. This
study described our characterisation model for classifying
research works on I/O performance improvements for storage
systems and devices. We consider that they are divided in a
macro view of the software, hardware, and storage systems
approaches. Our proposal can be understood as a
characterisation related to the I/O improvements, where we
are studying each component separately (i.e. software,
hardware, and storage systems) and their interconnections.
We present a set of experiments performed inside the
Grid’5000 and we demonstrated that the latency when
performing I/O operations can undergo many variations if we
take into account the presented factors evaluated in the

experiments. Among many presented results achieved by the
36 different scenarios relating to the latency when performing
I/O operations we classify and show the results separated
through two different perspectives called scheduler overview
and storage overview. In the first evaluated perspective, we
discuss how the performance of each Linux scheduler
behaved when changing the perspective of storing data and
metadata on different devices. In the second evaluation, we
discuss how each storage approach behaved when switching
the Linux schedulers. In order to improve this research, we
intend to perform experiments in a large cloud environment
considering different storage technologies and software
approaches to also validate it using the cloud concepts.

References

Axboe, J. (2004) ‘Linux block IO - present and future’, Ottawa
Linux Symp, pp.51–61.

Bhattacharjee, B., Ross, K.A., Lang, C., Mihaila, G.A. and
Banikazemi, M. (2011) ‘Enhancing recovery using an SSD
buffer pool extension’, Proceedings of the 7th International
Workshop on Data Management on New Hardware,
pp.10–16.

Bryant, R.E. (2011) ‘Data-intensive scalable computing for
scientific applications’, Computing in Science & Engineering,
Vol. 13, No. 6, pp.25–33.

Bu, K., Wang, M., Nie, H., Huang, W. and Li, B. (2012) ‘The
optimization of the hierarchical storage system based on the
hybrid SSD technology’, Second International Conference on
Intelligent System Design and Engineering Application,
pp.1323–1326.

Calzarossa, M.C., Massari, L. and Tessera, D. (2016) ‘Workload
characterization: a survey revisited’, ACM Computing Surveys
(CSUR), Vol. 48, No. 3, pp.1–43.

Chang, C., Greenwald, M., Riley, K. and others. (2017a) Fusion
Energy Sciences Exascale Requirements Review, An Office of
Science review sponsored jointly by Advanced Scientific
Computing Research and Fusion Energy Sciences in USDOE
Office of Science (SC).

Chang, L., Huang, S. and Chou, K. (2017b) ‘Relieving self-healing
SSDs of heal storms’, 10th ACM International Systems and
Storage Conference, p.5.

Dae-Sik, K. and Seung-Kook, C. (2009) ‘A design of DDR-1
solid-state drive using PCI-e interface’, 15th Asia-Pacific
Conference on Communications, pp.889–891.

Dorier, M., Antoniu, G., Cappello, F., Snir, M. and Orf, L. (2012)
‘Damaris: How to efficiently leverage multicore parallelism
to achieve scalable, jitter-free I/O’, IEEE International
Conference on Cluster Computing, pp.155–163.

Dorier, M., Antoniu, G., Ross, R., Kimpe, D. and Ibrahim, S.
(2014) ‘CALCioM: mitigating I/O interference in HPC
systems through cross-application coordination’, IEEE
28th Int. Parallel and Distributed Processing Symposium,
pp.155–164.

Du, C., Wu, C., Li, J., Guo, M. and He, X. (2015) ‘Bps: a balanced
partial stripe write scheme to improve the write performance
of raid-6’, IEEE International Conference on Cluster
Computing, pp.204–213.

Gorton, I. and Klein, J. (2014) ‘Distribution, data, deployment:
software architecture convergence in big data systems’, IEEE
Software, Vol. 32, No. 3, pp.78–85.

 An effort to characterise enhancements I/O of storage environments 61

He, S., Sun, X.H. and Haider, A. (2015) ‘HAS: heterogeneity-
aware selective data layout scheme for parallel systems on
hybrid servers’, IEEE International Parallel and Distributed
Processing Symposium, pp.613–622.

He, S., Sun, X.H., Wang, Y., Kougkas, A. and Haider, A. (2015)
‘A heterogeneity-aware region-level data layout for hybrid
parallel systems’, 44th International Conference on Parallel
Processing, pp.340–349.

Huo, Z. et al. (2015) ‘A metadata cooperative caching architecture
based on SSD and DRAM for le systems’, International
Conference on Algorithms and Architectures for Parallel
Processing, pp.31–51.

Inacio, E.C. and Dantas, M.A.R. (2018) ‘IORE: a flexible and
distributed I/O performance evaluation tool for hyperscale
storage systems’, Symposium on Computers and
Communications (ISCC), pp.1026–1031.

Kannan, S., Gavrilovska, A., Schwan, K., Milojicic, D. and
Talwar, V. (2011) ‘Using active NVRAM for I/O staging’,
Proceedings of the 2nd international workshop on Petascal
data analytics: challenges and opportunities, pp.15–22.

Kim, H.J., Lim, J.D., Lee, J.W., Na, D.H., Shin, J.H., Kim, C.H. et
al. (2015) ‘7.6 1GB/s 2Tb NAND ash multi-chip package
with frequency-boosting interface chip’, IEEE International
Solid-State Circuits Conference-(ISSCC) Digest of Technical
Papers, pp.1–3.

Kim, J., Ahn, S., La, K. and Chang, W. (2016) ‘Improving I/O
performance of NVMe SSD on virtual machines’,
Proceedings of the 31st Annual ACM Symposium on Applied
Computing, pp.1852–1857.

Kuo, C., Shah, A., Nomura, A., Matsuoka, S. and Wolf, F. (2014)
‘How le access patterns influence interference among cluster
applications’, International Conference on Cluster Computing
(CLUSTER), pp.185–193.

Lee, D.U., Kim, K.W., Kim, K.W., Lee, K.S., Byeon, S.J., Kim,
J.H. et al. (2014) ‘A 1.2 V 8 Gb 8-channel 128 GB/s high-
bandwidth memory (HBM) stacked DRAM with effective I/O
test circuits’, IEEE Journal of Solid-State Circuits, Vol. 50,
pp.191–203.

Lee, J., Ganesh, K., Lee, H.J. and Kim, Y. (2017) ‘FESSD: a fast
encrypted ssd employing on-chip access-control memory’,
IEEE Computer Architecture Letters, Vol. 16, No. 2,
pp.115–118.

Liu, J., Byna, S., Dong, B., Wu, K. and Chen, Y. (2014) ‘Model-
driven data layout selection for improving read performance’,
IEEE International Parallel & Distributed Processing
Symposium Workshops, pp.1708–1716.

Lucas, R., Ang, J., Bergman, K., Borkar, S., Carlson, W.,
Carrington, L. et al. (2014) ‘Top ten exascale research
challenges’, DOE ASCAC subcommittee report, pp.1–86.

Min, J., Ahn, S., La, K., Chang, W. and Kim, J. (2015) ‘Cgroup++:
enhancing I/O resource management of Linux Cgroup on
NUMA systems with NVMe SSDs’, Proceedings of the
Posters and Demos Session of the 16th International
Middleware Conference, p.7.

Nakashima, K., Kon, J. and Yamaguchi, S. (2018) ‘I/O
performance improvement of secure big data analyses with
application support on SSD cache’, Proceedings of the 12th
International Conference on Ubiquitous Information
Management and Communication, p.90.

Oh, Y., Choi, J., Lee, D. and Noh, S.H. (2012) ‘Caching less for
better performance: balancing cache size and update cost of
ash memory cache in hybrid storage systems’, FAST, Vol. 12.

Ou, Y., Wu, X., Xiao, N., Liu, F. and Chen, W. (2015) ‘NIS: a new
index scheme for flash file system’, 29th Symposium on Mass
Storage Systems and Technologies (MSST), pp.44–51.

Ouyang, X., Marcarelli, S. and Panda, D.K. (2010) ‘Enhancing
checkpoint performance with staging IO and SSD’,
International Workshop on Storage Network Architecture and
Parallel I/Os, pp.13–20.

Pioli, L., Stroele, A.M. and Dantas, M.A.R. (2019) ‘Research
characterization on I/O improvements of storage
environments’, International Conference on P2P, Parallel,
Grid, Cloud and Internet Computing, pp.287–298.

Ramasamy, A.S. and Karantharaj, P. (2015) ‘A buffer cache
management algorithm for ash-memory-based SSD to
improve write performance’, Canadian Journal of Electrical
and Computer Engineering, Vol. 38, pp.219–231.

Riska, A. and Riedel, E. (2006) ‘Disk drive level workload
characterization’, USENIX Annual Technical Conference,
Vol. 2006, pp.97–102.

Saif, A., Nussbaum, L. and Song, Y. (2018) ‘IOscope: a flexible
I/O tracer for workloads, I/O pattern characterization’,
International Conference on High Performance Computing,
pp.103–116.

Shen, K. and Park, S. (2013) ‘Flashfq: a fair queueing i/o scheduler
for ash-based ssds’, paper presented as part of the 2013
USENIX Annual Technical Conference USENIX ATC 13,
pp.67–78.

Traeger, A., Zadok, E., Joukov, N. and Wright, C.P., (2008) ‘A
nine year study of le system and storage benchmarking’, ACM
Transactions on Storage (TOS), Vol. 4, No. 2, pp.1–56.

Wan, L., Wolf, M., Wang, F., Choi, J.Y., Ostrouchov, G. and
Klasky, S. (2017) ‘Comprehensive measurement and analysis
of the user-perceived I/O performance in a production
leadership-class storage system’, International Conference on
Distributed Computing Systems (ICDCS), pp.1022–1031.

Wozniak, J., Jacobs, B., Latham, R., Lang, S., Son, S.W. and Ross,
R. (2010) ‘C-mpi: a dht implementation for grid and hpc
environments’, Preprint ANL/MCS-P1746-0410, Vol. 4.

Wu, C., Huang, C. and Chang, C. (2018) ‘A priority-based data
placement method for databases using solid-state drives’,
Proceedings of the 2018 Conference on Research in Adaptive
and Convergent Systems, pp.175–182.

Xie, W., Zhou, J., Reyes, M., Noble, J. and Chen, Y. (2015) ‘Two-
mode data distribution scheme for heterogeneous storage in
data centers’, IEEE International Conference on Big Data
(Big Data), pp.327–332.

Yang, C., Liu, X. and Cheng, X. (2017) ‘Content look-aside buffer
for redundancy-free virtual disk I/O and caching’, ACM
SIGPLAN Notices, Vol. 52, No. 7, pp.214–227.

Yang, J., Pei, S. and Yang, Q. (2019) ‘WARCIP: write
amplification reduction by clustering I/O pages’, 12th ACM
International Conference on Systems and Storage,
pp.155–166.

Yildiz, O., Dorier, M., Ibrahim, S., Ross, R. and Antoniu, G.
(2016) ‘On the root causes of cross-application I/O
interference in HPC storage systems’, International Parallel
and Distributed Processing Symposium (IPDPS),
pp.750–759.

Zhou, J., Chen, Y. and Wang, W. (2018) ‘Attributed consistent
hashing for heterogeneous storage systems’, PACT, pp.1–12.

Zhou, J., Xie, W., Gu, Q. and Chen, Y. (2016) ‘Hierarchical
consistent hashing for heterogeneous object-based storage’,
IEEE Trustcom/BigDataSE/ISPA, pp.1597–1604.

Zhou, J., Xie, W., Noble, J., Echo, K. and Chen, Y. (2016)
‘SUORA: a scalable and uniform data distribution algorithm
for heterogeneous storage systems’, IEEE International
Conference on Networking, Architecture and Storage (NAS),
pp.1–10.

