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Abstract: To overcome the shortage of power supply to the rural area, a hybrid 
connected mode micro-grid (MG) is proposed. It is suggested to include a 
diesel generator (DG) and renewable energy resources (RER) with a limited 
power of utility grid. To ensure the availability of fuel supply, the take-or-pay 
method is employed. In this paper, a smart energy management system (EMS) 
has been proposed to control the operation of hybrid MG, in addition to 
ensuring complete fuel disbursement under the scheduling of fuel supply. To 
facilitate the construction of EMS, a free model-based reinforcement learning 
(RL) algorithm has been employed for this purpose, in which the design of this 
algorithm depends on deep Q-network (DQN). The simulation of the algorithm 
has been achieved by MATLAB to validate the proposed system; the results 
showed a good performance of the technique compared with the performance 
achieved by improved particle swarm optimisation (IPSO) algorithm. 
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1 Introduction 

In many rural areas, people suffer from energy services lack because the communities of 
these areas are sparse and far from the grid, which makes grid installation is a difficult 
challenge due to many reasons related to weather, terrain, or distances, therefore energy 
cost in these areas is significantly become high (Zhang et al., 2020; Fioriti et al., 2017). 
In this regard, the microgrid (MG) that is developed with renewable energy resources 
(RER), integrated metering devices, and information technologies can cover the energy 
shortages in these areas (Jiang and Fei, 2015; Albadi and El-Saadany, 2007). Further, 
MG offers a wide range of benefits including system reliability enhancement and 
domestic energy supply, but the uncertainty of RER systems prevents the possibility of 
giving up on the fuel-based power systems. Therefore, the presence of DGs in MG 
became an inescapable issue that is a solution for the problem of energy supplying 
uncertainty (Al Hadi et al., 2020). The operation of RER side by side with DGs in the 
MG requires a complicated management process for several reasons associated for 
example with the generation, cost, or time of use. The consideration of RERs as 
unreliable, uncertain, fluctuant, and non-dispatchable resources (Qiu et al., 2016) make 
the power delivery unstable and difficult to manage also, led to use controllable and 
schedulable energy resources such as DGs and energy storage systems (ESS) to improve 
the efficiency and reliability of the MG system (Venayagamoorthy et al., 2016; Tushar  
et al., 2016). The provision of diesel generator operating fuel is one of the harsh tasks that 
must be met to ensure the operation reliability of these generators in hybrid MG. The 
meaning of hybrid MG is the network that consists of conventional and renewable energy 
sources. A significant problem of DGS operating related to the transport of the fuel from 
source locations to the rural areas, where this operation is stressful, expensive, and has 
many intricacies associated with delivering obligations and energy tariff policy. 

In such cases, resorting to the principle of take-or-pay is one of the appropriate 
solutions to avoid these problems and hence ensuring fuel availability in the foreseeable 
future and overcoming the problem of deficiencies in the energy supply during peak 
times. As a result of the take-or-pay conception, there will be additional fuel consumption 
operation occur at specified times, and this leads to increase hours of generator operation, 
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that is because the energy management system (EMS) is forced to run the DG at time 
slots no need to operate in, to consume the remaining amount of fuel to avoid its 
accumulation to the next day. To decrease the effect of this problem, the dispatching and 
scheduling operation at times of need must be applied to the DG. 

The operation of DG should be organised with other energy resources in the MG to 
overcome the dynamics behaviour of the system such as the uncertainty of RER, load 
curve shape fluctuations, or energy price variation from time to time (Zhang et al., 2019). 
Therefore the EMS is used to control the power flow between the energy resources on 
one side and the end-user on another side (Bui et al., 2020). To design an efficient EMS, 
two problems should be overcome, the first is the hybrid energy systems do not have a 
fixed model due to the stochastic nature of some parameters in the system like load 
demand, energy cost, or output of RERs (KEMA Inc., 2014). While the second is the 
consumer-side information ambiguity, where most consumers do not wish to give or 
disclose their privacy, therefore implementing a dynamic system and consumption 
scheduling is a challenge and difficult to apply traditional optimisation methodologies to 
manage such stochastic systems. 

To deal with these barriers and cope with the randomness of system variables, the 
reinforcement learning (RL) approach can be developed as a possible solution for the 
optimal operation of MGs (Kim et al., 2016). The RL allows EMS to learn the behaviours 
of the customers, RER output, electricity cost variation, and other variables along the 
time horizon and analyse the system activities to obtain optimal decisions without prior 
knowledge about the system. 

In recent years, many studies have appeared that considering the improvement of the 
performance of EMS in terms of fuel consumption to enhance the economic feasibility of 
the hybrid MG system as follow: 

In Thirugnanam et al. (2018), battery energy management system is proposed, it 
reduces hours of the DGs operation using multiple types of batteries, while in Anglani  
et al. (2017) is presented an optimised energy management system to control islanded 
MG of a remote temporary military, DGs can be dispatched by load control using 
demand response as in Clavier et al. (2015) which focus on using the virtual capabilities 
of the demand side to perform diesel generation optimisation by the economic dispatch 
(ED). An EMS in Zhu et al. (2014) shares the optimal power among generators-set 
depending on fuel cost minimisation. In Wang et al. (2015), a decentralised power 
dispatch system for managed operation of multiple MGs and a distribution system, this 
paper introduces a methodology to depict the interactions between the distribution 
network operator and network of MGs. The short-term scheduling project of multiple fuel 
cell power plants connected simultaneously to supply electric and thermal energy to the 
community had been presented in El-Sharkh et al. (2010), where hybrid mechanisms 
depend on evolutionary programming (EP) and hill-climbing (HC) techniques to find the 
optimal solutions. 

From the foregoing, it became clear that the process of scheduling and dispatching the 
operation of generators as well as determining their commitment is critical in formulating 
policy of energy generation and distribution, hence this reflected on the process of 
supplying and consuming fuel within the specified timelines, so it is necessary to 
schedule and allocate the fuel optimally. It is several efforts made in this field. In Lee  
et al. (1992), a practical adaptive fuel allocation method has been presented, the 
researchers in this paper use pseudo fuel price as an optimisation variable, while in 
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Kumar et al. (1984), a long-term fuel allocation and scheduling tackled in the optimum 
point to various generating units by using mixed and shared fuels subjected to long-term 
constraints. Within the scope of generation scheduling, Tong and Shahidehpour (1990) 
proposed a methodology for short-term unit commitment based on the Lagrangian 
Relaxation approach, on the other side, several methodologies are used to solve the unit 
commitment problem based on of priority lists scheme (PLS) in Baldwin et al. (1959), 
dynamic programming (DP) in van Meeteren (1984) or mixed integer programming 
(MIP) in Dillon et al. (1978). 

Acquiring precise and a priori statistical information for all energy resources and 
loads in an MG is not easy, it may restrict applying of the aforementioned methods. 
Therefore to exceed the problem of stochastic models building, there are alternative 
methods (intelligent) that do not require prior information of the system model as in Jiang 
and Fei (2015) that introduces an energy ecosystem, a price effective smart MG depend 
on smart hierarchical agents with dynamic response and RER management, the intelligent 
method used is RL (Q-learning), but it suffers from the curse of dimensionality because 
of continuity of input states of the system (very large), therefore, deep neural network 
(DNN) as approximator added to RL to overcome the complexity and inefficiency of 
model-based methods, this method is also used in Du and Li (2020), where a multi-MG 
(MMG) energy management technique is presented depend on DNN and model-free RL 
to minimise the demand-side peak-to-average ratio (PAR). This research influences 
consumer preferences as a result of PAR decreasing, instead, they can substitute the 
shortage by DG operation scheduling with fuel allocation. 

In Foruzan et al. (2018), they propose a multi-agent model to study EMS in an MG, 
the provider and users are modelled as autonomous agents, each one can make its 
decisions to maximise their profit in the environment using RL. A short-term stochastic 
optimisation is used in Fioriti et al. (2017) for a rural PV-diesel-battery hybrid MG to 
minimise fuel consumption and CO2 emission. 

All the aforementioned works did not address the issue of fuel scheduling and 
allocating independently using intelligent control strategies in a way that affects the 
energy management process in the network, as well as not taking into account the 
limitation of power flow at point of common coupling (PCC) together with the  
take-or-pay problem besides the impact of these constraints on the behaviour of the EMS. 

To address the issues rose in earlier studies, this work presents an intelligent EMS 
consisting of a utility grid, PV array, ESS, and DG that is put in MG within a rural area. 
The goal is to dispatch the DG operation and schedule fuel consumption to assure its 
availability while appropriately consuming the allocated amount over the entire time 
horizon without relying on the system model (model-free), using a hybrid method that 
combines RL represented by Q-learning and DNN as approximator creating  
deep-Q-network, our system captures the stochastic nature of PV, load, and energy cost 
(DQN). The main contributions of this work are summarised below: 

• Fuel allocation and consumption along the time horizon depend on the take-or-pay 
conception is presented. It is proposed an intelligent EMS responsible for the fuel 
consumption delivered from the supplier by scheduling the DG operation at the 
optimal times in a way that guarantees reducing costs and avoiding fuel 
accumulation to the next day. 
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• The RL is used as a model-free algorithm to regulate RER, ESS, utility grid, and DG 
operation to assure continuous and low-cost energy delivery to customers 
considering the premise of PCC limitation. 

• Extending ESS life by training the EMS to regulate the charging and discharging 
process, taking into account the number of charging and discharging times lead to 
battery degradation life cycle. 

• The time interval of the case study that will be worked on is the summer season that 
extends for three months, where the training takes place for the first two months and 
the test for the last month (66% of data for training and 34% for testing). 

• The proposed method performance is verified by comparing the results with those 
obtained using the model-based optimisation methodology; in this work, the 
benchmark optimisation method is improved particle swarm optimisation (IPSO), 
and then the convergence of DQN to IPSO is determined. 

The rest of this paper is organised as follows: Section 2 explains the system structure and 
the methodologies of EMS. Section 3 introduces the mathematical modelling of the 
system and the problem formulation. In Section 4, the result is presented and discussed. 
The performance is evaluated in Section 5, finally, the conclusion is provided in  
Section 6. 

2 The proposed system 

2.1 System structure 

Figure 1 shows the system structure, it is consists of an MG connected to the grid at PCC, 
the MG comprises ESS, PV array, fuel tank, DG, and residential loads. The MG has 
intelligent EMS to control the energy resources operation. The power moves between the 
MG energy resources and household load in one direction and with the grid in two 
directions, meaning that the energy can be traded off (buying and selling) between the 
grid and MG. ESS, DG, and PV array are owned by the government. The essential 
purpose of ESS is to minimise the energy cost in a normal situation and enhance the 
reliability of the system during emergencies. 

In peak times, ESS and DG can feed the power to the end-users to avoid the 
household load shedding and prevent their preferences from affecting. The controller tries 
to reduce the energy cost and consume the stored fuel in the tank during the day to avoid 
its accumulation to the next day as well as to avoid the penalty of non-use of the 
minimum fuel stipulated in the take-or-pay agreement. EMS makes the optimal actions 
and decides the amount of power to be traded with the grid taking into consideration the 
limitations of PCC and other constraints related to RER and fuel amount. The 
methodologies of the proposed work had been detailed in the next sections. 

2.2 Intelligence of energy management system 

As mentioned in the introduction section, the performance of EMS will be improved by 
the proposed RL technique to schedule and control the operation of MG, further, 
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optimising the consumption of DG fuel to reduce the operation cost. The proposed 
system is described as follow. 

Figure 1 MG configuration (see online version for colours) 

 

Note: The solid lines indicate power flow and the dashed lines indicate data flow. 

2.2.1 Reinforcement learning 
RL is a promising method, in which the most notable characteristic is model-free 
dependence, i.e., it is able to reach the optimal solution without depending on a priori 
knowledge or wearisome stochastic modelling (Oliehoek, 2012). The objective of RL is 
to find the optimal sequence of decisions (discrete or continuous) by exploring and 
exploiting the environment to be worked on without requiring prior knowledge of the 
system or predictive information (Busoniu et al., 2010). Within this scope, the agent 
interacts with the environment by making a series of actions (decisions) depending on the 
states (inputs) of the system and the value of the reward as a result of these actions. RL 
comprise the term Markov decision process (MDP), which consists of four-term shown 
below and its dynamics illustrated in Figure 2 (Dillon et al., 1978): 

1 Reward function r: .× →    

2 States vector : the state st at time slot t is the status of the environment. 

3 Actions vector :  action at means the decision that the agent takes at time slot t. 

4 Transition dynamics with conditional transition probability p(st+1|st, at) satisfying the 
Markov property, i.e., 

( ) ( )1 1 1 1, Pr , , , ,t t t t t tp s s a s s a s a+ +=   (1) 
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2.2.2 Q-learning 
One of the most important penetrations in RL was the development of Q-learning. It is a 
standard form of one-step Q-learning is defined by the Bellman equation as shown in 
equation (2) (Sutton and Barto, 2014). 

( ) ( ) ( ) ( )
1

1 1, , max ,
t

t t t t t t t t t
as s

Q s a Q s a r γ Q s a Q s a t T
+

+ +
←

 ← + ⋅ + ⋅ − − ∀ ∈
 

α  (2) 

where Q(s, a) is Q-value of current state s and action a pair, α is learning rate, γ is 
discount factor of future rewards, and r is immediate reward value. 

The agent in Q-learning explores the environment in order to know the states and take 
actions to obtain stacked rewards and then move to another state and so on (Bui et al., 
2020; Sutton and Barto, 2018). Generally, for economic dispatching in the MG, the state 
vector should be continuous. As a result, the conventional Q-learning technique cannot 
interact with this issue because it suffers from the curse of dimensionality problem, where 
it depends on a look-up table to represent the Q-value function for each state-action pair. 
To overcome this problem, a DQN had been used, which exploits the approximation 
properties of DNN (Liang and Srikant, 2017; Huang et al., 2020). 

2.2.3 Deep Q-learning method 
In Q-learning, a Q-table work on discrete state space, therefore, in continuous state space 
this method become more intractable (Bui et al., 2019), so DNN comes to play the role of 
approximator, which can take state inputs as a vector and learn to map them into  
Q-values for all possible actions, this operation called DQN. 

Figure 2 The dynamics of EMS-agent training (see online version for colours) 

 

2.3 Improved particle swarm optimisation 

The particle velocities in PSO build up rapidly and this may lead to skipping the 
maximum of the objective function. To solve this problem IPSO is suggested by adding 
an inertia term w to decrease the velocity and enable the particle to converge more 
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precisely and efficiently compared with PSO. Usually, the value of w is ranged between 
0.4 and 0.9 as the iteration progresses. The jth particle velocity becomes as shown: 

[ ] [ ]1 1 , 2 2( ) ( 1) ( 1) ( 1) ; 1, 2, ,j j best j j best jV i wV i c r P x i c r G x i j N= − + − − + − − =   (3) 

Equation (3) refers to the velocity of particle j in the ith iteration.  The coefficients c1 and 
c2 are the individuals and social learning rates respectively, and r1 and r2 are distributed 
random numbers between 0 and 1. 

N represents the number of particles, Pbest,j is the historical best value of individual 
xj(i) that has the highest objective function value in the current iteration, while Gbest is the 
historical best value of all particles until the current iteration that has the highest 
objective function value in all the previous iterations. 

Equation (3) shows a larger value of w support the global point of optimisation and a 
smaller value support a local search. Thus a large value of w makes PSO explore new 
regions without many local optima and this consequently leads to failure in finding the 
true optimum. A solution to this problem a balance must be achieved between global and 
local exploration, this done by making inertia value decreases linearly with the iteration 
number as illustrated in equation (4) (Tushar et al., 2016): 

max min
max

max
( ) w ww i w i

i
− = −  

 
 (4) 

where wmax and wmin are maximum and minimum value inertia weights respectively 
(recommended values are wmax = 0.9, wmin = 0.4), imax is the maximum iteration number 
used in the algorithm. 

3 The mathematical model of the proposed system and problem 
formulation 

3.1 The mathematical model 

The MG is connected to the utility grid in PCC. The energy move across PCC is specified 
by a limited amount of kw/h that cannot be exceeded due to the difficulty of delivering 
energy to rural communities in sufficient quantity. The conceptual architecture of the 
proposed hybrid MG depicted in Figure 1 is modelled as follows. 

3.1.1 PV model 
The PV power output at time slot t is obtained depending on the irradiance intensity, PV 
cell temperature Tc and ambient temperature as illustrated in (5) (Michaelson et al., 
2018): 

( )20
800

t
c t t

GT T T t T = + − ∀ ∈ 
 

 (5) 

where Tnoc is the nominal operating cell temperature. The PV power can then be 
calculated as given in (6): 

( ) ( )( )max 1PV PV
t stc c c stc MPPtP G G P k T T η t T= + − ∀ ∈  (6) 
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where G(t) is forecast irradiance, Gstc is standard test condition irradiance, kc is relative 
temperature coefficient. 

3.1.2 Battery model 
The battery usage aims to store extra power of the PV and that imported from the grid to  
utilise it when there is a shortage in meeting up the demand or it is below the minimum 
starting threshold of DG. The ESS used in this paper is modelled by equation (7) 
(Elkazaz et al., 2020; Mandal et al., 2018): 

( )Δ Δch ch ch dis dis dis
t t t t t tE E t P η u T P η u t T= + ∗ ∗ ∗ − ∗ ∀ ∈  (7) 

where ch
tu  and dis

tu  are logic variables to control battery charging/discharging, as derived 
in equations (8) and (9). 

( )1 21 2ch
t ttu action action t T= − ∗ − ∀ ∈  (8) 

( )1 11 2dis
t ttu action action t T= ∗ + ∀ ∈  (9) 

The state of charge (SOC) is considered one of the important factors in the ESS 
management, it represents the ratio of energy in the ESS bank and is modelled as in 
equation (10). 

,maxt batSOC E E t T= ∀ ∈  (10) 

3.1.3 Diesel generator model 
The DG is installed in the MG as dispatchable energy resources to ensure the reliability 
of energy delivery, it can offer a flexible backup source to supply the power at peak 
intervals or at shortage times in the MG. 

The fuel amount consumption per hour of the diesel generator depends on the 
dispatched power drawn from it and on its rated power and it is modelled by the linear 
equation as shown in equation (11): 

,DG ratedDG
t DG DGt tF P P t T= ∗ + ∗ ∀ ∈α β  (11) 

where αDG and βDG are coefficients that represent incline and interception of the fuel 
consumption curve from the manufacturer with typical values equal 0.246 l/kWh and 
0.815 l/kWh respectively (Kaabeche and Ibtiouen, 2014; Ismail et al., 2013; Wu et al., 
2016). 

3.2 Objective function and problem formulation using RL 

3.2.1 Objective function 
Two main objectives must be achieved in the MG, the first is to minimise the cost of the 
supplied energy at each time slot by increasing the dependence on RER, the second is to 
optimise the consumption of entire daily fuel, which is supplied to the DG according to 
the terms of the signed agreement between the supplier and the operator in the MG 
relying on the take-or-pay conception. For the two objectives at each time slot t in the 
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horizon, the decision variables (actions) are to be battery charging/discharging and DG 
operation dispatching. The EMS uses DQN to optimise the operation of resources in 
order to meet net demand and fuel consumption until the end of each day. 

A framework of optimisation technique has been introduced to achieve EMS 
objectives. Figure 3 illustrates the block diagram of the framework (Mandal et al., 2018), 
which passes through four phases to get the output as shown in the internal blocks. At 
each time slot, the operation cost includes three parts: imported energy cost from the grid, 
DG energy cost, and battery degradation cost due to the charging and discharging 
process. The formulation of the energy cost minimisation is represented in equation (12). 

( ) ( ) degmin g g DG DG
t t tt T

C P C P C t T
∈

+ + ∀ ∈  (12) 

( )DG f DG
tC F C P t T= ∗ ∀ ∈  (13) 

( )deg deg
1t tC ρ SOC SOC t T−= − ∀ ∈  (14) 

Figure 3 The framework of the optimisation 

 

The first term in the objective function (12) is the cost of purchased energy from utility 
grid at time slot t where the retail price of energy changes from time to time at PCC, the 
second term is the DG generation cost at time slot t, the price in DG depend on fuel and 
maintenance cost as illustrated in equation (13), it also depends on the level of 
generation, as the more generation the lower price/kWh, the maintenance cost can be 
neglected because it a small compared with the hourly cost of energy generation, the third 
term is the battery degradation cost due to frequent charging/discharging as shown in 
equation (14) along time horizon where the change between two consecutive battery 
actions lead to battery life degradation (Liu et al., 2018; Aklo and Rashid, 2021). 

3.2.2 Problem formulation using RL 
An MDP is applied to formulate the energy management dilemma in Figure 1. EMS 
contains the agent that tries to learn how to make optimum actions that represent the best 
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scheduling of energy resources operation and fuel consumption strategy, this is done by 
repeated interactions with the environment. In this environment, the transitions of the 
states from t to t + 1 in state space are depending on states values at time slot t and 
uncertainty of the energy demand, price, and PV power generation. 

In this work, RL formulation is divided into three fundamental parts: 
1 a set of the system (environment) states   

2 a set of controller (agent or EMS) actions   

3 a sequence of rewards rt at each time slot along the entire time horizon. 

In the proposed system the state space length is a six-dimension vector: 

[ ], , , , ,t pv Ls t SOC SOF P P Day= ∈  (15) 

where t denotes time slot index (one hour in this work), SOC is the state of charge in 
ESS, it is measured as a percentage ratio, state of fuel (SOF) is the state of fuel, where its 
value indicates the fuel amount in the tank. PL is load demand and Day represents the day 
rank in the month, Ppv is output generation of the solar. The actions are two-dimension 
vector, action1 for battery charging/discharging control, and has three cases while 
action2 to control DG operation in seven levels as shown in equations (16) and (17). 

{ }1 , ,ch dis idle
t t taction a a a= ∈  (16) 

{ }11 12 13 14 15 16 171 , , , , , ,t t tt t t taction a a a a a a a= ∈  (17) 

where the cases ,ch
ta  ,dis

ta  { 1, 1, 0}idle
ta ∈ −  belong to the battery action, where ‘–1’ for 

charging, ‘1’ for discharging, and ‘0’ for idle state. The other action consists of seven 
cases: 11,ta  12 ,ta  13 ,ta  14 ,ta  15 ,ta  16 ,ta  17

ta  ∈ {0, 0.35, 0.5, 0.6, 0.75, 0.9, 1}, each one of 
these cases represent a single level of the rated power delivered from DG, where there are 
seven working levels in the DG, they are 0%, 35%, 50%, 60%,75%, 90% and 100% of 
rated power respectively. The reward function is derived by considering the following: 

1 energy cost-minimising 

2 diesel generator operation dispatching 

3 fuel consumption according to take-or-pay provision 

4 ESS charging and discharging optimisation (degradation reduction). 

All these are done within the system constraints such as PCC constraint, fuel storage 
constraints. In this regard, RL trains the agent to reach the highest value of the reward by 
trying a sequence of actions to find an optimal policy that leads to the lowest energy cost. 
It actually performs a comparison between energy prices for both sources in addition to 
required energy at each time slot taking into account PV power which is considered very 
cheap or free compared with other resources (Du and Li, 2020). 

3.2.3 System constraints 
The constraints of EMS comprise power  balance constraints, energy capacity constraints, 
and operational constraints. The power balance constraint states the total generated power 
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from different kinds of energy resources should be equal to the load demand in the MG. 
The power balance between generation and consumption is depicted by equation (18). 

g PV DG dis L ch
tt t t t tt T t T

P P P P P P
∈ ∈

+ + + = +   (18) 

where g
tP  is trading off power between the MG and utility grid, when it is positive, this 

means buying power from the grid and selling when it is negative and zero means no 
power exchange is between, while L

tP  is the load demand. 
The constraint associated with the grid is included in equation (19), it shows the 

upper limit of purchasing power that cannot be exceeded in PCC. 
g PCC

tP P t T≤ ∀ ∈  (19) 

The constraints of the DG are given by equations (20) and (21). Equation (20) shows the 
maximum and minimum bounds of dispatched power output from DG, where k is set to 
be 0.35 according to the recommendation of manufacturers. Equation (21) is an on/off 
status of DG. 

, ,DG rated DG DG rated
t ttz k P P z P∗ ∗ ≤ ≤ ∗  (20) 

1 DG is on
0 DG is offtz t T

= ∀ ∈


 (21) 

ESS constraints are listed in equations (22), (23), (24), (25) and (26), equations (22)  
and (23) show the upper and lower limits of the battery rated power in both charging and 
discharging, equation (24) illustrates the allowable percentage ratio of the battery 
capacity limits while equation (25) is the constraint of control variables in order to 
prevent charging/discharging at the same time, its value is ‘0’ or ‘1’ as it is seen in 
equation (26). 

,max0 chch ch
t t tP u P t T≤ ≤ ∗ ∀ ∈  (22) 

,max0 disdis dis
t t tP u P t T≤ ≤ ∗ ∀ ∈  (23) 

min max
tSOC SOC SOC t T≤ ≤ ∀ ∈  (24) 

0 1ch dis
t tu u t T≤ + ≤ ∀ ∈  (25) 

, {0, 1}ch dis
t tu u t T∈ ∀ ∈  (26) 

Boundaries of SOF are illustrated in equations (27), (28), and (29), where SOF is the ratio 
of the current capacity of fuel in the tank to the total capacity of the tank. 

max
1t t tSOF SOF F F t T−= ∀ ∈  (27) 

min max
tSOF SOF SOF t T≤ ≤ ∀ ∈  (28) 

The take-or-pay provision penalising the buyer for not purchasing the minimum quantity 
of fuel within a specified period is represented by equation (29): 

min
T PSOF SOF t T= ∀ ∈  (29) 
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where SOFmin  is a percentage that represents the amount of fuel remaining in the tank at 
the end of the day that should be available for emergency cases. 
Remark 1: In order for the EMS to work perfectly, the parameter values must be taken in 
a manner that simulates the actual reality and corresponds to the real power grid and 
industrial devices. Therefore, the load demand, PV generation data, the utility grid energy 
cost, the DG and ESS parameters had been taken from realistic scenarios. 

Remark 2: The imperfections are an unavoidable issue in energy generation processes, 
and even though power plants run far from ideal conditions, they still work. This is 
because imperfections lead to rising hidden dynamics, which, when triggered at the right 
time, have a beneficial overall effect on these devices. Imperfection is can stem from the 
performance of energy resources or even from the procedures of their generation. The 
traditional approach toward imperfection is to think of it as a source of uncertainty. 
Controlling imperfect systems is particularly desirable when a big number of units are 
involved, resulting in a system with a large number of state variables (Bucolo et al., 
2019), but in this work, this issue is treated depending on techniques of DNN, and this 
subject was left to the future work. 

4 Simulation results and analysis 

Simulations had been performed on SM consisting of central PV array, DG, and ESS. 
The DG-rated power calculation depends on the historical highest load demand. ESS is 
connected to PCC, DG, and PV on one side and to the households loads on the other side 
as shown in Figure 1, ESS can be charged from the surplus power of PV or the utility 
grid at optimal times according to the price of energy at a current time slot or according 
to the load demand, all of these activities depend on balance power equation (18) and the 
optimisation policy. 

DQN is applied on real data taken from the independent electricity system operator 
centre (available on https://www.ieso.ca), which works at the centre of Ontario’s power 
system. The proposed work is applied on 200 households, one-hour time step, 24-hour 
rolling horizon, and training interval are on summer season in Ontario city that start from 
21 June until 21 September, the historical data of the first two months (21 July to  
21 August) will be used to train the agent and the last month data (until 21 September) 
for testing where the three months have the same characteristics in terms of weather and 
other factors. The electricity buying price depends on the time-of-use tariff concept. 
Table 1 illustrates the details of the work. 

After the agent training is completed, the optimal policy becomes ready to deploy on 
the model to determine the decisions in real-time. To validate the algorithm efficiency, 
the agent policy had been applied on a typical day elected from training data and on 
another typical day from testing data. Figure 4 illustrates the load demand, PV power 
generation, and energy cost profiles of the typical day respectively within training data. 
Figure 5(a) shows the two actions that were made as a result of deploying the optimum 
agent policy on the training day. 
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Table 1 Parameters of MG resources 

CBESS SOCmin (%) SOCmax (%) ,ch max
tP  (kWh) ,di smax

tP  (kWh) 

20 90 250 250 
Emax (kW) ηch (%) ηdis (%) ρdeg ($/MW) 

2,500 0.9 0.9 100 
DG ,DG min

tP  (kWh) ,DG rated
tP  (kWh) αDG (l/kWh) βDG (l/kW) 

350 1,000 0.246 0.08145 
Fmax (litre) Cf ($/litre) SOFmin (%)  

2,250 0.75 30  
PV max

pvP  (w) Tnoc (CO) Gstc (W/m2) Tstc (CO) 

200 44.5 1,000 25 
kc (%/Co) ηMPP (%)   

0.43 90   
PCC PPCC,max (MW)    

1.5    

Figure 4 Typical training day data, (a) load demand profile (b) PV generation profile (c) grid 
energy cost profile (see online version for colours) 

 
(a) 

 
(b) 

 
(c) 

It shows charging/discharging action in addition to DG commitment and scheduling 
action. The results indicate that the training using the proposed algorithm gives good 
results in terms of commitment and energy cost reduction as will be proved. The main 
two constraints in the EMS are the fuel consuming ratio and capacity limits of PCC along 
the entire time horizon. 
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Figure 5 (a) Optimum agent actions of the training day (b) SOF in the tank and SOC in the ESS 
of the training day (see online version for colours) 

 
(a)     (b) 

First, EMS responsibility within this scope is to learn in what time step within the time 
horizon the DG can be run and at what level of operation to obtain energy at the lowest 
cost, while ensuring all the supplied fuel for the current day is spent according to the 
take-or-pay conception to avoid any penalties. According to the made decisions, the 
status of SOC and state of SOF became as shown in Figure 5(b). 
Table 2 SOC of the training day along the time horizon 

Hour 1 2 3 4 5 6 7 8 9 10 11 12 
SOC (%) 69 78 78 78 78 78 78 78 78 87 75 84 
Hour 13 14 15 16 17 18 19 20 21 22 23 24 
SOC (%) 84 84 84 84 73 82 82 82 71 60 49 38 

Table 3 SOF of the training day along the time horizon 

Hour 1 2 3 4 5 6 7 8 9 10 11 12 
SOF (%) 100 100 100 100 100 100 100 100 100 100 100 100 
Hour 13 14 15 16 17 18 19 20 21 22 23 24 
SOF (%) 100 100 100 92 92 78 63 48 38 38 31 31 

It is noted from the ratio curves that the agent does not allow to exceed the boundaries of 
the constraints for these parameters as illustrated in Table 2, where the SOC along the 
time horizon did not exceed 90% of the maximum capacity and was not less than 20% 
and at the end of the day. In the related context, it is noticed that ESS is charged at the 
beginning of the day because the demand is light and the charging energy cost is low, 
also it is charged at time slots when there is a surplus of the energy generated by PV 
(hours 10, 12) as shown in Figure 5(a). In contrast, the discharge happens at peak times 
when the demand is large and the energy supplied from the grid is expensive or shortages 
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(hours 11, 17, 21–24). In a related context, SOF became exactly 30% at the end of the 
time horizon as specified in Table 1, where, the agent is committed to consuming the 
entire amount of allocated fuel until 31% of fuel capacity for the current day as shown in 
Table 3, where the error ratio between the actual and desired ratio is equal to 1%. 

It is clear from Figure 6(a) that detailed in Table 4 the proposed algorithm learns the 
control system to obtain the most benefit of energy cost decreasing by exploiting the 
energy generated from PV and ESS to cover a significant part of the required energy 
during peak times where PV reduce the peak of the daytime (hours 8–17) while ESS 
reduce the peak of the night (hours 17–23). The end-user needs to purchase the rest of his 
required energy from the grid at times of no discharging, or no PV generation or may few 
when the weather is cloudy or rainy, the agent import the power from the utility grid 
within the boundary of PCC (in this research is about 1.5 MW) But in the event of 
insufficient generation from all these sources, the agent resorts to operating a diesel 
generator to fill the generation shortfall, this done usually at peak times (hours 16, 18–21, 
and 23) as shown in Figure 6(a). Figure 6(b) shows the amount of energy imported 
through PCC, where it is observed that the maximum power is 1.288 MW at hour 10 and 
does not exceed the boundaries of the PCC, this shows how well the control system 
adheres to the parameters constraints was trained. 

Figure 6 (a) The distribution of the energy in the training day (b) Energy imported from the grid 
(see online version for colours) 

 

  
(a)     (b) 

Despite one of the tasks of the EMS is to cover the energy demand, there is another task 
that is getting rid of the surplus fuel by operating the generator at times of no actual need. 
It is observed that the energy generated from the DG was used to cover the demand 
without resorting to purchasing energy from the grid to avoid losses resulting from the 
accumulation of fuel to the next day according to the take-or-pay agreement. 
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Table 4 Power distribution and balancing of the training day (kW) 
Hour 1 2 3 4 5 6 7 8 9 10 11 12 
PL 548 449 438 417 444 441 589 821 912 1,481 1,339 1,503 
Pg 798 699 438 417 444 441 575 731 668 1,288 448 962 
Ppv 0 0 0 0 0 0 13 90 244 443 641 790 
PDG 0 0 0 0 0 0 0 0 0 0 0 0 
ESS –250 –250 0 0 0 0 0 0 0 –250 250 –250 
Hour 13 14 15 16 17 18 19 20 21 22 23 24 
PL 1,550 1,572 1,842 1,664 1,797 1,827 1,675 1,592 1,441 1,383 1,160 688 
Pg 689 742 1,142 806 1,247 948 645 592 591 1,133 560 438 
Ppv 860 830 700 507 301 129 30 0 0 0 0 0 
PDG 0 0 0 350 0 1,000 1,000 1,000 600 0 350 0 
ESS 0 0 0 0 250 –250 0 0 250 250 250 250 

Figure 7 Typical testing day data, (a) load demand profile (b) PV generation usage (c) grid 
energy cost profile (see online version for colours) 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  
(a) 

 
(b) 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time (Hour)   
(c) 

To validate the training process and the accuracy of the learning results, the policy was 
tested on a typical day to be chosen from the last month of the summer season  
(21 August to 21 September). Figure 7 illustrates the load demand, PV power generation, 
and energy cost profiles for the testing day, respectively. Comparing these figures’ 
profiles with that of the previous training day, it is noted that they have the identical 
tendency. It is seen from load profiles, the peak and valley times are near for the  
two days, as well as the generation ratio for PV array close to a large extent, as is the case 
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for the energy tariff price, this leads to making the result of testing is close to training 
results because of adopting the deployed policy of the training, see Figures 5(a) and 8(a). 

It is noted that the charging and discharging decisions in the two days is almost 
identical, where the charging is done in times of light load and the low price of energy 
tariff and the discharge is at peak times and the high price of energy, also, in the energy 
deficiency intervals, the decisions of DG operating at different levels are made in the 
same region approximately of the time horizon of the two days. From Figure 8(b), it is 
observed that there is a clear commitment to the constraints imposed on the system as 
shown in Tables 5 and 6, where the charging ratio does not exceed 90% and not less than 
20%, also, the other system constraint related to the use of the entire amount of fuel until 
to 30% of tank capacity. 

Figure 8 (a) Optimum agent actions of the testing day (b) SOF in the tank and SOC in the ESS of 
the testing day (see online version for colours) 
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(a)     (b) 

Table 5 SOC of the testing day along the time horizon 

Hour 1 2 3 4 5 6 7 8 9 10 11 12 
SOC (%) 60 48 57 66 75 84 73 82 82 82 82 82 
Hour 13 14 15 16 17 18 19 20 21 22 23 24 
SOC (%) 82 82 82 71 80 69 58 67 56 65 54 43 

Table 6 SOF of the testing day along the time horizon 

Hour 1 2 3 4 5 6 7 8 9 10 11 12 
SOF (%) 100 100 100 100 100 100 100 100 100 100 100 100 
Hour 13 14 15 16 17 18 19 20 21 22 23 24 
SOF (%) 100 100 92 92 80 73 65 51 42 30 30 30 

In addition to other constraints such as that related to the minimum operation of the 
generator as in Figure 8(a) or PCC limits keeping as it is evident in Figure 9 that shows 
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also the distribution of generated power of each energy resource at each time slot 
according to the balanced power equation (18). 

Figure 9 (a) The distribution of energy in the testing day (b) Energy purchased from the grid in 
the testing day 

    
(a)     (b) 

It is observed from Figure 9(b) that the energy demand is covered by the same way in 
Figure 6, where the solar energy is fully utilised to cover the demand at daytime  
(hours 9–16) and charging the battery (hours 12, and 18), while the generator is run at 
peak times to decrease the grid burden. Table 7 illustrates the details. 
Table 7 Power distribution and balancing of the testing day (kW) 

Hour 1 2 3 4 5 6 7 8 9 10 11 12 
PL 671 450 352 439 416 437 582 720 780 1,057 1,526 1,629 
Pg 671 200 602 689 666 687 327 904 567 644 909 865 
Ppv 0 0 0 0 0 0 5 66 213 413 617 764 

PDG 0 0 0 0 0 0 0 0 0 0 0 0 
ESS 0 250 –250 –250 –25 –25 250 –250 0 0 0 0 
Hour 13 14 15 16 17 18 19 20 21 22 23 24 
PL 1,986 1,892 2,227 2,181 2,066 2,013 1,871 1,648 1,334 1,443 1,041 915 
Pg 1,171 1,132 1,267 1,523 1,357 1,350 1,267 898 584 942 791 665 
Ppv 816 761 611 408 209 63 5 0 0 0 0 0 
PDG 0 0 350 0 750 350 350 1,000 500 750 0 0 
ESS 0 0 0 250 –250 250 250 –250 250 –250 250 250 



   

 

   

   
 

   

   

 

   

   44 N.J. Aklo and M.T. Rashid    
 

    
 
 

   

   
 

   

   

 

   

       
 

5 Performance evaluation 

To benchmark DQN algorithm performance, IPSO method has been used as a  
model-based controller to minimise the daily energy demand cost. For IPSO, assuming 
full knowledge of the system parameters and perfect estimation of the uncertain 
parameters such as energy cost, PV power, or load demand. Consequently, the results 
obtained from this method are certain and considered a criterion for measuring the quality 
of the results in DQN. 

The performance of the proposed method is investigated by IPSO in terms of  
two factors, energy generation factor, and energy cost factor. Figure 10 shows the energy 
generation from the grid, DG, and charging/discharging of ESS using DQN and IPSO. To 
prove the efficiency, the amount of imported power from the utility grid and DG 
generation are compared in the two methods then the error ratio is calculated. Table 8 
shows the difference of grid energy between the two methods at each time slot and the 
error ratio is computed, it is equal to 4% as shown at the end of Table 8, this ratio reflects 
the robustness of this method that does not need the system modelling for energy 
management. 

Figure 10 Energy generation of the testing day using DQN and IPSO, (a) energy generation of 
grid and DG (b) energy charging/discharging (see online version for colours) 

  
(a)     (b) 

On the other hand, Table 9 indicates an error ratio reaches 9% of energy generation using 
DG, but this ratio has a small effect on the overall energy consumption because the 
contribution of the DG in energy supplying to cover the load demand is small compared 
with the total energy generation of other energy resources. 

In term of energy cost, the cost of the supplied energy is divided into three parts, the 
first part is the cost of energy imported from the utility grid, the second part is relevant to 
the cost of the energy generated from DG which includes the cost of fuel, maintenance, 
and operating, and the last part is ESS degradation cost. 
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Table 8 Utility grid energy statistic using DQN and IPSO in the testing day (kW) 
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Table 9 DG statistic using DQN and IPSO in the testing day (kW) 
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Figure 11 demonstrates the cost of bought energy from the utility grid using DQN and 
IPSO algorithms. In Figure 11, the hourly cost of the energy imported from the utility 
grid using IPSO and DQN algorithms is illustrated, where it is noted that the cost is 
neighbouring using the two methods and the average cost per hour is $26.25/h using 
IPSO and $27.7/h using the DQN and the error ratio between the two values is 5% as 
shown in Table 10. The same for the cost of DG energy (Figure 12) and the ESS 
degradation cost (Figure 13), where the average cost for the two algorithms is very close 
and the error ratio is 0.5% and 8% as is evident in Table 10. 

Figure 11 The hourly cost of grid energy using IPSO and DQN (see online version for colours) 
 

 

Figure 12 The hourly cost of generator energy using IPSO and DQN (see online version  
for colours) 
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Figure 13 The hourly cost of battery degradation using IPSO and DQN (see online version  
for colours) 
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Table 10 The average hourly cost 

Energy source IPSO DQN Error 
Grid 26.25 27.7 5% 
DG 49.368 49.121 0.5% 
Degradation 6.166 6.703 8% 
Grid+DG+Degredation 81.78 83.5 2% 

Figure 14 The entire hourly cost using IPSO (see online version for colours) 
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Consequentially, the entire hourly average costs are contiguous and equal to $81.78/h and 
$83.5/h in the two methods with an error ratio equal to 2%. Figures 14 and 15 illustrate 
the entire daily cost for Pg, PDG, and degradation cost using DQN and IPSO 
respectively, Table 11 shows the details that lead to the same conclusion of the previous 
one, where a large convergence to the benchmark values is observed and the overall error 
rate is equal to 2%. 
Table 11 The overall hourly cost ($) 

Energy source IPSO DQN Error 
Pg 630 664.67 5% 
PDG 1,184.85 1,179 0.5% 
Degradation 148 160.888 8% 
Pg+PDG+Degredation 1,962.85 2,004.55 2% 

Figure 15 The entire hourly cost using DQN (see online version for colours) 
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6 Conclusions 

In this paper, an intelligent EMS had been proposed to schedule and control the fuel 
consumption and energy resources in a connected-mode MG in rural areas unlike other 
MGs that are installed in these areas in islanded mode. The system is formulated as an 
MDP and a model-free RL-DQN strategy had been adopted to tackle the randomness of 
the system. A simulation had been performed using actual data of a rural area in Ontario 
City. The fuel supplying to DG is based on the principle of the take-or-pay and EMS was 
designed to work intelligently to consume the fuel along the time horizon according to 
this conception. The results obtained using DQN are confirmed and verified by 
comparing them with benchmark results obtained using the model-based IPSO.  
Two active days had been elected to apply the optimum policy one from the training 
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profile and the other from the testing profile. It is observed that the result of the proposed 
method is near the optimum point of IPSO policy. The energy cost and energy 
consumption factors had been adopted to measure the efficiency of the proposed method. 
From the results, it is noted a small error ratio of energy consumption does not exceed 
4% using the two methods depending on the energy consumption factor, at the same time, 
the error ratio of the average hourly cost is 0.125% and for daily cost is 2% in the  
two methods under energy cost factor consideration. Also, it is noticed that the entire 
specified fuel is consumed and the limit of PCC is not violated at each time slot, so this 
reflects the efficiency of the proposed algorithm. It is clear from this paper that the used 
learning method is more effective in energy management in real-time. 

References 
Aklo, N.J. and Rashid, M.T. (2021) ‘Scheduling of diesel generators operation with restricted pcc 

in microgrid’, Iraqi Journal for Electrical and Electronic Engineering, DOI: 10.37917/ 
ijeee.17.2.13. 

Al Hadi, A., Silva, C.A.S., Hossain, E. and Challoo, R. (2020) ‘Algorithm for demand response to 
maximize the penetration of renewable energy’, IEEE Access, 19 March, Vol. 8,  
pp.55279–55288. 

Albadi, M.H. and El-Saadany, E.F. (2007) ‘Demand response in electricity markets: an overview’, 
IEEE Power Engineering Society General Meeting. 

Anglani, N., Oriti, G. and Colombini, M. (2017) ‘Optimized energy management system to reduce 
fuel consumption in remote military microgrids’, IEEE Trans. on Industry Applications,  
Vol. 53, No. 6, pp.5777–5785. 

Baldwin, C.J., Dale, K.M. and Dittrich, R.F. (1959) ‘A study of the economic shutdown or 
generating units in daily dispatch’, Trans. of the American Institute of Electrical Engineers. 
Part III: Power Apparatus and Systems, Vol. 78, No. 4, pp.1272–1282. 

Bucolo, M., Buscarino, A., Famoso, C., Fortuna, L. and Frasca, M. (2019) ‘Control of imperfect 
dynamical systems’, Nonlinear Dynamics, Vol. 98, No. 4, pp.2989–2999. 

Bui, V.H., Hussain, A. and Kim, H.M. (2019) ‘Q-learning-based operation strategy for community 
battery energy storage system (CBESS) in microgrid system’, Energies, Vol. 12, No. 9, 
pp.1789–1806. 

Bui, V-H., Hussain, A. and Kim, H-M. (2020) ‘Double deep Q-learning-based distributed operation 
of battery energy storage system considering uncertainties’, IEEE Trans. on Smart Grid,  
Vol. 11, No. 1, pp.457–469. 

Busoniu, L., Babuska, R., De Schutter, B. and Ernst, D. (2010) ‘Reinforcement learning and 
dynamic programming using function approximators’, CRC Press, Boca Raton, FL, USA. 

Clavier, J., Bouffard, F., Rimorov, D. and Joós, G. (2015) ‘Generation dispatch techniques for 
remote communities with flexible demand’, IEEE Trans. on Sustainable Energy, Vol. 6,  
No. 3, pp.720–728. 

Dillon, T.S., Edwin, K.W., Kochs, H-D. and Taud, R.J. (1978) ‘Integer programming approach to 
the problem of optimal unit commitment with probabilistic reserve determination’, IEEE 
Trans. on Power Apparatus and Systems, November/December, Vol. PAS-97, No. 6, 
pp.2154–2166. 

Du, Y. and Li, F. (2020) ‘Intelligent multi-microgrid energy management based on deep neural 
network and model-free reinforcement learning’, IEEE Trans. on Smart Grid, Vol. 11, No. 2, 
pp.1–11. 

 
 



   

 

   

   
 

   

   

 

   

    Deep-Q-network-based energy management of multi-resources 51    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

Elkazaz, M., Sumner, M. and Thomas, D. (2020) ‘Energy management system for hybrid  
PV-wind-battery microgrid using convex programming, model predictive and rolling horizon 
predictive control with experimental validation’, International Journal of Electrical Power & 
Energy, February, Vol. 115. 

El-Sharkh, M.Y., Rahman, A. and Alam, M.S. (2010) ‘Short term scheduling of multiple  
grid-parallel PEM fuel cells for microgrid applications’, International Journal of Hydrogen 
Energy, October, Vol. 35, No. 20, pp.11099–11106. 

Fioriti, D., Giglioli, R. and Poli, D. (2017) ‘Short-term operation of a hybrid minigrid under load 
and renewable production uncertainty’, IEEE Global Humanitarian Technology Conference 
(GHTC). 

Foruzan, E., Soh, L-K. and Asgarpoor, S. (2018) ‘Reinforcement learning approach for optimal 
distributed energy management in a microgrid’, IEEE Trans. on Power Systems, September, 
Vol. 33, No. 5, pp.5749–5758. 

Huang, Q., Huang, R., Hao, W., Tan, J., Fan, R. and Huang, Z. (2020) ‘Adaptive power system 
emergency control using deep reinforcement learning’, IEEE Trans. on Smart Grid, March, 
Vol. 11, No. 2, pp.1171–1182. 

Ismail, M.S., Moghavvemi, M. and Mahlia, T.M.I. (2013) ‘Techno-economic analysis of an 
optimized photovoltaic and diesel generator hybrid power system for remote houses in a 
tropical climate’, Energy Conversion and Management, May, Vol. 69, pp.163–173. 

Jiang, B. and Fei, Y. (2015) ‘Smart home in smart microgrid: a cost-effective energy ecosystem 
with intelligent hierarchical agents’, IEEE Trans. on Smart Grid, January, Vol. 6, No. 1,  
pp.3–13. 

Kaabeche, A. and Ibtiouen, R. (2014) Techno-economic optimization of hybrid 
photovoltaic/wind/diesel/ battery generation in a stand-alone power system’, Solar Energy, 
May, Vol. 103, pp.171–182. 

KEMA Inc. (2014) Microgrids – Benefits, Barriers and Suggested Policy Initiatives for the 
Commonwealth of Massachusetts, Burlington, MA, USA. 

Kim, B-G., Zhang, Y., van der Schaar, M. and Lee, J-W. (2016) ‘Dynamic pricing and energy 
consumption scheduling with reinforcement learning’, IEEE Trans. on Smart Grid, 
September, Vol. 7, No. 5, pp.2187–2198. 

Kumar, A.B.R., Vemuri, S., Ebrahimzadeh, P. and Farahbakhshian, N. (1984) ‘Fuel resource 
scheduling – the long-term problem’, IEEE Power Engineering Review, Vol. PER-4, No. 7, 
pp.145–151. 

Lee, F.N., Liao, J. and Breipohl, A.M. (1992) ‘Adaptive fuel allocation using pseudo fuel prices’, 
Trans. on Power Systems, May, Vol. 7, No. 2, pp.487–496. 

Liang, S. and Srikant, R. (2017) ‘Why deep neural networks for function approximation?’, Proc. 
5th Int. Conf. Learn. Represent. (ICLR), April, Toulon, France, pp.1–17. 

Liu, W., Zhuang, P., Liang, H., Peng, J. and Huang, Z. (2018) ‘Distributed economic dispatch in 
microgrids based on cooperative reinforcement learning’, IEEE Trans. Neur Net Learn Syst., 
June, Vol. 29, No. 6, pp.2192–2203. 

Mandal, S., Das, B.K. and Hoque, N. (2018) ‘Optimum sizing of a stand-alone hybrid energy 
system for rural electrification in Bangladesh’, Journal of Cleaner Production, 1 November, 
Vol. 200, pp.12–27. 

Michaelson, D., Mahmood, H. and Jiang, J. (2018) ‘Reduction of forced outages in islanded 
microgrids by compensating model uncertainties in PV rating and battery capacity’, IEEE 
Power and Energy Technology Systems Journal, Vol. 5, No. 4, pp.129–138. 

Oliehoek, F.A. (2012) Decentralized POMDPs in Reinforcement Learning: State-of-the-Art 
(Adaptation, Learning, and Optimization), Ch. 15, Springer-Verlag, Berlin, Germany. 

 
 



   

 

   

   
 

   

   

 

   

   52 N.J. Aklo and M.T. Rashid    
 

    
 
 

   

   
 

   

   

 

   

       
 

Qiu, X., Nguyen, T.A. and Crow, M.L. (2016) ‘Heterogeneous energy storage optimization for 
microgrids’, IEEE Trans. on Smart Grid, May, Vol. 7, No. 3, pp.1453–1461. 

Sutton, R.S. and Barto, A.G. (2014) Reinforcement Learning: An Introduction, 2nd ed., A Bradford 
Book, The MIT Press, Cambridge, Massachusetts. 

Sutton, R.S. and Barto, A.G. (2018) Reinforcement Learning: An Introduction, October, MIT Press, 
Cambridge. 

Thirugnanam, K., Kerk, S.K., Yuen, C., Liu, N. and Zhang, M. (2018) ‘Energy management for 
renewable microgrid in reducing diesel generators usage with multiple types of battery’, IEEE 
Trans. on Industrial Electronics, Vol. 65, No. 8, pp.6772–6786. 

Tong, S.K. and Shahidehpour, S.M. (1990) ‘An innovative approach to generation scheduling in 
large-scale hydro-thermal power systems with fuel constrained units’, IEEE Trans. on Power 
Systems, May, Vol. 5, No. 2, pp.665–673. 

Tushar, W., Yuen, C., Huang, S., Smith, D.B. and Poor, H.V. (2016) ‘Cost minimization of 
charging stations with photovoltaics: an approach with EV classification’, IEEE Trans. on 
Intelligent Transportation Systems, Vol. 17, No. 1, pp.156–169. 

Van Meeteren, H.P. (1984) ‘Scheduling of generation and allocation of fuel using dynamic and 
linear programming’, IEEE Power Engineering Review, Vol. PER-4, No. 7, pp.26–27. 

Venayagamoorthy, G.K., Sharma, R.K., Gautam, P.K. and Ahmadi, A. (2016) ‘Dynamic energy 
management system for a smart microgrid’, IEEE Trans. on Neural Networks and Learning 
Systems, August, Vol. 27, No. 8, pp.1643–1656. 

Wang, Z., Chen, B., Wang, J., Begovic, M.M. and Chen, C. (2015) ‘Coordinated energy 
management of networked microgrids in distribution systems’, IEEE Trans. on Smart Grid, 
January, Vol. 6, No. 1, pp.45–53. 

Wu, H., Zhuang, H., Zhang, W. and Ding, M. (2016) ‘Optimal allocation of microgrid considering 
economic dispatch based on hybrid weighted bilevel planning method and algorithm 
improvement’, International Journal of Electrical Power & Energy Systems, February,  
Vol. 75, pp.28–37. 

Zhang, Q., Dehghanpour, K., Wang, Z. and Huang, Q. (2020) ‘A learning-based power 
management method for networked microgrids under incomplete information’, IEEE Trans. 
on Smart Grid, Vol. 11, No. 2, pp.1–12. 

Zhang, Q., Lin, M., Yang, L.T., Chen, Z., Khan, S.U. and Lia, P. (2019) ‘Double deep Q-learning 
model for energy-efficient edge scheduling’, IEEE Transactions on Services Computing,  
Vol. 12, No. 5, pp.739–749. 

Zhu, L., Han, J., Peng, D., Wang, T., Tang, T. and Charpentier, J-F. (2014) ‘Fuzzy logic based 
energy management strategy for a fuel cell/battery/ultracapacitor hybrid ship’, Proc. 1st Int. 
Conf. Green Energy, March, pp.107–112. 

 
 
 
 
 
 
 
 
 
 



   

 

   

   
 

   

   

 

   

    Deep-Q-network-based energy management of multi-resources 53    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

Nomenclature 

CDG Energy cost of the diesel generator 

Cdeg Degradation cost of battery 
g
tC  Fuel cost 

g
tC  Energy cost of the grid at time slot t 

Ebat,max Maximum capacity of  battery 

Et Energy storage of battery at time slot t 

F The consumed fuel in the generator 

Fmax Maximum capacity of the fuel tank 
ch

tP  Rated power charged to at time slot t 

,maxch
tP  Maximum rated power charging at time slot t 

dis
tP  Rated power discharged at time slot t 

,maxdis
tP  Maximum rated power discharging at time slot t 

DG
tP  Generated power from DG at time slot t 

,minDG
tP  Minimum power allowed from the generator 

g
tP  Imported power from the grid 

PDG,rated Rated power of the generator 
max
pvP  PV power generated at time slot t 

max
pvP  PV system rating 

SOCt Energy ratio saved in the battery at time slot t 

SOCmax Minimum energy ratio saved in the battery 

SOFmax Maximum fuel capacity ratio of the tank 

Tc PV cell temperature 

Tt Ambient temperature forecast at time slot t 

ρdeg Battery degradation factor 

ηch Efficiency of charging energy 

ηdis Efficiency of discharging energy 


