Combining machine learning and effective feature selection for real-time stock trading in variable time-frames
by A.K.M. Amanat Ullah; Fahim Imtiaz; Miftah Uddin Md Ihsan; Md. Golam Rabiul Alam; Mahbub Majumdar
International Journal of Computational Science and Engineering (IJCSE), Vol. 26, No. 1, 2023

Abstract: The unpredictability and volatility of the stock market render it challenging to make a substantial profit using any generalised scheme. Many previous studies tried different techniques to build a machine learning model, which can make a significant profit in the US stock market by performing live trading. However, very few studies have focused on the importance of finding the best features for a particular period for trading. Our top approach used the performance to narrow down the features from a total of 148 to about 30. Furthermore, the top 25 features were dynamically selected before each time training our machine learning model. It uses ensemble learning with four classifiers: Gaussian naive Bayes, decision tree, logistic regression with L1 regularisation and stochastic gradient descent, to decide whether to go long or short on a particular stock. Our best model performed daily trade between July 2011 and January 2019, generating 54.35% profit. Finally, our work showcased that mixtures of weighted classifiers perform better than any individual predictor about making trading decisions in the stock market.

Online publication date: Thu, 23-Feb-2023

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computational Science and Engineering (IJCSE):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com