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Abstract: Aiming at the complexity and diversity of short-term power load data, a bidirectional 
long short-term memory (BILSTM) prediction model based on attention was proposed for the 
pretreatment collected data, and the different kinds of data were divided to obtain a training set 
and test set. The BILSTM layer was used for modelling to enable the extraction of the internal 
dynamic change rules of features and reduce the loss of historical information. An attention 
mechanism was used to give different weights to the implied BILSTM states, which enhanced the 
influence of important information. The sparrow search (SS) algorithm was used to optimise the 
hyperparameter selection process of the model. The test results showed that the performance of 
the proposed method was better than that of the traditional prediction model, and the root mean 
square errors (RMSEs) decreased by (1.18, 1.09, 0.60, 0.54) and (2.11, 0.45, 0.21, 0.11) on 
different datasets. 
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1 Introduction 
Load forecasting involves analysing historical load data 
with specific methods or models to estimate power system 
demand based on system fluctuations and changes in 
external factors (e.g., meteorological factors at load 
locations) (Yan et al., 2020). Load forecasting data form the 
basis for power system dispatch, and improving the 
accuracy of these data is essential to power system 
development (Liu et al., 2020). 

The available short-term load forecasting methods can 
be divided into three main categories (Li, 2021). The first 
contains traditional statistical methods, mainly including 
linear regression (LR) (Wang, 2018), autoregression (AR) 
(Xu et al., 2019), the autoregressive moving average 
(ARMA) (Liu and Gao, 2020), and so on. These methods 

are simple in structure and easy to build, but the 
distributional characteristics of the input data exert a 
significant influence on the model outputs. The second 
category contains machine learning methods, including grey 
systems, support vector machines (SVMs) (Johnson and 
Shanmugam, 2011), and artificial neural networks (ANNs) 
(Naik et al., 2021). SVM algorithms can be applied for 
linear or nonlinear problems with low generalisation  
error rates. Furthermore, they are capable of solving  
high-dimensional problems in traditional algorithms. 
However, SVM algorithms are difficult to implement with 
large-scale training samples, and these algorithms are also 
sensitive to missing data. The backpropagation (BP) neural 
network in an ANN is a learning algorithm for multilayer 
forwarding (Lu et al., 2020) that can continuously modify 
the connection weights between the artificial neurons that 
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make up the forward multilayer network. In this way, the 
forward multilayer network can transform the input 
information into the desired output information. However, 
the convergence rate of this method is slow, and the number 
of hidden nodes in the network is difficult to determine. The 
third category contains combined model prediction 
methods, which combine optimisation algorithms to 
optimise the multiple hyperparameters present in the given 
model to achieve improved prediction accuracy. At present, 
the most widely used optimisation algorithms are the SS 
algorithm, particle swarm optimisation (PSO) algorithm, 
whale optimisation algorithm (WOA), and genetic 
optimisation algorithm (GA). The SS algorithm has good 
global exploration and local development abilities, as it 
takes all factors into account and makes the sparrows in the 
population move to the global optimal value; it can quickly 
converge to the optimal value. 

Power load data can now be automatically acquired. 
Analysing the data acquisition and power consumption 
abilities of distribution transformers to end-users achieves 
the purpose of electricity monitoring and metre reading, and 
the system automatically transmits these data to a data 
acquisition system. However, electromagnetic wave noise 
interference in the collected data can affect data quality and 
reduce prediction accuracy. In this paper, first, the data 
preprocessing method is used to eliminate data noise. 
Second, a two-way long short-term memory (LSTM) layer 
is used to learn the positive and negative internal feature 
laws of power load data and extract hidden matrix features 
to generate weight values in combination with an attention 
mechanism. At the same time, the SS algorithm is used to 
optimise the selected model hyperparameters, and finally, 
prediction results are output. Experimental comparisons are 
performed with the BP algorithm, LSTM time series 
algorithm, LSTM algorithm based on S optimisation, 
bidirectional LSTM (BILSTM) algorithm based on attention 
mechanism, and BILSTM algorithm based on an attention 
mechanism optimised by the SS algorithm. Regarding  
short-term power load forecasting, the average percentage 
error and long short-term memory RMSE of the forecasting 
results yielded by the attention-based BILSTM model 
optimised with the S algorithm are less than those of other 
prediction models. 

2 Methods 
2.1 BILSTM 
BILSTM is a combination of forward and backward LSTM. 
In the forward process, an LSTM model is input; in the 
backward process, the LSTM model is input in the reverse 
direction. LSTM is a particular cyclic neural network that 
controls the transmission state through its gated state, 
remembers the information that it must save for a long time 
period, and forgets the unimportant information. Its 
structure is shown in Figure 1. 

Figure 1 Schematic diagram of the LSTM network structure  
(see online version for colours) 

 

The LSTM unit has forget, input, and output gates. In 
Figure 1, Ct–1 represents the state of the previous cell; ht–1 
represents the output of the previous unit; and Xt represents 
the current input. ft is the degree of information forgetting; it 
represents the degree of input information retention; and  
indicates the newly entered information. tanh is the 
activation function and represents the hyperbolic tangent 
function; Ot indicates the output information. 

The network structure of BILSTM has four parts: an 
input layer, a forward layer, a reverse layer, and an output 
layer. This model allows the relationships of load sequences 
to be extracted from the forward and backward directions 
and connected to the same output so that bidirectional 
temporal features can be extracted from the input power 
load sequence data by using BILSTM. The network 
structure of BILSTM is shown in Figure 2 (He et al., 2018). 

Figure 2 Schematic diagram of the BILSTM network structure 
(see online version for colours) 

 

2.2 Attention mechanism 
An attention mechanism is a resource allocation mechanism 
that mimics the attention of the human brain. In general, the 
human brain focuses its attention on the areas of interest at a 
particular moment, reducing or even eliminating the 
attention paid to other areas to obtain more detailed 
information that needs to be focused on, thereby 
suppressing other useless information, ignoring irrelevant 
information and amplifying the required information (Li  
et al., 2019). An attention mechanism can help improve a 
model’s accuracy by assigning sufficient attention to critical 
data and highlighting the impact of focused information. 
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2.3 SS algorithm 
The SS algorithm is a new type of swarm intelligence 
optimisation algorithm proposed by Xue and Shen (2020). 
Originating from the behaviour of sparrows during foraging, 
the algorithm has the advantages of strong merit-seeking 
ability and fast convergence. The specific rules are as 
follows. 

1 Bird member discoverers (producers) and joiners or 
followers (scroungers) in the SS model are defined. 

2 Population initialisation is performed through the 
following matrix: 
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 where Xd denotes the dimension to be optimised and Xn 
represents the number of sparrow populations. 

3 The discoverer, which is generally randomly selected 
from 10%–20% of the population, usually has a high 
energy reserve and is responsible for searching for 
areas with abundant food throughout the population; it 
behaves as a leader in the terms of the directions and 
ranges of the other joiners. The high energy reserves 
are determined by the individual sparrow adaptability 
values. 

 The adaptability values of sparrows are expressed as 
follows: 
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 where Xd denotes the dimension to be optimised, Xn 
represents the number of sparrow populations, and 
f([x]) represents the fitness value. 

 During each iteration, the position of the discoverer is 
updated as follows (Zhao and Wang, 2020; Chen et al., 
2021): 
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 where t denotes the current number of iterations; j 
denotes the current dimension with J = 1, 2, 3, …, d; 

1t
ijx +  denotes information about the position of the first 

sparrow in the j{th} dimension during the t{th} iteration; 
α is a random number that lies in (0, 1); Q is a random 
number subject to a normal distribution; L is an all-1 
unit matrix of size 1×d; R2(R2 ∈ [0, 1]) indicates an 
early warning value; and ST(ST∈ [0, 5, 1]) indicates the 

safety threshold. When the warning value R2< the 
safety threshold ST, no predators are present, and the 
finder enters the food search mode. When the warning 
value R2 ≥ the safety threshold ST, the race is 
threatened by the present predator, the sparrow needs to 
go elsewhere to forage, and a new fitness value needs to 
be calculated. 

4 The joiners also monitor the finder’s energy level status 
to determine whether the finder has found better food 
while obtaining food in the area found by the finder, 
and the joiners actively compete for food resources 
when the finder’s energy level is high. The accessed 
locations are updated as follows: 
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 where t
worstX  denotes the current global worst position; 

1t
pX +  denotes the discoverer’s optimal position after 

iteration t + 1, i.e., the location with the best food; A 
denotes a matrix of size 1×d with each element 
randomly assigned –1 or 1, where this matrix satisfies 
A* = AT(AAT)–1; and n denotes the total number of 
sparrows. 

 2i
n

>  means that the sparrows are very hungry 

(because they are poorly adapted), and they need to 

look elsewhere for food; 2i
n

>  means that the sparrows 

are near the best food found by the finder, and it is 
likely that competition for food resources will turn the 
sparrows themselves into finders. 

5 When a sparrow is fully aware of dangers nearby 
(which does not necessarily mean that a predator is 
present), it actively approaches a safe area, i.e., a circle 
or its surrounding partners. 
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 where t
bestX  denotes the global optimal position after t 

iterations; β denotes the iteration step control 
parameter, which is a random number that follows a 
standard normal distribution; K∈ [–1, 1] denotes a 
random number from –1 to 1 representing the fitness 
value of the current individual sparrow; fi denotes the 
global optimal fitness value; fg denotes the global worst 
fitness value; and ω is a constant to avoid zero in the 
denominator. 

When fi > fg, the given sparrow is at the boundary of the 
group’s range and is vulnerable to predators; when fi > fg, 
the sparrow is in the middle of the group, is aware of the 
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danger, and needs to move closer to other sparrows at 
random. 

Figure 3 SS-optimised LSTM flow 

 

3 Proposed combined models 

3.1 SS-optimised LSTM model 
According to the description of the LSTM model in  
Section 2.2, it is clear that the parameters choices in  
short-term electricity load forecasting directly affect the 
accuracy of the constructed model (Dong et al., 2022). 
Therefore, in this paper, the SS algorithm referenced in 
Section 2.3 is applied to optimise the learning rate, the 
number of training iterations, and the numbers of two types 
of LSTM nodes. Figure 2 shows the optimisation process, 
and the specific steps are as follows: 

Step 1 Initialise the population, the number of iterations 
and the ratios of predator to joiners. 

Step 2 Calculate the fitness values and rank them. 

Step 3 Update the predator positions through equation (3). 

 

Step 4 Update the joiner positions through equation (4). 

Step 5 Update the position of the alert value through 
equation (5). 

Step 6 Calculate the fitness values and update the sparrow 
positions. 

Step 7 Judge whether the stopping condition is satisfied; if 
so, exit with the output result; otherwise, repeat 
Steps 2–6. 

3.2 SS-optimised BILSTM-attention model 
The essence of SS optimisation is the foundation of a 
maximum or minimum fitness function value. In this paper, 
the fitness function minimises the mean squared difference 
between the desired output and the actual output of the 
BILSTM-Attention network, i.e., it finds the set of  
network hyperparameters that minimises the error of 
BILSTM-Attention. The whole optimisation process is 
shown in Figure 4. The SS-optimised BILSTM-Attention 
model is composed of a BILSTM-Attention part and an SS 
part. In the BILSTM-Attention part, first, the incoming 
parameters are decoded according to the principle of the 
above SS algorithm to obtain the number of iterations, the 
learning rate, and the number of nodes in each hidden layer. 
Then, the network training process proceeds on the divided 
training set. Finally, the prediction procedure is carried out 
on the test set to obtain the mean squared error between the 
actual output value and the desired output value, and the 
mean squared error is returned to the SS part as the fitness 
value. The SS part executes the movements of predators, 
joiners, and vigilantes on the basis of their fitness values to 
update the population and the global value to optimal states. 
An optimised network hyperparameter is finally obtained 
through this method. 

The solution process is as follows: 

Step 1 Merge the preprocessed historical load with the 
daily feature data and divide the data into a training 
set and test set. 

Step 2 Build a model based on the BILSTM-Attention 
mechanism and input the 24-hour load, average 
temperature, maximum temperature, minimum 
temperature, relative humidity, and weekday type 
values before the forecast date into the model as 
the 29 feature values of the previous day. Similarly, 
the average temperature, maximum temperature, 
minimum temperature, relative humidity, and 
weekday type of the forecast day are set as the  
five feature input values to predict the day’s load. 

Step 3 Use the SS process described in 3.1 to perform the 
optimisation search. Parameters are passed in for 
modelling and training. 

Step 4 Calculate the test set error. 
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Figure 4 SS optimisation-based BILSTM-attention flowchart 

 

4 Simulation 
Two real load datasets are used to validate the model 
proposed in this paper: one contains local data collected 
from a region in Zhejiang Province from February 13, 2010, 
to May 20, 2010, with a collection time interval of 1 h, and 
the other includes actual electricity load data from a region 
in Shaanxi Province for the period from May 1, 2021, to 
August 30, 2021, with 96 time points collected each day and 
a collection time interval of 15 min. 

4.1 Data standardisation 
Due to the different units of the collected data 
characteristics, the electrical load data are first harmonised, 
and the electrical load data are measured in hourly units. 
The prediction input features also include the average 
temperature, maximum temperature, minimum temperature, 
relative humidity, and weekday type, and the degrees of 
different coefficients are derived for different times of the 
week based on electricity usage. To improve the training 
effect of the model, a linearised mapping of week types is 
used to impute the values between [0, 1] and is calculated as 
follows (Qing-Song, 2020): 

min*

max min

X XX
X X

−=
−

 (6) 

where X* denotes the normalised data, x represents the 
original data, Xmin is the minimum value of the sample data 
and Xmax is the maximum value of the sample data. 

To assess the accuracy of the model, the mean absolute 
percentage error (MAPE) (Htike, 2018), RMSE (Gu, 2017), 
and determination coefficient (R2) (Li, 2021) are selected as 
the criteria for prediction accuracy in this paper, and their 
equations are calculated as follows: 
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where xi represents the actual value of the i{th} sample, yi 
represents the predicted value of the i{th} sample, iy  
represents the actual value of the i{th} sample, x  represents 
the actual mean value of the sample, and n represents the 
number of samples. 

To demonstrate the validity of the model given in  
this paper, the results of BP, LSTM, SS-LSTM, and 
BILSTM-Attention models are compared with the results of 
the method proposed in the paper. 

5 Results and discussion 
5.1 Zhejiang Province forecasting results 
The dataset used in this paper is the standard dataset for a 
certain location in Zhejiang. The data from 13 February 
2010 to 19 May 2010 are used as the training set to predict 
the data for 20 May 2010, and the data for 20 May 2010 are 
used as the validation set for verification purposes. SS 
parameter optimisation is carried out for the fitness 
calculation; the mean squared error of the validation process 
is set as the fitness function to find a set of hyperparameters 
that minimise the error of the network. 

The learning rate, number of training iterations, and 
number of nodes in the hidden layer of BILSTM-Attention 
are optimised by using SS. The adaptation convergence 
curve, the learning rate optimisation curve, and the training 
iteration optimisation curve are illustrated in Figures 5–7. 
Figures 8 and 9 show the optimisation curve for the number 
of LSTM hidden layer nodes. 

Figure 5 Adaptation convergence curve (see online version  
for colours) 
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Figure 6 Learning rate optimisation curve (see online version for 
colours) 

 

Figure 7 Number of training sessions for the optimisation curve 

 

Figure 8 Node-seeking curve of the first implicit layer  
(see online version for colours) 

 

Table 1 Comparison among the prediction accuracies of 
different models 

Models MAPE RMSE R2 

BP 3.069% 2.467 96.47% 
LSTM 2.818% 2.384 96.70% 
SS-LSTM 2.092% 1.892 97.92% 
BILSTM-attention 2.066% 1.827 98.06% 
SS-BILSTM-attention 1.203% 1.291 99.03% 

Figure 9 Node-seeking curve of the second implicit layer  
(see online version for colours) 

 

Figure 10 Predicted versus true values for each algorithm  
(see online version for colours) 

 

The evaluation metrics for the selected prediction day are 
listed in Table 1. It can be concluded that the proposed 
model reduces the MAPE by 1.87%, 1.62%, 0.89%, and 
0.86% compared to those of the BP, LSTM, SS-LSTM, and 
BILSTM-Attention models, respectively, and the RMSE 
metrics are reduced by 1.18, 1.09, 0.60, and 0.54 compared 
to those of the traditional prediction methods. This indicates 
that the proposed model has better performance than these 
traditional prediction methods. The predicted results of the 
different models are shown against the true values in  
Figure 10. 

5.2 Shaanxi Province forecasting results 
The proposed method is applied to data collected from other 
provinces to verify its applicability. The electricity load data 
of a region in Shaanxi are divided into two parts. The data 
collected from May 1, 2021, to August 29, 2021, are used as 
the training set to predict the data for August 30, 2021, and 
the data on August 30, 2021, are used as the validation set 
for verification purposes. 

Figure 11 compares the prediction accuracy of the 
proposed method with that of BP, LSTM, SS-LSTM, and 
BILSTM-Attention. It can be seen from Figure 11 that the 
prediction results of the model proposed in this paper are 
closest to the real values, and the proposed method has more 
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accurate prediction results. It can better represent load 
variation patterns than other methods. 

Figure 11 Predicted versus true values for each algorithm  
(see online version for colours) 

 

Each evaluation index, as shown in Table 2, further verifies 
the rationality of the model developed in this paper. 
According to Table 2, the prediction accuracy of this model 
is the highest. Compared with those of the BP, LSTM, SS-
LSTM, and BILSTM-Attention models, the MAPE of the 
proposed model is reduced by 4.58%, 0.57%, 1.13%, and 
1.82%, respectively, and the RMSE indicators are reduced 
by 2.11, 0.45, 0.21 and 0.11, respectively. 

Table 2 Prediction accuracy comparison 

Models MAPE RMSE R2 

BP 17.51% 9.633 72.72% 
LSTM 13.50% 7.966 81.35% 
SS-LSTM 14.06% 7.732 82.43% 
BILSTM-attention 14.75% 7.632 82.88% 
SS-BILSTM-attention 12.93% 7.521 83.37% 

6 Conclusions and future work 
To ensure the stability and reliability of a regional power 
supply, power load forecasting is an essential prerequisite. 
The accuracy of power load prediction results is significant 
for regional power network planning and construction. The 
prediction model proposed in this paper can excavate the 
internal laws of loads and other features in different regions. 
A BILSTM layer model containing an attention mechanism 
and the SS algorithm is used to achieve short-term load 
prediction. In the BILSTM-Attention model, bidirectional 
timing-based feature extraction improves the prediction 
accuracy yielded by the input information. Then, a weight 
vector is generated by the attention layer, and the vector 
matrix extracted by the hidden layer is multiplied. At the 
same time, the SS algorithm is used to iteratively optimise 
the network hyperparameters, and the parameters with the 
minimum errors are found and input into the model; then, 
the prediction results are output. Because load data have 

apparent positive and reverse regularity, in load prediction, 
not only historical loads but also the impact of future load 
on the prediction accuracy should be considered. The 
BILSTM model can perfectly meet the above requirements. 
The selection of the SS algorithm for solving the 
hyperparameters is determined based on the human history 
of versatility and uncertainty problems. 

A comparison between the method proposed in this 
paper and the conventional methods reveals some 
uncontrollable factors exhibited by real datasets, leading  
to a lack of fit regarding the model training process  
and making the obtained graph description results 
unsatisfactory. Furthermore, in the future, more features will 
be added further to improve the accuracy of the developed 
short-term load prediction approach. 
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