
90 Int. J. Computational Science and Engineering, Vol. 26, No. 1, 2023

Copyright © 2023 Inderscience Enterprises Ltd.

Low-loss data compression using deep learning
framework with attention-based autoencoder

S. Sriram, P. Chitra* and V. Vijay Sankar
Thiagarajar College of Engineering,
Madurai, Tamilnadu, India
Email: sriramrsk111@gmail.com
Email: pccse@tce.edu
Email: vvs221199@gmail.com
*Corresponding author

S. Abirami
School of Computer Science and Engineering,
Vellore Institute of Technology,
Chennai, Tamil Nadu, India
Email: abirami.2t@gmail.com

S.J. Rethina Durai
Thiagarajar College of Engineering,
Madurai, Tamilnadu, India
Email: rethinadurai@gmail.com

Abstract: With rapid development of media, data compression plays a vital role in efficient data
storage and transmission. Deep learning can help the research objective of compression by
exploring its technical avenues to overcome the challenges faced by the traditional Windows
archivers. The proposed work initially investigates multi-layer autoencoder models, which
achieve higher compression rates than traditional Windows archivers but suffer from
reconstruction loss. To address this, an attention layer is proposed in the autoencoder to reduce
the difference between the encoder and decoder latent representation of an input along with the
difference between the original input and reconstructed output. The proposed attention-based
autoencoder is extensively evaluated on the atmospheric and oceanic data obtained from the
Centre for Development of Advanced Computing (CDAC). The results show that the proposed
model performs better with around 89.7% improved compression rate than traditional Windows
archiver and 25% reduced reconstruction loss than multi-layer autoencoder.

Keywords: deep learning; multi-layer autoencoder; compression ratio; attention; reconstruction
loss.

Reference to this paper should be made as follows: Sriram, S., Chitra, P., Sankar, V.V.,
Abirami, S. and Durai, S.J.R. (2023) ‘Low-loss data compression using deep learning
framework with attention-based autoencoder’, Int. J. Computational Science and Engineering,
Vol. 26, No. 1, pp.90–100.

Biographical notes: S. Sriram completed his Bachelor’s in Computer Science and Engineering
in the Thiagarajar College of Engineering, India. His current research interests include deep
learning and natural language processing.

P. Chitra is a Professor in the Department of Computer Science and Engineering, Thiagarajar
College of Engineering, Madurai, India. Her areas of interest include cloud computing,
multi-core architectures and machine learning.

V. Vijay Sankar completed his Bachelor’s in Computer Science and Engineering in the
Thiagarajar College of Engineering, India. His current research interests include deep learning
and data mining.

S. Abirami is currently pursuing her PhD in Anna University, India. Her research interests
include spatiotemporal modelling, machine learning and deep learning algorithms.

S.J. Rethina Durai completed his Bachelor’s in Computer Science and Engineering in the
Thiagarajar College of Engineering, India. His current research interests include blockchain and
machine learning.

 Low-loss data compression using deep learning framework with attention-based autoencoder 91

1 Introduction
Compression has the power to reduce the data size to even
half the original size or a significantly higher percentage of
its original size (Yildirim et al., 2018). While information is
transferred it can be transmitted in a compressed format.
Compressed files occupy less storage space when compared
to uncompressed files, meaning a significant decrease in
expenses for storage. A compressed file also requires less
time for transmission and in the process, it also results in the
consumption of less network bandwidth. Newer forms of
media, changing hardware create a need for new
compression algorithms which are more flexible than the
existing ones. Data compression is extensively used in the
field of medicine (Yildirim et al., 2018), electrical
engineering (Ahmeda and Abo-Zahhad, 2001; Chen et al.,
2019), nuclear energy (Cherezov et al., 2020), internet of
things (Park et al., 2018), etc. The above-mentioned fields
demand that the data used for storage and transmission
should be in a compressed format so that the application
pipeline difficulties are reduced.

Compression ratio (CR) is the ratio of the size of
compressed data to its size in the uncompressed form.
Statistical compression algorithms, have very less CR as
they do not differentiate between the different kinds of data
used for compression (Ziv and Lempel, 2006). The
underlying meaning behind the data is not considered by
traditional compression algorithms. All types of data are
dealt as same, regardless of the nature and format of the
data. Data like images (Ameen Suhail and Sankar, 2020;
Chen et al., 2017; Cheng et al., 2020; Li et al., 2017; Yang
et al., 2020; Zeng et al., 2017; Zhang et al., 2016), sensor
data (Nuha et al., 2019), graphical readings (Wang et al.,
2020b), instrumental data (Huang et al., 2019), etc. can be
compressed more efficiently if the characteristics of data are
taken into account. A key challenge in compression is
deciding which of the benefits of the particular algorithm to
use. Either lossless algorithms, which can compress data
without loss but are limited by the amount of compression
that can be done, or lossy compression algorithms, which
have a higher CR but suffer data loss (Chen et al., 2019).
Real-time streaming applications such as environmental
monitoring, flood management and so on, requires
compression algorithms to have better CR with minimal
loss (Wang et al., 2019).

Deep learning algorithms are known to capture trends
and features in data that cannot be captured by the human
brain (Yildirim et al., 2018). Deep learning algorithms find
a wide range of applications (Abirami and Chitra, 2021,
2020; Cao et al., 2021; Chang et al., 2021; Das and Chand,
2021; Jiang et al., 2021; Sun et al., 2021; Varghese and
Thampi, 2021; Ying et al., 2021; Zhu et al., 2020). When
deep-learning and machine-learning models are employed
for the purpose of analysing the trends in the data to
compress it, the CR that can be attained post-compression is
impressive and even better than the CR achieved by
traditional (Ilkhechi et al., 2020) and transformation-based
compression algorithms (Ahmeda and Abo-Zahhad, 2001;
Al-Nashash, 1995; Wang et al., 2020a). Autoencoders, a

well-known deep learning algorithm, are efficient feature
extractors and can be employed to identify key patterns in
datasets by iterative reconstruction of input data
(Ameen Suhail and Sankar, 2020; Chen et al., 2019, 2017;
Cheng et al., 2020; Huang et al., 2019; Kim et al., 2020; Ma
et al., 2018; Romero et al., 2017; Yang et al., 2020, 2019;
Yildirim et al., 2018; Zeng et al., 2017; Zhang et al., 2016).

The proposed work attempts to compress data by
considering the characteristics of data using deep learning
algorithms. But the trade-off here is the loss of data.
In applications where the loss of data is permitted,
deep-learning algorithms outperform traditional
compression algorithms (Chen et al., 2019; Ilkhechi et al.,
2020). However, the demand for reducing the reconstruction
loss is critical while dealing with sensitive medical images
or environmental data on disasters. The dataset for this
study is obtained from the Centre for Development of
Advanced Computing (CDAC), a self-governing scientific
organisation in India, monitored by the Ministry of
Electronics and Information Technology. The dataset
consisted of several files representing atmospheric and data
in the ‘.nc’ (NetCDF) format. Compression techniques such
as ‘WinZip’ and ‘WinRAR’ produced a CR of about 0.24
for the considered data (discussed in Section 5). The lower
CR obtained by the traditional approaches is not optimal for
streaming applications. The proposed work develops an
attention-based autoencoder to overcome this challenge
faced by the traditional compression algorithms, by
obtaining high CR with minimal loss for the dataset
considered.

The rest of the paper is organised as follows. Section 2
provides the background and literature study for the
compression techniques using autoencoders for varied
purposes in different configurations of encoder-decoder
architecture. Section 3 proposes various data analysis
methods for the dataset under consideration. Section 4
formulates the research problem mathematically. Section 5
introduces the proposed autoencoder framework for data
compression. Section 6 introduces case study to compare
the performance of proposed models with existing baseline
benchmarks algorithm with respect to rate of compression
and decompression power and time taken for compression
and decompression. Section 7 concludes the paper.

2 Related works
Many research works have been carried over in the field of
compression of data using statistical and machine learning
algorithms. In the case of compression, the algorithm can
either be lossy or lossless. Lossless algorithms retain the
original data without any data loss, but the CR achieved
would be inferior to that of lossless algorithms (Chen et al.,
2019). Statistical lossless algorithms like Huffman (2006)
encoding are known to compress the data without any loss.
Huffman (2006) propose an optimum method of coding an
ensemble of messages consisting of a finite number of
members. A minimum-redundancy code is one that is
constructed in such a way that the average number of

92 S. Sriram et al.

coding digits per message is minimised. Another popular
algorithm LZ77 suggested by Ziv and Lempel (2006) uses
lossless methods like window sliding and a look ahead
buffer for lossless compression of data.

Lossy methodologies like transformation-based
algorithms (Ahmeda and Abo-Zahhad, 2001; Al-Nashash,
1995; Wang et al., 2020a) encode the given data into a
newer domain of reduced dimensions. The inverse operation
of the former is carried out in order to retrieve the original
data back. Al-Nashash et al. (1995) suggest an approach
where ECG signals are modelled as a dynamic Fourier
series. Fourier coefficients are continuously estimated using
either a fast Fourier transform algorithm or the adaptive
least mean square algorithm. Ahmeda and Abo-Zahhad
(2001) proposed a hybrid transformation algorithm using
wavelet transformation and achieved a CR of 20 to 1 is
achieved with a percentage root-mean-square difference
(PRD) less than 4%. Wang et al. (2020a) suggest a PCA
approach to compression which consists of effectively
transforming high-dimensional feature space to
low-dimensional feature space. The results of this study
convey the fact that PCA-based approaches perform better
than transformation-based algorithms like wavelet
decomposition in terms of better reconstruction results and
better compression performance.

Later on, with the rise in computational power, machine
learning algorithms became popular and were studied
extensively for the purpose of data compression. Park et al.
(2018) suggested an approach to use regression for the
representation of vectors and the divide-and-conquer
method for cropping the chunks of data at each range and
merging them using Euclidean distance. Cosine similarity
was to determine the accuracy of the model performance.
Linda Senigagliesi et al. (2020) proposed data dimension
reduction algorithms such as principal component analysis
(PCA) and t-distributed stochastic neighbour embedding
(t-SNE) for reducing the dimensions of features which helps
in proper fast management of samples on IoT devices. PCA
has provided the best trade-off on comparing with the
complexity and accuracy for which the computational
burden is very much reduced. Cherezov et al. (2020) used
PCA compression on multi-physics reactor data for
reducing the storage and transfer difficulties. They
decomposed data into strong and weak components where
strong parts were approximated using PCA and a sparse
matrix was used to store weak parts in the memory.
Chowdhury et al. (2021) used multivariate normal –
autoregressive integrated moving average for compression
and decompression. Cross-correlation of variables was
studied and analysed for reducing the dimension of the data.
This resulted in reducing the network resource requirements
and bandwidth utilisation.

Deep learning approaches were suggested for lossy
compression of data wherein a particular amount of loss was
accepted as part of a trade-off between data loss and CR.
Yildirim et al. (2018) used deep convolutional autoencoders
compression of ECG signals. Signals were reduced to a
lower dimension using 27 layers of encoders and decoders.

The compression rate was 32.35 which was experimented
on 4,800 ECG signal fragments from 48 unique patients.
Romero et al. (2017) used quantum autoencoders for
compression of data of quantum states. Classical algorithms
were used to train the parameters and the trained model was
then applied to the ground states of the Hubbard model and
Hamiltonians. Huang et al. (2019) proposed a deep-stacked
autoencoder (SAE) for compression and classification of
electric load data. The accuracy of the fine-tuned SAE using
a softmax classifier was 91.63% on one of the datasets.
Nuha et al. (2019) used deep neural networks with extreme
learning machine for seismic data compression. It consists
of a deep asymmetric autoencoder where both linear and
nonlinear activation functions are employed. This model
achieved a normalised mean squared error of 0.00128 with a
CR of 10:1.

Li et al. (2017) used an optimised convolutional
networks for content-weighted image compression. This
produced a better result than JPEG and JPEG 2000 with
sharp edges and rich textures. Cheng et al. (2020) used
convolutional autoencoder for compression of energy
compaction-based images. They adopted sampling
operations, mathematical analysis, and bit allocation method
to achieve a high CR. Wang et al. (2020b) compressed
panorama map by employing a densely connected
convolutional network block-based autoencoder. They
designed a new cubic projection-based block partition
scheme, weighted loss function and greedy block-wise
training method. This method saves 79.69% bit rates
compared with JPEG. Ameen Suhail and Sankar (2020)
adopted compression and encryption combining
autoencoder and chaotic logistic map. Noise attack and
occlusion attack analysis were carried out for testing the
recovering accuracy of original images from cipher images.
This model compresses the size of the input images from
65,536 pixels to 100 pixels.

Yang et al. (2020) performed variable rate deep image
compression with a modulated autoencoder. The proposed
method achieved the same rate-distortion performance as
independent models with significantly fewer parameters.
Kim et al. (2020) proposed lossy image compression using
deep learning via asymmetric autoencoder and pruning.
Their model reduces 28.4% and 39.0% of the weight
parameters and floating point operations (FLOPs),
respectively. Yang et al. (2019) used a feedback recurrent
autoencoder for compression of online sequential data with
temporal dependency. They achieved lower variable bitrate
using an entropy coder. The model achieved the best
rate-distortion of around 1.5 Kbps. Chen et al. (2017) used
convolutional autoencoder neural network for medical
image analysis. Eight layers were used which consists of a
convolutional layer, pooling layer, fully connected layer and
a classifier which produces an accuracy of 0.97%.

Zeng et al. (2017) adopted a coupled deep autoencoder
for representing both low and high-resolution images. The
model produces the highest peak signal to noise ratio
(PSNR) 0.27 dB higher than that of the second-best
approach. Zhang et al. (2016) used deep neural networks for

 Low-loss data compression using deep learning framework with attention-based autoencoder 93

compression and classification of halftone images based on
sparse autoencoder. They proposed an effective patch
extraction method by measuring the mean and variance of
the halftone images. The proposed method achieves an
average correct classification rate (ACCR) of over 99.44%.
Ma et al. (2018) used a deep coupling autoencoder (DCAE)
for fault diagnosis with multi-modal sensory data. They
developed data fusion strategies to effectively handle multi-
modal sensory signals. The DCAE model produces a
classification rate of 94.3%.

All deep learning-based approaches discussed above
including the autoencoders were able to obtain high CR than
traditional algorithms However, improvement in terms of
reconstruction loss is still a challenge. Environmental data
compression is critical in environmental monitoring
applications that require a high CR with minimal
reconstruction loss. The contributions of the paper are as
follows:

1 Determines the relationship between various
parameters in the dataset and validates the suitability of
deep learning algorithms for its compression.

2 Utilises deep learning architecture to obtain improved
CR when compressing environmental data with no
inter-parameter relationships.

3 Proposes an autoencoder stacked with attention layer
that prevents the input data spatial transitions during the
compression and decompression to minimise the
reconstruction loss.

4 Performs extensive experimentation with model
architecture to overcome the performance degradation
issues faced by machine learning models and deep
learning models.

3 Exploratory data analysis
In this study, before feeding the data to the proposed
algorithm, it is subjected to analysis for identifying the main
characteristics and relations by using certain statistical and
visualisation techniques. The inferences obtained are
discussed below.

3.1 Data overview
The dataset under consideration was provided by CDAC, a
self-governing scientific organisation in India, monitored by
the Ministry of Electronics and Information Technology.
The dataset had multiple files of atmospheric data such as
temperature, rain, sea level pressure, recorded across the
globe through 180 latitudes and 360 longitudes. The dataset
accounted for a total size of 211.56 MB. The type of data
that the dataset comprised were numeric values. Data
belonging to adjacent cells were closer to each other in
terms of numerical value. The dataset files are temperature
in Celsius [TC], sea level pressure [SLP], dew point

temperature [TD], wind speed [WS], temperature at
2 metres from ground [T2], dew point temperature at
2 metres from ground [TD2]. The values were represented
as numerical values. The dataset files TC, TD and WS
comprise of 360 columns and 30,408 rows while SLP, TD2
and T2 comprise of 360 columns and 3,801 rows
respectively.

3.2 Data pre-processing
The provided dataset was of ‘.nc’ (NetCDF) format. For
exploratory data analysis and further processing through the
algorithm, the dataset had to be represented in a format
suitable for processing through deep learning libraries.
Hence, the different files were converted from ‘.nc’ into
‘.csv’ files using the Panoply tool. Comma separated values
files are easier to integrate into data analysis tools and
storage media regardless of system configuration.

3.3 Pearson correlation analysis
In deep learning, exploratory data analysis is frequently
required prior to the algorithm’s application. In this study,
correlation of parameters across different files in the
considered dataset is analysed using Pearson coefficient
(Zou et al., 2003). Pearson coefficient which ranges
between –1 and +1 is a measure of relation or correlation
between two variables x and y. A correlation coefficient of 0
indicates no correlation whereas values above and below 0
indicate a positive and negative correlation respectively.

()()

() ()2 2

i i

i i

x x y y
r

x x y y

− −
=

− −




 (1)

where r is the correlation coefficient, xi is the values of
x-variable in a sample, x is the mean of values of
x-variable, yi is the values of y-variable in a sample, y is
the mean of values of y-variable.

Figure 1 depicts the Pearson correlation coefficient
values between the different parameter files TC, SLP, TD,
TD2, T2, and WS, of the considered dataset. From Figure 1
it can be inferred that there is no correlation between the
parameter files TC, SLP, TD, TD2, T2, and WS. Zou et al.
(2003) suggest that Pearson coefficient can be used to
investigate the association of two variables. If two variables
are said to be ‘highly correlated’, the prediction of one
variable using the other is possible by generating a
hypothesis while considering the fact that the two variables
are correlated. Based on this study, from the plot it was
inferred that linear modelling and prediction of one type of
atmospheric data using multiple other atmospheric data
would not yield satisfactory results. If such a correlation
existed among the different variables, linear modelling such
as regression would have been possible. Since the variables
do not exhibit such favourable characteristics, deep learning
algorithms like autoencoders are suitable for complex
modelling of feature extraction.

94 S. Sriram et al.

Figure 1 Pearson correlation for the dataset (see online version
for colours)

4 Problem formulation
The objective of the proposed work is to identify the
nonlinear mapping functions FE and FD that helps to
compress and decompress an input data X respectively as
shown below,

()ˆ ()D EX F F X= (2)

where X̂ is the reconstructed data. The proposed
attention-based autoencoder aims to increase the CR (FE(X)
/ X) preserving very negligible difference (X – X̂) between
the actual data and reconstructed data.

5 Model formulation and configuration
5.1 Autoencoders
Autoencoders (Ameen Suhail and Sankar, 2020; Chen et al.,
2019, 2017; Cheng et al., 2020; Huang et al., 2019; Kim
et al., 2020; Ma et al., 2018; Romero et al., 2017; Yang
et al., 2020, 2019; Yildirim et al., 2018; Zeng et al., 2017;
Zhang et al., 2016) are unsupervised deep learning models
that set the target values to be equal to the inputs, so during
training, the loss would indirectly indicate reconstruction
error. Autoencoders can reduce the dimensions of the inputs
and then represent the input data in a smaller form. To
obtain the original data back, the encoded component, i.e.,
latent representation should be passed through the decoding
end of the autoencoder. The general thumb rule in deep
learning is to use a set of features X in order to predict a
feature Y. The gravity of the rule can be shifted such that the
set of features X can be used to predict the same input. This
property was used in employing autoencoders for
compression.

The input data enclosed by the first bounding box of
Figure 2 represents the input data. After propagation of
input through the various layers of the autoencoder
architecture, a latent or compressed representation of the
input would be obtained at the end of the encoding phase,
represented by the neurons enclosed by the second

bounding box of Figure 2. It can be inferred that the latent
representation is of reduced dimensions than the input data.
On the application of weights of decoder through multiple
layers and activations, the decompressed representation can
be obtained. The reconstructed output would be the
end-result of the decoding phase which is enclosed by the
third bounding box of Figure 2. The reconstructed output
would be of the same dimensions as the input data that was
propagated initially through the encoder.

Figure 2 Components of autoencoders (see online version
for colours)

5.2 Attention mechanism
The proposed attention mechanism forces the eccentric
difference between the latent representation of an input at
the encoder and its corresponding representation in the
decoder to be minimum so that all common factors of
variation in the dataset are well captured. This attention is
added as an additional weightage to the conventional loss
function of a multi-layer autoencoder. The clusters in the
dataset are identified using k-means clustering and the
Euclidean distance between any input in the encoder and
decoder from its cluster head is estimated as Ze and Zd.
When the input is passed from one layer to the next in the
encoder, the base mathematical process that occurs is
mapping the input vector of higher dimensions to lower
dimensions. By introducing an attention mechanism that
focuses on linear alignment of encoded and decoded data in
latent representations, the model can be penalised with an
additional factor whenever reconstruction error is
calculated. Additional calculation is made to the loss
function where the cluster distance of each and every point
in the original input form and the points in latent
representation is added. If points that are supposed to be
closer to each other in the initial form are spaced out from
each other in the latent representation during the model
construction, it may lead to a higher error rate during the
reconstruction phase. Hence this property is added to the
conventional loss calculation metric. Now the model will
able to easily align and try to reconstruct the data during
decompression. Alignment is one of the key performance
indicators since alignment score will give how well the

 Low-loss data compression using deep learning framework with attention-based autoencoder 95

input encoded model can match the decoded value at current
level. This helps to reduce the reconstruction loss during
decompression.

5.3 Proposed architecture
The dataset files TC, SLP, TD, TD2, T2 and WS consisted
of 360 columns, each column corresponding to reading from
different latitudes that were recorded for the same longitude.
The number of columns in each of the data parameters was
found to be a constant – 360, hence columnar reduction
would be the right approach instead of a row-wise
compression approach. Input layer of the model was
designed with 360 neurons in such a way that each value of
a row in the dataset is fed into one of the 360 neurons while
also maintaining that every neuron receives precisely one
value. In each subsequent layer of the encoder, the number
of neurons was reduced when compared to the previous
layer. The general rule used for the encoding phase was
n(i) < n(i – 1), where n(i) corresponds to the number of
neurons in ith layer of encoder part of autoencoder
architecture and n(i – 1) corresponds to the number of
neurons in the layer immediately preceding the ith layer of
the encoder.

This principle forces the autoencoder model to learn the
general trends and latent characteristic of data. On the other
end of the autoencoder, the decoding phase is characterised
by the property where the number of neurons in each
subsequent layer increases. A symmetric architecture is
followed while designing the encoder and decoder. Figure 3
depicts the proposed architecture of autoencoder. The
numerical values under each layer correspond to the number
of neurons used in that particular layer.

Figure 3 Architecture of autoencoder with attention
(see online version for colours)

The mathematical functions of the autoencoder can be split
into 2: the encoder and the decoder (Chen et al., 2019). The
transformation equations of the decoder are the transpose of
the encoder. The quality of the reconstruction is judged
based on the similarity between the input given to the
encoder and the output produced by the decoder. Let us
consider an input vector fed to the input layer as Xi. The loss
function of the proposed model is defined as

1 1

1 1ˆ
n n

i i e d
i i

Loss X X Z Z
n n= =

= − + −  (3)

where Xi is the input data point, ˆ iX is the reconstructed data
point, n is the number of total data points, Ze is the distance
between the data point and cluster centre in latent space of

encoder, Zd is the distance between the data point and
cluster center in latent space of decoder. The difference
between Ze and Zd in the loss function, inhibits the spatial
transition of the data points during compression and
decompression thereby reducing the reconstruction loss.
From equation (3), the functions FE, FD are the parameters
of the model estimated using Adam optimiser techniques
such that,

* *

,
, arg min

E D
E D

F F
F F Loss= (4)

Algorithm for the proposed method is shown in Figure 4,
which explains the stepwise training of the proposed
attention-based autoencoder for data compression.

Figure 4 Training of proposed autoencoder with attention
(see online version for colours)

5.4 Model configuration
The total number of layers in the proposed architecture is
14. There are seven layers in the encoder and seven layers
in the decoder. The number of neurons in the first layer of
the encoder, i.e., input layer is 360 neurons, which matches
the dimension of the input vector. In the second layer, the
number of neurons is reduced to 256 and this is the first part
of the bottleneck. After this the bottleneck is narrowed even
further by using 128, 80, 64, 32 and 16 neurons in each of
the subsequent layers of the encoder. The architecture of the
decoder is a symmetric inverse of the encoder’s
architecture. The number of neurons in the first layer of the
decoder is 16, which matches the dimension of the input
that the decoder receives from the encoder. Since decoder is
concerned with reconstructing the output vector, the number
of neurons in each of the subsequent layers of decoders are
increased from 16 to 32, then 64, 80, 128, 256 and then
finally to 360 neurons in the output layer.

Before feeding the output of a layer to its successor, the
output vector is passed through a LeakyReLU activation
function. LeakyReLU was preferred over ReLU to avoid the

96 S. Sriram et al.

‘dying ReLU’ problem. ReLU is represented as
f(x) = max(0, x) and ReLU considers zero as the value when
the inputs are lesser than zero. During the backpropagation,
zero valued gradients boil down to zero and convergence to
a good local minimum does not occur.

5.5 Platform and packages
The processes of training, testing, comparison of various
deep learning architectures was carried out using a
computer of 16 GB RAM, Intel Core i7-9750H 2.60 GHz
processor with a 64-bit operating system. Keras was used
for the technical implementation of neural networks.
Pandas, Numpy Python packages were used for loading and
manipulating datasets. Seaborn, Matplotlib Python packages
were used for exploratory data analysis and for generating
graphical representations. Panoply tool was used for
converting the ‘.nc’ format data into ‘.csv’ files. The
comparison baseline would be to achieve a higher CR than
that of compression algorithms used in windows operating
systems.

6 Implementation results and discussion
6.1 Performance metrics

6.1.1 Mean absolute error
Mean absolute error (MAE) (Chen et al., 2019) is the
measured average difference between the predicted values
and actual value. MAE was used synonymously to the
reconstruction error depicting loss before compression and
after decompression.

1

1 ˆ
n

i i
i

MAE Y Y
n =

= − (5)

where, 〖 Y〗_i is the input data point, Y ̂_i is the
reconstructed data point, n is number of total data points.

From an interpretation standpoint, MAE is best suited.
Mean Squared Error or Root Mean Squared Error do not
describe the average error and have other implications that
are more difficult to understand.

6.1.2 Compression ratio
Data CR (Ilkhechi et al., 2020) is the relative reduction in
the size of data produced by a data compression algorithm.
Smaller the value, better the compression performance it is
expressed as the division of compressed size by the
uncompressed size.

size of compressed fileCR
size of uncompressed file

= (6)

6.2 Autoencoder training process
Input X in the form of a multi-dimensional vector was
passed into the network via the input layer. It was encoded

into a vector Z of lower dimensions by a mapping function.
Z is considered as the encoded or latent representation of
input X. This is termed as the compressed version. Z was
then decoded into the output vector Y, which was of the
same dimensions as X, aimed to replicate the input X.
Reconstruction error |X – Y| with the added attention was
computed. The goal was to minimise reconstruction error
and this would be the objective of the training process of the
model. The error was back propagated for weight updation.
These were the proceedings that comprised one epoch.
Iterative training throughout multiple epochs was necessary
for the complete learning process of the algorithm. Figure 5
depicts the training process for the proposed autoencoder.

Figure 5 Autoencoder training pipeline

6.3 Train-test fissure and validation using unseen
data

For the purpose of training, the given dataset was split in an
80:10:10 ratio (Yildirim et al., 2018) for training, validation
and testing respectively. For a given atmospheric or oceanic
parameter, readings from multiple days were present in
individual files. Validation was performed by utilising the
data records from the files corresponding to days that were
not used for training. This method of training the model
with unseen data aids in generalisation capabilities and
adaptability of the autoencoder algorithm.

6.4 The compression size – reconstruction error
trade-off

The various trail architectures for the file ‘tc.csv’ which had
temperature values of the sea, is tabulated in Table 1. The
architecture of the decoder was designed to replicate the
encoder in reverse. The original size of the file before
compression was 67.2 megabytes. Few sample values from

 Low-loss data compression using deep learning framework with attention-based autoencoder 97

the dataset are –33.25, –46.15, –62.89, and 4.96. A
reconstruction error of 0.5 would imply that a value, say 20
in the reconstructed file (compressed and again
decompressed) could have been between 19.5 and 20.5 in
the original input file.

Table 1 Performance comparison

Model
number

Number of neurons of
subsequent encoding

layers of different model
architectures

Reconstruction
error – mean
absolute error

Compressed
file size MB
– megabytes

Model 1 360-256-128-64 Loss: 0.5225;
val_loss:
0.5629

19.83 MB

Model 2 360-256-180-128-64 Loss: 0.5461;
val_loss:
0.5843

20.19 MB

Model 3 360-256-128-64-32 Loss: 0.6573;
val_loss:
0.7494

10.56 MB

Model 4 360-256-128-64-32-16 Loss: 0.7846;
val_loss:
0.7957

5.02 MB

Model 5 360-256-128-80-64-32-
16

Loss: 0.6536;
val_loss:
0.6991

5.01 MB

In Table 1, higher compression of a file, by reducing the
number of neurons in the final output layer of the encoding
phase of the autoencoder. An individualistic yet interesting
property was observed wherein, the further the file was
compressed, higher was the loss. Reduction in the number
of neurons is performed by stepwise reduction of neurons in
multiple layers and also in some cases by direct replacement
of a higher number of neurons with lower number of
neurons without introduction of additional layers.

Among the models tested in Table 1, model 5 performed
the best. The improvement of model 5 over other was
achieved via usage of additional data for training,
experimentation with hyperparameters such as learning rate
and batch size. The conventional batch sizes of powers of 2
such as 32, 64 and 256 did not yield the best results. Due to
presence of 181 latitudes (from –90 till +90), batch sizes of
powers of 181 were tried and a batch size of 905 yielded the
best result, which is used in model 5. Also, Table 1 infers
that model 5 – an autoencoder-based compression algorithm
is able to get improved performance than traditional
compression algorithms, which failed to compress the file
size below 11 megabytes.

6.5 Comparison with statistical and deep learning
benchmarks

In order to validate the performance of the proposed
attention-based autoencoder, their evaluation results are
compared with the baseline approaches. Among the
traditional methods, WinRAR and WinZip are the baselines
considered for this study. Whereas, among the deep learning
algorithms, multi-layer Autoencoder is the baseline

considered for comparing the compression performance of
the proposed algorithm. The research outcome criteria are
divided into three aspects: CR, time taken for compression
and decompression, and reconstruction loss. On evaluation,
it is observed that the size of the compressed file obtained
using the multi-layer autoencoder and the proposed
autoencoder with attention are the same. Hence the CR
obtained by both are the same. Furthermore, it is observed
that the proposed autoencoder with attention outperforms
the multi-layer autoencoder in terms of significantly
reduced reconstruction loss.

The raw numerical compression size obtained by the
compression mechanisms such as WinRAR, WinZip,
multi-layer autoencoder and proposed autoencoder with
attention is illustrated in Figure 6. The variables under
‘name of the parameter’ refer to different files in the dataset
considered. They are ‘tc’ – temperature in Celsius,
‘slp’ – sea level pressure, ‘td’ – dew point temperature,
‘ws’ – wind speed, ‘t2’ – temperature at 2 metres above
ground, ‘td2’ – dew point temperature at 2 metres above
ground. Figure 6 shows that the compression performance
of the multi-layer autoencoder and the proposed
autoencoder are the same in terms of CR, with both
achieving an average of 40% better CR than the traditional
windows achievers. Figure 6 also demonstrates that
autoencoder’s pattern capturing property is more
appropriate for the ‘TD’ file, for which it achieves the
highest CR of around 0.18. This establishes the efficient
nature of the autoencoder model over ‘WinRAR’ and
‘WinZip’ compressions in terms of the extent to which a file
can be compressed.

Figure 6 Numerical bar representation of size of compressed file
by traditional and proposed methods
(see online version for colours)

Figure 7 depicts the performance comparison of competitors
during compression process. Comparison of the percentage
value of each algorithm’s compressed size with respect to
the other algorithms in the graph as a whole aid in the
analysis of one-to-one and part-wise performance
comparison. The algorithm that produced the least result in
terms of compression size was taken as the base reference,
i.e., one whole part (100%). In the above case, ‘WinZip’
produced the worst results while the trained autoencoder
model produced the best result. In terms of percentages,
autoencoders were able to compress the files to
approximately 20% more than the compression achieved by
‘WinZip’ in every case. The overall CR for the proposed
autoencoder model, WinRAR and WinZip were 0.103,

98 S. Sriram et al.

0.247 and 0.260 respectively. Improved CR of autoencoders
is due to its ability to capture layers of abstraction in data
during compression.

Figure 7 Comparison of compression performance in terms of
percentage (see online version for colours)

Table 2 Performance comparison

Name of
parameter

Sample
values in the

dataset

Loss
obtained by
multi-layer

autoencoder

Loss obtained by using
proposed multi-layer

autoencoder with
custom attention

TC –33.25, –46.15,
–62.89

0.6536 0.4401

SLP 992.78, 998.76,
1,009.60

1.2494 0.8034

TD –35.53, –32.55,
–31.95

2.7521 1.9923

WS 37.2, 31.3, 32.6 3.1015 2.5012
T2 –44.06, –43.86,

–40.86
1.2861 0.7577

TD2 –44, –42.2,
–41.3

1.6909 0.9234

The improved CR of a multi-layer autoencoder is only
significant when the reconstruction loss is reduced. The
proposed attention in the autoencoder aids in this
endeavour. The reconstruction loss, in terms of MAE
between the original file and the decompressed file is
obtained for all files in the dataset. The reconstruction loss
by both multi-layer autoencoder and the proposed
autoencoder with attention is summarised in the Table 2. It
can be inferred from Table 2 that the proposed autoencoder
model achieves on par CR as that of multi-layer
autoencoder, but overpowers the multi-layer autoencoder in
terms of the reconstruction error. On an average the
proposed autoencoder with attention obtains 34% reduced
reconstruction loss than the multi-layer autoencoder. This
illustrates the significance of the proposed attention layer in
autoencoder. The improved CR of the proposed autoencoder
model with attention than WinRAR and WinZip and its
enhanced performance towards reducing the reconstruction
loss than the multi-layer encoder demonstrates its efficiency
towards environmental data compression.

After validating the proposed autoencoder’s
performance in terms of CR and reconstruction loss, it is
finally evaluated in terms of the time required for the
processes of original file compression and latent-state file

decompression. The compression and decompression time
of the proposed autoencoder and baseline for various files in
the dataset in the dataset is noted and illustrated in Figures 8
and 9. Figure 8 shows the time taken for compression and
Figure 9 shows the time taken for decompression of the
different parameter files. All tests were carried out under
standard conditions using a computer of 16 GB RAM, Intel
Core i7-9750H 2.60 GHz processor with a 64-bit operating
system.

Figure 8 Comparison of time taken for compression by
traditional and proposed methods (see online version
for colours)

Figure 9 Comparison of time taken for decompression by
traditional and proposed methods (see online version
for colours)

Figures 8 and 9 infers that the proposed autoencoder model
outperforms WinRAR and WinZip compression with
respect to the time taken for compression and
decompression. This is due to the fact that the general
process in autoencoder consists of applying the parametric
weights from the trained model file, whereas traditional
compression algorithms include more complex
computations.

According to the results of the above-mentioned
evaluations, the proposed autoencoder with attention
exhibits efficient compression performance with improved
CR, reduced time for compression and decompression, and
minimal reconstruction loss. This makes it more appropriate
for real-world applications like automatic weather stations,
IoT powered weather forecasting, and pro-active natural
disaster response systems. These applications necessitate
that data collected from various sources, such as weather
sensors and atmospheric sensors, be compressed as much as
possible. The proposed autoencoder with attention, which
outperforms traditional archivers, would be critical in such
use-cases demanding less transmission time and network
bandwidth.

 Low-loss data compression using deep learning framework with attention-based autoencoder 99

7 Conclusions and future work
Data compression is required for data storage in smaller
sizes, while further reducing bandwidth consumption during
transmission. Deep learning can achieve effective data
compression by iteratively propagating reconstruction error
between original and reconstructed data through the
network. In terms of compression limit, autoencoders
outperform traditional algorithms. However, it results in
significant data loss. To overcome the challenge of reducing
reconstruction loss, the proposed work employs an attention
mechanism in the multi-layer autoencoder. The attention
layer reduces reconstruction loss by preventing data points
from moving away from a spatial reference during
compression and decompression. This study evaluated the
compression performance of the proposed attention-based
autoencoder with the traditional windows archiver for
compressing the atmospheric and oceanic data obtained
from the CDAC. The overall CR of autoencoder model,
WinRAR and WinZip were 0.103, 0.247 and 0.260
respectively and from this it can be inferred that the
autoencoder model outperforms WinRAR and WinZip.
Also, the reduced reconstruction loss proves the proficiency
of the proposed model in reducing the variance of the input
points in the latent or compressed representation. Therefore,
the proposed attention-based autoencoder is better suited
than the existing codecs. However, the proposed
methodology’s performance against datasets devoid of
statistical/numerical patterns and datasets with greater
scarcity is dubious. In the future, variational deep learning
models that could well suit such challenges will be
investigated for data compression.

References
Abirami, S. and Chitra, P. (2020) ‘Chapter fourteen – energy-

efficient edge based real-time healthcare support system’,
Advances in Computers, Elsevier, Vol. 117. No. 1,
pp.339–368 [online] https://doi.org/https://doi.org/10.1016
/bs.adcom.2019.09.007.

Abirami, S. and Chitra, P. (2021) ‘Regional air quality forecasting
using spatiotemporal deep learning’, Journal of Cleaner
Production, Vol. 283, p.125341 [online] https://doi.org/10.
1016/j.jclepro.2020.125341.

Ahmeda, S.M. and Abo-Zahhad, M. (2001) ‘A new hybrid
algorithm for ECG signal compression based on the wavelet
transformation of the linearly predicted error’, Medical
Engineering & Physics, Vol. 23, pp.117–126 [online]
https://doi.org/10.1016/S1350-4533(01)00026-1.

Al-Nashash, H.A.M. (1995) ‘A dynamic fourier series for the
compression of ECG using FFT and adaptive coefficient
estimation’, Medical Engineering & Physics, Vol. 17,
pp.197–203 [online] https://doi.org/10.1016/1350-4533(95)
95710-R.

Ameen Suhail, K.M. and Sankar, S. (2020) ‘Image compression
and encryption combining autoencoder and chaotic logistic
map’, Iranian Journal of Science and Technology,
Transactions A: Science, Vol. 44, pp.1091–1100 [online]
https://doi.org/10.1007/s40995-020-00905-4.

Cao, Z., Zhou, Y., Yang, A. and Peng, S. (2021) ‘Deep transfer
learning mechanism for fine-grained cross-domain sentiment
classification’, Connection Science, Vol. 33, pp.911–928
[online] https://doi.org/10.1080/09540091.2021.1912711.

Chang, F., Ge, L., Li, S., Wu, K. and Wang, Y. (2021)
‘Self-adaptive spatial-temporal network based on
heterogeneous data for air quality prediction’, Connection
Science, Vol. 33, pp.427–446 [online] https://doi.org/10.1080/
09540091.2020.1841095.

Chen, H., Wang, S., Wu, L. and Wang, J. (2019) ‘A novel smart
meter data compression method via stacked convolutional
sparse auto-encoder’, International Journal of Electrical
Power & Energy Systems, Vol. 118 [online] https://doi.org/
10.1016/j.ijepes.2019.105761.

Chen, M., Shi, X., Zhang, Y., Wu, D. and Guizani, M. (2017)
‘Deep features learning for medical image analysis with
convolutional autoencoder neural network’, IEEE
Transactions on Big Data, Vol. 1 [online] https://doi.org/
10.1109/TBDATA.2017.2717439.

Cheng, Z., Sun, H., Takeuchi, M. and Katto, J. (2020) ‘Energy
compaction-based image compression using convolutional
autoencoder’, IEEE Transactions on Multimedia, Vol. 22,
pp.860–873 [online] https://doi.org/10.1109/TMM.2019.
2938345.

Cherezov, A., Jang, J. and Lee, D. (2020) ‘A PCA compression
method for reactor core transient multiphysics simulation’,
Progress in Nuclear Energy, Vol. 128, p.103441 [online]
https://doi.org/10.1016/j.pnucene.2020.103441.

Chowdhury, M.R., Tripathi, S. and De, S. (2021) ‘Adaptive
multivariate data compression in smart metering internet of
things’, IEEE Transactions on Industrial Informatics,
Vol. 17, pp.1287–1297 [online] https://doi.org/10.1109/TII.
2020.2981382.

Das, P. and Chand, S. (2021) ‘Extracting road maps from
high-resolution satellite imagery using refined DSE-LinkNet’,
Connection Science, Vol. 33, pp.278–295 [online] https://doi.
org/10.1080/09540091.2020.1807466.

Huang, X., Hu, T., Ye, C., Xu, G., Wang, X. and Chen, L. (2019)
‘Electric load data compression and classification based on
deep stacked auto-encoders’, Energies [online] https://doi.
org/10.3390/en12040653.

Huffman, D.A. (2006) ‘A method for the construction of
minimum-redundancy codes’, Resonance, Vol. 11, pp.91–99
[online] https://doi.org/10.1007/BF02837279.

Ilkhechi, A., Crotty, A., Galakatos, A., Mao, Y., Fan, G., Shi, X.
and Cetintemel, U. (2020) ‘DeepSqueeze: deep semantic
compression for tabular data’, in Proceedings of the 2020
ACM SIGMOD International Conference on Management of
Data, SIGMOD‘20, Association for Computing Machinery,
New York, NY, USA, pp.1733–1746 [online] https://doi.org/
10.1145/3318464.3389734.

Jiang, D., Qu, H., Zhao, J., Zhao, J. and Hsieh, M Y. (2021)
‘Aggregating multi-scale contextual features from multiple
stages for semantic image segmentation’, Connection Science,
Vol. 33, pp.605–622 [online] https://doi.org/10.1080/
09540091.2020.1862059.

Kim, J., Choi, J., Chang, J. and Lee, J. (2020) ‘Efficient deep
learning-based lossy image compression via asymmetric
autoencoder and pruning’, in ICASSP 2020 – 2020 IEEE
International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp.2063–2067 [online] https://doi.org/
10.1109/ICASSP40776.2020.9053102.

100 S. Sriram et al.

Li, M., Zuo, W., Gu, S., Zhao, D. and Zhang, D. (2017) Learning
Convolutional Networks for Content-Weighted Image
Compression, CoRR abs/1703.1.

Ma, M., Sun, C. and Chen, X. (2018) ‘Deep coupling autoencoder
for fault diagnosis with multimodal sensory data’, IEEE
Transactions on Industrial Informatics, Vol. 14,
pp.1137–1145 [online] https://doi.org/10.1109/TII.2018.
2793246.

Nuha, H., Balghonaim, A., Liu, B., Mohandes, M., Deriche, M.
and Fekri, F. (2019) ‘Deep neural networks with extreme
learning machine for seismic data compression’, Arabian
Journal for Science and Engineering, Vol. 45 [online]
https://doi.org/10.1007/s13369-019-03942-3.

Park, J., Park, H. and Choi, Y. (2018) ‘Data compression and
prediction using machine learning for industrial IoT’, in 2018
International Conference on Information Networking
(ICOIN), pp.818–820 [online] https://doi.org/10.1109/ICOIN.
2018.8343232.

Romero, J., Olson, J.P. and Aspuru-Guzik, A. (2017) ‘Quantum
autoencoders for efficient compression of quantum data’,
Quantum Science and Technology, Vol. 2, p.45001 [online]
https://doi.org/10.1088/2058-9565/aa8072.

Senigagliesi, L., Baldi, M. and Gambi, E. (2020) ‘Physical layer
authentication techniques based on machine learning with
data compression’, in 2020 IEEE Conference on
Communications and Network Security (CNS), IEEE, pp.1–6
[online] https://doi.org/10.1109/CNS48642.2020.9162280.

Sun, X., Wang, Q., Zhang, X., Xu, C. and Zhang, W. (2021) ‘Deep
blur detection network with boundary-aware multi-scale
features’, Connection Science, pp.1–19 [online] https://doi.
org/10.1080/09540091.2021.1933906.

Varghese, E.B. and Thampi, S.M. (2021) ‘Towards the cognitive
and psychological perspectives of crowd behaviour: a
vision-based analysis’, Connection Science, Vol. 33, No. 2,
pp.380–405 [online] https://doi.org/10.1080/09540091.2020
.1772723.

Wang, K., Zhang, M., Zhang, S. and Xu, Z. (2020a) ‘A PQ data
compression algorithm based on wavelet domain principal
component analysis’, in 2020 Asia Energy and Electrical
Engineering Symposium (AEEES), pp.347–350 [online]
https://doi.org/10.1109/AEEES48850.2020.9121347.

Wang, S., Wang, H., Xiang, S. and Yu, L. (2020b) ‘Densely
connected convolutional network block based autoencoder for
panorama map compression’, Signal Processing: Image
Communication, Vol. 80, p.115678 [online] https://doi.org/
10.1016/j.image.2019.115678.

Wang, W., Feng, C., Zhang, B. and Gao, H. (2019)
‘Environmental monitoring based on fog computing paradigm
and internet of things’, IEEE Access, Vol. 7,
pp.127154–127165 [online] https://doi.org/10.1109/ACCESS.
2019.2939017.

Yang, F., Herranz, L., Weijer, J.V.d., Guitián, J.A.I., López, A.M.
and Mozerov, M.G. (2020) ‘Variable rate deep image
compression with modulated autoencoder’, IEEE Signal
Processing Letters, Vol. 27, pp.331–335 [online] https://doi.
org/10.1109/LSP.2020.2970539.

Yang, Y., Sautière, G., Ryu, J.J. and Cohen, T.S. (2019) Feedback
Recurrent AutoEncoder, CoRR abs/1911.0.

Yildirim, O., Tan, R.S. and Acharya, U.R. (2018) ‘An efficient
compression of ECG signals using deep convolutional
autoencoders’, Cognitive Systems Research, Vol. 52,
pp.198–211 [online] https://doi.org/10.1016/j.cogsys.2018.07.
004.

Ying, L., Nan, Z.Q., Ping, W.F., Kiang, C.T., Pang, L.K.,
Chang, Z.H., Lu, C., Jun, L.G. and Nam, L. (2021) ‘Adaptive
weights learning in CNN feature fusion for crime scene
investigation image classification’, Connection Science,
Vol. 33, pp.719–734 [online] https://doi.org/10.1080/
09540091.2021.1875987.

Zeng, K., Yu, J., Wang, R., Li, C. and Tao, D. (2017) ‘Coupled
deep autoencoder for single image super-resolution’, IEEE
Transactions on Cybernetics, Vol. 47, pp.27–37 [online]
https://doi.org/10.1109/TCYB.2015.2501373.

Zhang, Y., Zhang, E. and Chen, W. (2016) ‘Deep neural network
for halftone image classification based on sparse
auto-encoder’, Engineering Applications of Artificial
Intelligence, Vol. 50, pp.245–255 [online] https://doi.org/
10.1016/j.engappai.2016.01.032.

Zhu, X., Zuo, J. and Ren, H. (2020) ‘A modified deep neural
network enables identification of foliage under complex
background’, Connection Science, Vol. 32, pp.1–15 [online]
https://doi.org/10.1080/09540091.2019.1609420.

Ziv, J. and Lempel, A. (2006) ‘A universal algorithm for
sequential data compression’, IEEE Trans. Inf. Theor.,
Vol. 23, pp.337–343 [online] https://doi.org/10.1109/TIT.
1977.1055714.

Zou, K.H., Tuncali, K. and Silverman, S.G. (2003) ‘Correlation
and simple linear regression’, Radiology, Vol. 227,
pp.617–628 [online] https://doi.org/10.1148/radiol.
2273011499.

