
 
International Journal of Grid and Utility Computing
 
ISSN online: 1741-8488 - ISSN print: 1741-847X
https://www.inderscience.com/ijguc

 
An effort to characterise enhancements I/O of storage
environments
 
Laercio Pioli, Victor Ströele, Mario A.R. Dantas
 
DOI: 10.1504/IJGUC.2023.10054824
 
Article History:
Received: 11 November 2020
Accepted: 14 May 2021
Published online: 21 March 2023

Powered by TCPDF (www.tcpdf.org)

Copyright © 2023 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijguc
https://dx.doi.org/10.1504/IJGUC.2023.10054824
http://www.tcpdf.org


Int. J. Grid and Utility Computing, Vol. 14, No. 1, 2023 51 

Copyright © 2023 Inderscience Enterprises Ltd. 

An effort to characterise enhancements I/O of 
storage environments 

Laercio Pioli*, Victor Ströele and  
Mario A.R. Dantas 
Department of Computer Science,  
Federal University of Juiz de Fora - UFJF,  
Juiz de Fora, MG, Brazil 
Email: laerciopioli@ice.ufjf.br 
Email: victor.stroele@ice.ufjf.br 
Email: mario.dantas@ice.ufjf.br 
*Corresponding author 

Abstract: Data management and storage are becoming challenging nowadays due to the huge 
amount of created, processed, and stored data. The growing gap between power processing and 
storage latency increases this performance disparity. Targeting reducing I/O bottleneck in storage 
environments, researchers are proposing interesting improvements in I/O architectures. High-
Performance Computing (HPC) and Data-Intensive Scalable Computing (DISC) applications are 
kinds of such systems that are faced with data challenges due to the need to deal with many 
parameters when managing data. This study describes our characterisation model for classifying 
research works on I/O performance improvements for storage systems and devices that improve 
HPC and DISC overall application performance. We present a set of experiments using a 
synthetic I/O benchmark performed inside the Grid’5000. We show that the latency when 
performing I/O operations can undergo many variations if we take into account the presented 
factors evaluated in the experiments. 
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1 Introduction 

The ever-increasing data production and consumption have 
changed how enterprises and academies are dealing with 
information. Engineering (e.g., molecular nanotechnology, 
and earthquake), business (e.g., computational finance, and 
information retrieval), natural sciences (e.g., bioinformatics, 
and astrophysics) are some of the many data study fields 
which contribute to this increasing scenario. However, these 
research studies not only require high power processing but 
also generate a massive volume of data. Data acquisition, 
storage, analysis, and visualisation have an important role in 
this data deluge found nowadays. For instance, in the 
astrophysics field, data acquisition is very well-known. Data 
that came from the exploration of galaxies which tries to 
capture as much as possible propagated wave signal over the 
space to find patterns and discover how the galaxies are 
evolving are captured from huge telescopes endlessly. The 
analysis of these large volumes of data is another important 
step in this scenario. It consumes much power processing 
from resources to generate understandable information 
through the visualisation process for post-human analysis. 

With this big data usability, a data management problem 
arises. I/O-related characteristics, indeed, are important for 
application performance. Researchers are proposing solutions 
to improve the I/O architecture from different perspectives. 
Many contributions focus on data distribution over the years. 
Some of them consider heterogeneous storage systems  
(Zhou et al., 2016a, 2016b; Xie et al., 2015) others present 
hash tables algorithms for data mapping (Liu et al., 2014; 
Wozniak et al., 2010) or even focus on le stripe layout in 
heterogeneous environments (He et al., 2015a, 2015b). Other 
works consider hardware combinations to enhance data 
access. Some of these solutions utilise hash memory, as SSD 
(Solid-State Disk) together with HDD (Hard Disk Drive) to 
support the I/O management problems, improving then the 
performance of these applications. Finally, other dimensions 
adopt the software improvement in the upper layer to enhance 
the I/O performance, as illustrated in Gorton and  
Klein (2014). 

The overall overview of the actual efforts could be 
divided into a macro view of three basic elements (i.e., 
software, hardware, and storage systems). Our proposal can 
be understood, as Figure 1 shows, as a characterisation model 
related to the I/O improvements, studying each component 
separately and their interconnections. In a previous literature 
review, we found a gap that indicates a necessary set of 
experiments to better understand the relation between the 
three components. To evaluate our proposal, we present a set 
of experiments performed inside the Grid’5000, a large 
distributed computational environment, which targeted to 
indicate aspects related to I/O performance especially 
considering the view of scientific and industrial applications. 

The remainder of this paper is structured as follows: 
Section 2 presents some elements related to high-performance 
storage and applications. Related works are illustrated in 
Section 3. Section 4 highlights the proposed research work of 
the paper. The used environment and the factors used in the 

experimentation process are presented in Section 5. 
Experimental results in the Grid’5000 are presented in  
Section 6. Finally, Section 7 presents conclusions and future 
works after this investigation effort. 

2 High-performance storage and applications 

High-performance environments and applications are usually 
faced with I/O bottleneck issues. A factor that increases this 
issue is the existing gap between power processing and 
storage latency. As predicted by Moore’s Law in the 1960s, 
the number of transistors on an integrated circuit would 
double every eighteen months. However, computing systems 
are composed not only by processing but also by memory and 
storage hierarchy that support this processing. 

The storage technologies evolve at a slower velocity than 
processing and this contributes to the increasing of the main 
I/O performance problem. High-performance applications 
usually move exabytes of computed or generated data 
between environmental nodes, specifically computed nodes 
(CN) and storage nodes (SN), and their performance depends 
on the I/O process. Typically, a clustered architecture is  
used to execute these applications. Because of that, I/O 
performance bottlenecks are a hot area of study, and 
researchers propose solutions to increase the I/O performance 
architecture from many perspectives. 

2.1 Data-intensive scalable computing (DISC) 

Data-Intensive Scalable Computing (DISC) systems usually 
deal with a massive and expressive amount of data. The 
necessity to employ a system that processes and organises 
these data arises nowadays. To acquire, update, share and 
archive these datasets in an organised way is a challenging 
task. DISC systems came to fill these requirements that 
emphasise data management. An inspiration factor to DISC 
systems creation is the increased growth of the internet 
infrastructure companies. These leader companies create new 
methods and technologies to solve and deal with their 
particular problems. Scalability, fault-tolerance, availability, 
and cost-performance are some goals that are target to these 
systems and applications. These applications come from 
diverse scientific domains and are usually concerned with the 
role of data management and computation. 

Bryant (2011) pointed some key principles related to 
DISC systems. Some of them are related due to the hardware 
nature. The first principle relates to the intrinsic data. Instead, 
associate the data with the users, the system has to collect and 
maintain these data. 

Another characteristic of these systems is that they should 
implement reliability functionalities such as replication and 
error correction. The second is directly related to the high-
level programming models. Targeting data processing 
consistently and independently, those systems usually employ 
high-level programming models considering parallelisation. 
Interactive access is another considered vital principle of 
DISC systems. It states that the requirement for computing 



 An effort to characterise enhancements I/O of storage environments 53 

and storage should be independent and allow variety of set 
up. Using these provided resources, users can execute these 
programs interactively, and the system should return an  
input query quickly while performing computations in the 
background without losing systems performance. The last 
principle relates to reliability and availability. Implementing 
mechanisms that ensure these principles increases the quality 
of the system. As mentioned before, DISC systems came to 
fill data requirements and making these last principles more 
important. 

Usually, data-intensive computing facilities are 
specifically projected to provide higher data performance 
without losing cost performance. Although DISC 
infrastructure varies depending on the objective, they 
presented common hardware aspects already found in 
Warehouse-Scale Computers (WSC) environments. These 
environments are usually composed of servers grouped into 
racks. These agglomerated racks create a cluster. Each server 
is composed of several processor sockets, each with its 
microprocessors and cache hierarchy attached to the local 
RAM chip. The servers are connected to the racks through a 
1-gigabit-per-second (Gbps) Ethernet switch and the racks are 
connected to the cluster-level switch through a 1 or 10 Gbps 
Ethernet switch. This architecture connects all servers. All of 
them contain its memory hierarchy, processing core, and 
storage media locally forming a clustered environment. 

2.2 High-performance computing (HPC) 

HPC is associated with the class of compute-intensive 
workloads, applications, and performance-critical tasks that 
use a highly powerful, multilevel, hierarchically organised 
computing resource designed to address problems that require 
exhaustive processing. These workloads usually refer to 
simulations and modelling problems commonly found in the 
scientific and industrial fields that are infeasible to be 
processed on a unique hardware capability. Their design 
mainly focuses on providing high processing power for large 
scale distributed and parallel applications, even though low 
communication and data access latency is considered 
increasingly important requirements (Lucas et al., 2014; 
Chang et al., 2017a). 

Usually, this environment-class targets aggregating 
computing power in a way that provides much higher 
performance than a single computational machine. One 
observed characteristic in these environments is the 
separation of computing and storage resources, which results 
in massive data movements through layers of the I/O path 
during the execution of a data-intensive application. In such 
complex computing environments, many factors can affect 
the I/O performance perceived by an application: workload 
characteristics, system architecture and topology model, 
configurations in the many layers of the parallel I/O software 
stack, properties of hardware components, interference and 
system noises, to name a few. 

Research works that address I/O performance variability 
proposed inter-application coordination approaches focusing on 
reducing the impact of multiple applications simultaneously  
 

executing on the HPC system (Dorier et al., 2012; Kuo et al., 
2014; Dorier et al., 2014; Yildiz et al., 2016; Wan et al., 2017). 
However, on extreme-scale computational science applications, 
denoting applications with dedicated access to all resources of 
the HPC environment for execution, I/O performance 
variability can be mostly attributed to intra-application 
interference. One major, yet intrinsic, source of intra-
application interference in this context relates to the load 
balance on PFS’s data servers. 

3 Related work 

Conducting performance studies on storage devices and 
systems is challenging for researchers as they need to deal 
with various low-level concepts and new technologies. 
Applications that produce and process many data in a short 
time interval almost always need to store and retrieve data 
and usually they encounter latency problems to perform such 
operations. Much of these problems are related to the device 
and technology that are being used. The related works shown 
below exemplify some issues that are being addressed by 
researchers to improve I/O performance. 

Saif et al. (2018) presented an I/O tracer, called IO scope, 
for uncovering I/O patterns of storage management systems’ 
workloads. Helping to achieve a better troubleshooting 
process, their solution contributes to having an in-depth 
understanding of I/O performance throughout, altering-based 
profiling over fine-grained criteria inside Linux kernel. They 
evaluated their proposal using two different databases, a 
document-based MongoDB and a wide-column Cassandra 
storage database. They achieved interesting results showing 
that the clustered MongoDB suffers from a noisy I/O pattern, 
regardless of the storage device used (HDDs or SSDs). 

Calzarossa et al. (2016) also presented a survey 
considering a characterisation model but differently from the 
previous one, they consider the importance of the workload 
characterisation exploiting its importance in popular 
applications domains. Their focus is directed to workload 
from the web and also with workloads associated with online 
social networks, video services, mobile apps, and cloud 
computing infrastructure. They also present and analyse a 
modelling technique applied for this characterisation. Their 
proposed characterisation model does not consider the three 
basic elements (e.g. software, hardware, and storage systems) 
as in our presented model. They present studies in a cloud 
computing infrastructure, but their concerns are also related to 
the characteristics of cloud workloads. 

Finally, Traeger et al. (2008) described and presented a 
survey considering a nine-year examination of a range of file 
system and storage benchmarks. They survey a range of 106 
file-system and storage-related research papers in this study. 
They also described the positives and negatives qualities of 
both and presented a way to choose the appropriate 
benchmark for performance evaluation. As in the previous 
related works, the authors did not consider hardware 
characteristics and how they can influence the performance in 
an evaluation process of a storage system. 
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4 Characterisation model 

A characterisation model for classifying research works on 
I/O performance is presented in this section. Several 
researchers are proposing solutions to overcome the 
existential gap between power processing and storage latency. 
They combine different hardware devices and software 
applications in the most varied way possible. Sometimes 
these new approaches require the development of new 
software drivers to interface the proposed architecture. Figure 
1 presents the characterisation model that was given in Pioli 
et al. (2019). It is composed of three basics elements: 
software, hardware, and storage systems. 

Software investigations could be understood as an 
improvement where the object that is being proposed as a 
solution is an algorithm, method, framework, or any 
programmable solution. Hardware investigations could be 
characterised as improvements when the object that is 
proposed as an improvement is a physical component or 
something palpable. We found that these two groups can 
relate and improve each other or a storage system targeting 
the improvement of I/O performance. With this approach, we 
argue that if researchers classify their papers before 
publishing, it could improve and save time by the other 
researchers when trying to improve objects in this field. 

Previous works exemplify some issues that are being 
addressed by researchers to improve I/O performance on 
storage devices and systems. These works were selected 
because it is being realised a systematic review concerning 
I/O improvements on storage devices and systems that were 
proposed in the last ten years. There is no additional intention 
in the presentation of the works exposed besides showing that 
they have purposes in improving a similar class of objects. 
These solutions were divided into numbered groups for better 
viewing. 

Figure 1 Proposed characterisation I/O improvements 

 

4.1 Group 1 – software solution to improve I/O 
performance on hardware (S2H-IO) 

All the contributions presented in group 1 are some kind of 
‘software’ solution and could be characterised as a ‘solution’ 

that is being proposed to improve I/O performance on a 
storage device. This group of improvements was 
characterised and shown in Figure 1 as the arrow that leaves 
the red circle (Software) and arrives in the green circle 
(Hardware). For better viewing, the acronym S2H-IO which 
means ‘Software solution to improve I/O performance on 
Hardware’ was created and added above the arrow. 

Below we expose some researches that are part of group 
1. Chang et al. (2017b) proposed an approach to operate wear 
levelling on virtual erase counts instead of real erase counts 
using SSD devices. Kim et al. (2016) proposed an I/O 
architecture that optimises the I/O path to take full advantage 
of NVMe SSDs. The authors’ approach works by eliminating 
the overhead of user-level threads, bypassing unnecessary  
I/O routines, and enhancing the interrupt delivery delay. 
Ramasamy and Karantharaj (2015) proposed an algorithm 
called random first flash enlargement to improve the 
performance of write operation on the flash-memory-based 
SSDs. Shen and Park (2013) proposed an I/O scheduler 
where the design of the solution is motivated by unique 
characteristics on Flash-Based SSDs. Yang et al. (2019) 
proposed (WARCIP) which means ‘write amplification 
reduction by clustering I/O pages’ to minimise the negative 
impact of garbage collection (GC) on SSD devices. They 
used a clustering algorithm to minimise the rewrite interval 
variance of pages in a flash block. 

4.2 Group 2 – hardware solution to improve I/O 
performance on hardware (H2H-IO) 

Papers presented in group 2 relate to improvements targeting 
I/O performance on the hardware device. The authors do that 
using hardware technology as an object to perform this 
improvement. In all of these cases, the solution involves 
different hardware technology as a solution. This group of 
improvements was characterised and shown in Figure 1 as the 
arrow that is circling the hardware circle. The acronym H2H-
IO which means ‘Hardware solution to improve I/O 
performance on Hardware’ was created and added below the 
green circle (Hardware). 

Below we expose some researches that are part of  
group 2. Lee et al. (2014) proposed a Stacked DRAM with a 
microbump interface. They built a High-Bandwidth Memory 
(HBM) introducing four DRAM memories into a chip-on-
wafer. Kim et al. (2015) proposed the insertion of the 
frequency-boosting interface chip (F-Chip) into the NAND 
multi-chip package (MCP) including a 16-die stacked 128 Gb 
NAND flash. Lee et al. (2017) proposed the design of FESSD 
that uses an on-chip access control memory (ACM) 
introducing any nature of on-chip non-volatile memory 
(NVM) into the micro-controller of an SSD. 

4.3 Group 3 – software solution to improve I/O 
performance on software (S2S-IO) 

All contributions presented in group 3 are some kind of 
‘software’ approach which could be characterised into a 
‘solution’ that is being proposed to improve I/O performance 
on another ‘software’ object differently from group 1. It is 
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important to notice that although the improvements are from 
software to software, they take into account the storage 
technologies that they are using. This group of improvements 
receives the acronym S2S-IO which means ‘Software 
solution to improve I/O performance on Software’. It was 
created and added below the red circle (Software) in Figure 1. 

Below we expose some researches that are part of  
group 3. Yang et al. (2017) proposed a content look-aside 
buffer (CLB) for simultaneously providing redundancy-free 
virtual disk I/O and caching. They implemented a CLB on the  
KVM hypervisor and demonstrate that CLB delivers 
considerably improved I/O performance with realistic 
workloads. Huo et al. (2015) proposed a caching management 
algorithm, sometimes called a framework named ACSH, 
which is based on SSD devices and DRAM and is focused on 
the improvement of metadata I/O on the le systems. Ou et al. 
(2015) proposed a le index scheme for a flash file system 
called NIS. In this scheme, they are concerned about the 
performance of le systems when using NAND ash as a 
storage device. Wu et al. (2018) proposed a priority-based 
data placement method for databases using SSDs. They 
consider a mechanism and a migration rule for performing 
migrations between HDDs and SSDs. 

4.4 Group 4 – hardware solution to improve I/O 
performance on software (H2S-IO) 

Papers presented in group 4 relate to improvements targeting 
I/O performance into the software. Different from group 3, in 
this group, they consider some ‘hardware’ objects as a 
‘solution’ to perform its improvement. Although this approach 
is less common than the others, it was classified and 
characterised as presented below. This group of improvements 
receives the acronym H2S-IO which means ‘Hardware solution 
to improve I/O performance on Software’. It was created and 
added below the arrow that leaves the green circle (Hardware) 
in Figure 1. 

Below we expose some researches that are part of group 4. 
Min et al. (2015) proposed a method using NVMe SSDs to 
enhance I/O resource management of Linux Cgroup on NUMA 
systems. Ouyang et al. (2010) proposed a method which is an 
aggregation staging I/O to enhance checkpoint writing 
performance using staging I/O and SSD on the data server 
archiving better write bandwidth. Kannan et al. (2011) 
proposed a mechanism using an Active NVRAM-based 
approach for I/O staging. In the considered method, each 
physical node has an additional active NVRAM component to 
stage I/O. Bhattacharjee et al. (2011) proposed utilising SSD to 
enhance recovery and restart through random access capability 
in a database engine. Nakashima et al. (2018) proposed a 
method for improving the I/O performance of a big data 
application using SSD as cache. The results presented by the 
authors demonstrate that the method can improve I/O 
performance. 

Group 5 and 6 are concerned about the I/O improvements 
targeting storage systems. It is important to notice that in 
these characterisations “Storage Systems” does not mean 
some software that is present in a storage device but rather a 
group of technologies and software working together and 
asynchronously in an environment. Because the Storage 

Systems are composed of both hardware and software, the 
improvements proposed by researchers can be either software 
or hardware improvements or both of them. 

4.5 Group 5 – software solution to improve I/O 
performance on storage systems (S2SS-IO) 

Papers presented in group 5 relate to improvements targeting 
I/O performance into a ‘storage system’. As well as groups 1 
and 3 this group considers some ‘software’ object as a 
‘solution’ to perform its improvement, but unlike them, the 
object which is receiving the improvement is composed of 
software and hardware respectively, in other words, a Storage 
Systems. This fact leads us to relate group 5 with the arrow 
that leaves the red circle (Software) and arrives in the blue 
circle (Storage Systems) presented in Figure 1. The acronym 
S2SS-IO which means ‘Software solution to improve I/O 
performance on Storage Systems’ was created and added 
above the related arrow. 

Below we expose some researches that are part of group 
5. Zhou et al. (2018) proposed an algorithm that can make 
better use of heterogeneous devices for storage systems and is 
based on consistent hashing. Du et al. (2015) proposed a 
balanced partial stripe (BPS) write scheme to improve the 
write performance of RAID-6 systems. Oh et al. (2012) 
proposed a schema that organises the cache space into 
reading and writes and manages these spaces according to the 
workload characteristics for improving the performance of 
hybrid storage solutions. 

4.6 Group 6 – hardware solution to improve I/O 
performance on storage systems (H2SS-IO) 

In group 6 the papers also concern about I/O improvements 
targeting storage systems, but unlike group 5, it considers 
some ‘hardware’ objects as a ‘solution’ to perform the 
improvement into a storage system. This fact leads us to 
relate group 6 with the arrow that leaves the green circle 
(Hardware) and arrives in the blue circle (Storage Systems). 
The acronym H2SS-IO which means ‘Hardware solution to 
improve I/O performance Storage Systems’ was created and 
added above the related arrow presented in Figure 1. 

Below we expose some researches that are part of  
group 6. Kannan et al. (2011) proposed using a nonvolatile 
random access memory (NVRAM) to enhance the memory 
capacities of computing and staging nodes. Each node has an 
additional Active NVRAM component. Bu et al. (2012) 
introduce a Hybrid SSD approach that combines DRAM, 
phase changed memory (PCM), and flash memory into a 
hierarchical storage system. Dae-Sik and Seung-Kook (2009) 
designed and analysed a high-end class DRAM-based SSD 
storage using DDR-1 memory and PCI-e interface. 

5 Empirical scenario and factors definition 

The experimental environment and the used factors to carry 
out the experiments are presented in this section. We also 
relate some of these factors with the elements presented in 
Figure 1. 
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5.1 Empirical scenario 

Grid’5000 which is a large-scale testbed was considered in 
our experimentation process. It focuses on parallel and 
distributed computing including cloud computing, HPC, and 
big data. Each cluster provides a huge amount of technologies 
including different CPU processors, GPUs, storage devices 
such as SSD, HDD, NVMe, and Ethernet, Infiniband, and 
Omni-Path network interconnectors. The Grid’5000 testbed is 
a secure and powerful environment composed of 8 different 
sites located in France providing a huge amount of devices 
and technologies working in parallel to solve huge problems 
of science. 

In our experimental process, we used 24 nodes of the 
dahu cluster located in Grenoble. The nodes are composed of 
a Dell PowerEdge C6420 model interconnected with a 
Gigabit Ethernet network. Each node has 2 CPUs Intel Xeon 
Gold 6130 2.10GHz with 16 cores/CPU. The storage of each 
of them has 240GB SSD SATA, 480 GB SSD SATA, and 4.0 
TB HDD SATA, and the memory RAM 192 GiB. Centos7 
was used as an Operational System, kernel 3.10.0-
957.21.2.el7.x86 64 and ext4 le system. In this experiment, 
16 nodes were used as Compute Nodes (CN) and 8 as Storage 
Nodes (SN). 

The used file system was the OrangeFS (version 2.9.7). 
The software used to perform the experimentation was the 
IOR-EXTENDED (IORE) benchmark (Inacio and Dantas, 
2018). IORE benchmark is a flexible and distributed I/O 
performance evaluation tool that was designed for hyperscale 
storage systems. It supports a whole experimental variety of 
workloads. The requests were generated running IORE on a 
CN with MPICH 3.0.4 version. 

5.2 Factors definition 

This subsection presents the factors that we used in the 
analysis. Below we explain and correlate some of these 
factors to the model presented in Figure 1. 

5.2.1 Storage device 

Providing incentives for researchers to continue proposing 
hardware solutions that improve IO performance, this factor 
relates to the hardware storage devices used in the experiment 
with the green circle Hardware in Figure 1. The right usability 
of the storage can improve the I/O performance of 
applications that needs to execute I/O operations frequently. 
To verify that the technology device usually can influence the 
performance, this research takes care of three common 
approaches to store data. The first one is to store all kinds of 
data, and metadata, on an HDD device. The second is to use 
SSD to store metadata while the data are stored on the HDD 
devices. Finally, we used an SSD device to store data and 
metadata. 

5.2.2 Linux I/O schedulers 

Three Linux I/O schedulers were considered in this 
experiment. Complete Fairness Queuing (CFQ) (Axboe, 
2004), deadline, and noop are these schedulers that were used 

as factors to the experiment complementing the scenario to 
store data shown above. Schedulers are algorithms that 
distribute works such as threads, processes, data flows, etc. to 
computational resources. They are normally a programmable 
method with some main idea to distribute these works. This 
factor relates to the schedulers, with are software line codes, 
with the red circle (software) presented in Figure 1. Many 
contributions are performed by researchers to improve 
schedulers because I/O schedulers play an essential role in 
those environments. 

5.2.3 Task numbers 

The number of tasks that we used on the experimentation is 
an important factor that we considered. In this experiment, we 
consider 32 and 64 as the number tasks because we believe 
that different workloads and size numbers can be easily  
found in DISC applications and it probably influences the 
performance results. 

5.2.4 Access pattern 

The last experimental parameter is related to the access 
pattern. The workload access patterns used in this 
experimentation were ‘random’ and ‘sequential’ for each 
scenario. We performed the experimentation with these two 
options because it could give us different information and 
present broader results. The data access pattern is among the 
most important characteristics of disk drive workloads 
because it is related to the disk service process (Riska and 
Riedel, 2006). This factor could be related to the arrow that 
leaves the red circle (software) and arrives on the green circle 
(hardware) presented in Figure 1 because some software 
improvement could be proposed to improve the data 
management workload access on the storage devices. 

In conclusion, we performed the experimentation with a 
total of 36 different scenarios where 3 came from the 
different approaches to store data and metadata, 3 came from 
the different I/O schedulers used on the requests, 2 came from 
the number of tasks used and 2 came from the data access 
pattern used by the benchmark. In order to improve the 
results, each experiment was performed 5 times and at the 
end, the average of them was calculated as the final result. 

6 Evaluation results 

Through this section, we present the results obtained through 
the experimentation process. In all of them, we are looking 
for understanding how latency behaves when the benchmark 
performs I/O read and write operations. 

The selected schedulers defined in section 5 were set to 
the respective device that was being used to store the data and 
metadata in each running execution. Indeed there are many 
ways of analysing the presented results due to the huge 
number of factors defined in section 5, but we are concerned 
with analysing through two different perspectives. The results 
were classified into two different groups with different 
analysis purposes. 
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The first group is concerned to present results in a view of 
the storage approach, which is in some way a hardware 
approach, to store data. Presenting results from this 
perspective we believe that researchers could keep increasing 
and proposing hardware devices to increase the I/O layer. 

The second group presents results considering the 
schedulers presented on Linux operational system. Presenting 
results from this perspective, the results could lead 
researchers to keep increasing the schedulers presented on 
Linux that could be related as a software improvement 
solution in Figure 1. 

We provide a brief discussion of how the data and 
information were disposed of in the graphics. In each figure 
presented, 24 outcomes for the read and write operations are 
shown. In the first three figures, all bars with hatches present 
the latency value for the read operation that is related to one 
specific scheduler, and all bars without hatches, located after 
the hatched bar, present the latency value of the write 
operation for the same scheduler. In the last three figures, all 
bars with hatches present the latency value for the reading 
operation that is related to the way the data were stored, and 
all bars without hatches, located after the hatched bar, present 
the latency value of the write operation. The latency value for 
the write operation always comes after the related latency for 
the read operation. 

6.1 Scheduler overview 

Figures 2, 3, and 4 present the average latency time for the 
read and write operations switching the three presented 
schedulers in section 5 (CFQ, deadline, and noop). 

Figure 2 presents the latency time for the read/write 
operations storing data and metadata in different ways using 
the CFQ scheduler. It’s possible to verify that in all cases the 
latency value for the write operation is greater than the read 
operation no matter which storage approach we use. Indeed, it 
is known that the time to read, in a normal circumstance, is 
smaller than the time to write. It might be related to some 
facts. For instance, how the hardware is handled or the 
characteristics of a specific operating system, or even the way 
the file system operates could be cited. Normally, to read 
some file, a file system should find the file through the 
directory tree and read the respective file. To write a file, 
however, the same operation through the tree should be 
performed, but, after reading, differently from the read 
operation, the file system has more additional functions such 
as updating in someplace the metadata information related to 
the written file. This updating place could be any place such 
as a standard place, a new path through the tree directory, a 
new device, or even a geographically distant location. 

Using the CFQ scheduler, it is also possible to notice in 
Figure 2 that when setting the number of tasks equal to 32, 
the approaches presented to storage the data were very similar 
when relating the latency time for the read operation. 
However, when setting the number of tasks equal to 64, the 
worst approach was storing both data and metadata on HDDs 
while the best was storing data on HDD and metadata  
 

on SSD. Analysing the write operation, the results presented a 
huge difference when storing data and metadata using an SSD 
in all cases. More than three times less to perform write 
operations was achieved when using the only SSD compared 
with the hybrid approach when the access pattern equal to 
sequential and the number of tasks equal to 64. 

Figure 2 Latency analysis using CFQ scheduler 

 

Table 1 presents the average latency value for all the 
scenarios presented in Figure 2 when using the deadline 
scheduler. It is possible to see that storing data on HDD and 
metadata on SSD was the configuration storage that gave us 
the lowest read latency time. To the write operation, the best 
configuration storage was storing both data on the SSD 
device with almost three times less than the lowest 
configuration which uses HDD. 

Table 1 Average of latency presented in Figure 2 

Storage approach Read Write 

Data and Meta on HDD 0.3643 2.0151 

Data on HDD and Meta on SSD 0.2560 2.0871 

Data and Meta on SSD 0.2815 0.6827 

Figure 3 presents the results using the deadline Linux 
scheduler. The presented results were similar to the results 
presented by the CFQ scheduler. However, comparing  
Figure 2 with Figure 3 we verify that when using a number of 
tasks equal to 64, the deadline scheduler has presented a 
smaller latency time to write operation when using the 
approach data on HDD and metadata on SSD. With deadline 
scheduler, almost in all write results, storing data and 
metadata in an HDD was the worst approach providing the 
higher latency time. 

Table 2 presents the average latency value for all the 
scenarios presented in Figure 3 when using the deadline 
scheduler. Just like Table 1, Table 2 also presented the 
approach of storing data on HDD and metadata on SSD as 
the best results with a smaller latency time to read operation 
and the approach which stores both data and metadata on 
SSD as the best approach to decrease the latency time for 
the write operation. 
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Figure 3 Latency analysis using deadline scheduler 

 

Table 2 Average of latency presented in Figure 3 

Storage approach Read Write 

Data and Meta on HDD 0.3468 2.0183 

Data on HDD and Meta on SSD 0.2708 1.9147 

Data and Meta on SSD 0.2841 0.7274 

Figure 4 presents the latency results when using the Linux 
noop scheduler. It is possible to verify in this figure that the 
write operation latency when using only HDD as a device to 
store both data and metadata was the worst storage approach. 
An important fact that we noticed is that Figure 4 follows the 
same latency pattern presented by Figure 2 for the read 
operation in all cases. For instance, in Figure 2 when the 
storage configuration is access pattern equal to sequential and 
the number of tasks is 32, the storage approach which 
presented the worst latency for reading operation was when 
storing both data and metadata on SSD. 

Figure 4 Latency analysis using noop scheduler 

 

Table 3 presents the average latency value for all the 
scenarios presented in Figure 4 when using the noop 
scheduler. As Table 1 and Table 2, Table 3 also presented the 
approach of storing data on HDD and metadata on SSD as the 
best results with a smaller latency time to read operation and 
the approach which stores both data and metadata on SSD as 

the best approach to decrease the latency time for the write 
operation. 

Table 3 Average of latency presented in Figure 4 

Storage approach Read Write 

Data and Meta on HDD 0.3638 2.2576 

Data on HDD and Meta on SSD 0.2493 1.8570 

Data and Meta on SSD 0.3088 0.6839 

It seems that regardless of the scheduler we are using, the 
way data storage is done greatly influences how latency will 
behave. We observed that in all the cases presented above 
when using the number of tasks equal to 64, the approach that 
stores data and metadata in a mechanical device such as 
HDD, presented the worst latency result. In general, the 
deadline scheduler seems to perform steadily with a low 
difference between the latency of each set of parameters if 
compared with the other two schedulers. 

6.2 Storage overview 

In Figures 5, 6, and 7, we present the average latency time for 
reading and writing operations switching the three storage 
approaches presented in section 5 (Storing Both Data and 
Metadata on HDD, Storing Data on HDD and Metadata on 
SSD and Storing Both Data and Metadata on SSD.) 

Figure 5 Data and metadata on HDD 

 

The latency results when storing both data and metadata on 
the HDD device switching then the I/O schedulers are 
presented in Figure 5. Analysing it we verify that when the 
number of tasks is equal to 64, the read latency increases 
significantly regardless of the chosen access pattern for the 
three schedulers. Each storage configuration presented has a 
scheduler that performs better latency time according to the 
parameters selected. For instance, if the number of tasks is 
equal to 32 and the access pattern is similar to sequential, the 
scheduler which presented the lowest latency for the reading 
operation was the noop scheduler, and for the write operation 
was the CFQ scheduler. Analysing the same number of tasks 
equal to 32, but changing the access pattern to random, the  
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schedulers which presented the lowest latency time for 
reading operation was the CFQ scheduler and for write 
operation was the deadline scheduler. 

In Table 4 we present the average latency time for all the 
scenarios presented in Figure 5. We present this average 
because DISC and HPC applications can treat and use 
heterogeneous kinds of data with different access patterns and 
the number of tasks on the same application. Considering 
this, it’s possible to see in Table 4 that when we are storing 
both data and metadata on the HDD device the scheduler that 
presents the big latency time to execute read operation is the 
CFQ, and to perform the write operation is the Noop 
scheduler. 

Table 4 Average of latency presented in Figure 5 

Scheduler Read Write 

CFQ 0.3643 2.0151 

Deadline 0.3468 2.0183 

Noop 0.3637 2.2576 

The results when storing data on HDD and metadata on SSD 
device switching then the I/O schedulers are presented in 
Figure 6. Just as it happened in Figure 5, in Figure 6 all 
latency values to perform the write operation are greater than 
the value to perform the read operation. However, we verify 
that the latency rate when storing by this way was lower in 
almost all read operation cases compared to the values 
presented in Figure 5. The unique configuration where the 
read latency was bigger than the presented in Figure 5 was for 
the deadline scheduler with the number of tasks equal to 32 
and access pattern equal to random. In general, the latency 
when performing write operations has decreased compared 
with the first storage approach. The cases where it has not 
happened were the twice for the CFQ scheduler with the 
sequential access pattern and the deadline scheduler with the 
64 number of tasks equal and random access pattern. All the 
other write values have the latency time decreased when 
changing the way to store data and metadata. 

Figure 6 Data on HDD and metadata on SSD 

 

We noticed that in Table 5 the latency average to execute the 
read operation for all schedulers are smaller than when  
 

storing data on HDD presented in Table 4. It means that for 
all schedulers, all corresponding latency times for the read 
operation were decreased when the use of an SSD was 
applied. However, for the write operation, unlike the values 
presented in Table 4, Table 5 shows that when using an SSD 
device the CFQ does not perform with the same lowest 
latency as before. In fact, it was the unique value that had the 
worst latency value compared with the previous storage 
approach. It is also possible to notice that when we are storing 
data on HDD and metadata on SSD the scheduler that 
presents the lowest average latency time to perform read and 
write operation is the noop scheduler. 

Table 5 Average of latency presented in Figure 6 

Scheduler Read Write 

CFQ 0.2560 2.0871 

Deadline 0.2707 1.9146 

Noop 0.2493 1.8570 

The results when storing both data and metadata on SSD that 
is a device that does not have mechanical components are 
presented in Figure 7. 

Figure 7 Data and metadata on SSD 

 

Comparing the latency time for the read operation with the 
values presented in Figure 6, we noticed that almost no 
significant improvement has been made, only three read 
latency values were improved using this storage approach. A 
curious result happened when the number of tasks is equal to 
32 and the access pattern is sequential. Comparing the read 
latency time with the values presented in Figure 5 we verify 
that when using only an SSD device to store data and 
metadata, all schedulers presented a higher latency time. 
These same pattern results we verify if compared to Figure 6. 
By these interesting results, we argue that the use of an SSD 
device to store both data and metadata has increased the 
latency time to read operations when the number of tasks is 
32 and the access pattern is sequential. However, when the 
number of tasks is equal to 32, the use of an SSD to store only 
metadata, presented in Figure 6, presented better results from 
six if compared to Figure 5. 
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Despite no significant improvement in latency when 
performing a read operation, perhaps the most expressive 
results are related to the write operation. All values were less 
than one in all scenarios. It is possible to verify that the 
latency for the write operation in this storage configuration 
was significantly decreased compared to the two previous 
storage approaches. Although the storage solution provided 
an important performance improvement when using the 
number of tasks equal to 32, perhaps the improvement 
presented for the number of tasks equal to 64 was more 
expressive if compared to the previous results. 

It is possible to notice in Table 6, that when performing 
the read operation, the latency ratio was higher for all 
schedulers if compared to Table 5. It enforces our analysis 
that this storage approach did not present significant 
improvement as the previous results when performing read 
operations. However, when compared to Table 4, it presented 
a smaller and better overall latency time. Analysing the write 
value presented in Table 6 we verify that the results for all 
schedulers were better than for the previous storage 
approaches. In this case, the scheduler which presented the 
better read and writes latency time was the CFQ scheduler. 

Table 6 Average of latency presented in Figure 7 

Scheduler Read Write 

CFQ 0.2815 0.6827 

Deadline 0.2841 0.7274 

Noop 0.3087 0.6839 

These results could lead us to think that if the device that is 
storing the data is an SSD device, it’s very likely that the 
latency time will be decreased and thereby improve the 
performance of write operations. 

7 Conclusion 

The huge amount of created data together with the growing 
gap between power processing and storage latency imposes a 
challenge in terms of data transfer and storage. Researchers 
are proposing interesting and important solutions to reduce 
and approximate the power processing to the memory and 
storage development. HPC and DISC applications are kinds 
of such systems that are faced with data challenges due to the 
need to deal with many parameters when managing data. This 
study described our characterisation model for classifying 
research works on I/O performance improvements for storage 
systems and devices. We consider that they are divided in a 
macro view of the software, hardware, and storage systems 
approaches. Our proposal can be understood as a 
characterisation related to the I/O improvements, where we 
are studying each component separately (i.e. software, 
hardware, and storage systems) and their interconnections. 
We present a set of experiments performed inside the 
Grid’5000 and we demonstrated that the latency when 
performing I/O operations can undergo many variations if we 
take into account the presented factors evaluated in the 

experiments. Among many presented results achieved by the 
36 different scenarios relating to the latency when performing 
I/O operations we classify and show the results separated 
through two different perspectives called scheduler overview 
and storage overview. In the first evaluated perspective, we 
discuss how the performance of each Linux scheduler 
behaved when changing the perspective of storing data and 
metadata on different devices. In the second evaluation, we 
discuss how each storage approach behaved when switching 
the Linux schedulers. In order to improve this research, we 
intend to perform experiments in a large cloud environment 
considering different storage technologies and software 
approaches to also validate it using the cloud concepts. 
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