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Abstract: With rapid development of media, data compression plays a vital role in efficient data 
storage and transmission. Deep learning can help the research objective of compression by 
exploring its technical avenues to overcome the challenges faced by the traditional Windows 
archivers. The proposed work initially investigates multi-layer autoencoder models, which 
achieve higher compression rates than traditional Windows archivers but suffer from 
reconstruction loss. To address this, an attention layer is proposed in the autoencoder to reduce 
the difference between the encoder and decoder latent representation of an input along with the 
difference between the original input and reconstructed output. The proposed attention-based 
autoencoder is extensively evaluated on the atmospheric and oceanic data obtained from the 
Centre for Development of Advanced Computing (CDAC). The results show that the proposed 
model performs better with around 89.7% improved compression rate than traditional Windows 
archiver and 25% reduced reconstruction loss than multi-layer autoencoder. 
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1 Introduction 
Compression has the power to reduce the data size to even 
half the original size or a significantly higher percentage of 
its original size (Yildirim et al., 2018). While information is 
transferred it can be transmitted in a compressed format. 
Compressed files occupy less storage space when compared 
to uncompressed files, meaning a significant decrease in 
expenses for storage. A compressed file also requires less 
time for transmission and in the process, it also results in the 
consumption of less network bandwidth. Newer forms of 
media, changing hardware create a need for new 
compression algorithms which are more flexible than the 
existing ones. Data compression is extensively used in the 
field of medicine (Yildirim et al., 2018), electrical 
engineering (Ahmeda and Abo-Zahhad, 2001; Chen et al., 
2019), nuclear energy (Cherezov et al., 2020), internet of 
things (Park et al., 2018), etc. The above-mentioned fields 
demand that the data used for storage and transmission 
should be in a compressed format so that the application 
pipeline difficulties are reduced. 

Compression ratio (CR) is the ratio of the size of 
compressed data to its size in the uncompressed form. 
Statistical compression algorithms, have very less CR as 
they do not differentiate between the different kinds of data 
used for compression (Ziv and Lempel, 2006). The 
underlying meaning behind the data is not considered by 
traditional compression algorithms. All types of data are 
dealt as same, regardless of the nature and format of the 
data. Data like images (Ameen Suhail and Sankar, 2020; 
Chen et al., 2017; Cheng et al., 2020; Li et al., 2017; Yang 
et al., 2020; Zeng et al., 2017; Zhang et al., 2016), sensor 
data (Nuha et al., 2019), graphical readings (Wang et al., 
2020b), instrumental data (Huang et al., 2019), etc. can be 
compressed more efficiently if the characteristics of data are 
taken into account. A key challenge in compression is 
deciding which of the benefits of the particular algorithm to 
use. Either lossless algorithms, which can compress data 
without loss but are limited by the amount of compression 
that can be done, or lossy compression algorithms, which 
have a higher CR but suffer data loss (Chen et al., 2019). 
Real-time streaming applications such as environmental 
monitoring, flood management and so on, requires 
compression algorithms to have better CR with minimal 
loss (Wang et al., 2019). 

Deep learning algorithms are known to capture trends 
and features in data that cannot be captured by the human 
brain (Yildirim et al., 2018). Deep learning algorithms find 
a wide range of applications (Abirami and Chitra, 2021, 
2020; Cao et al., 2021; Chang et al., 2021; Das and Chand, 
2021; Jiang et al., 2021; Sun et al., 2021; Varghese and 
Thampi, 2021; Ying et al., 2021; Zhu et al., 2020). When 
deep-learning and machine-learning models are employed 
for the purpose of analysing the trends in the data to 
compress it, the CR that can be attained post-compression is 
impressive and even better than the CR achieved by 
traditional (Ilkhechi et al., 2020) and transformation-based 
compression algorithms (Ahmeda and Abo-Zahhad, 2001; 
Al-Nashash, 1995; Wang et al., 2020a). Autoencoders, a 

well-known deep learning algorithm, are efficient feature 
extractors and can be employed to identify key patterns in 
datasets by iterative reconstruction of input data  
(Ameen Suhail and Sankar, 2020; Chen et al., 2019, 2017; 
Cheng et al., 2020; Huang et al., 2019; Kim et al., 2020; Ma 
et al., 2018; Romero et al., 2017; Yang et al., 2020, 2019; 
Yildirim et al., 2018; Zeng et al., 2017; Zhang et al., 2016). 

The proposed work attempts to compress data by 
considering the characteristics of data using deep learning 
algorithms. But the trade-off here is the loss of data.  
In applications where the loss of data is permitted,  
deep-learning algorithms outperform traditional 
compression algorithms (Chen et al., 2019; Ilkhechi et al., 
2020). However, the demand for reducing the reconstruction 
loss is critical while dealing with sensitive medical images 
or environmental data on disasters. The dataset for this 
study is obtained from the Centre for Development of 
Advanced Computing (CDAC), a self-governing scientific 
organisation in India, monitored by the Ministry of 
Electronics and Information Technology. The dataset 
consisted of several files representing atmospheric and data 
in the ‘.nc’ (NetCDF) format. Compression techniques such 
as ‘WinZip’ and ‘WinRAR’ produced a CR of about 0.24 
for the considered data (discussed in Section 5). The lower 
CR obtained by the traditional approaches is not optimal for 
streaming applications. The proposed work develops an 
attention-based autoencoder to overcome this challenge 
faced by the traditional compression algorithms, by 
obtaining high CR with minimal loss for the dataset 
considered. 

The rest of the paper is organised as follows. Section 2 
provides the background and literature study for the 
compression techniques using autoencoders for varied 
purposes in different configurations of encoder-decoder 
architecture. Section 3 proposes various data analysis 
methods for the dataset under consideration. Section 4 
formulates the research problem mathematically. Section 5 
introduces the proposed autoencoder framework for data 
compression. Section 6 introduces case study to compare 
the performance of proposed models with existing baseline 
benchmarks algorithm with respect to rate of compression 
and decompression power and time taken for compression 
and decompression. Section 7 concludes the paper. 

2 Related works 
Many research works have been carried over in the field of 
compression of data using statistical and machine learning 
algorithms. In the case of compression, the algorithm can 
either be lossy or lossless. Lossless algorithms retain the 
original data without any data loss, but the CR achieved 
would be inferior to that of lossless algorithms (Chen et al., 
2019). Statistical lossless algorithms like Huffman (2006) 
encoding are known to compress the data without any loss. 
Huffman (2006) propose an optimum method of coding an 
ensemble of messages consisting of a finite number of 
members. A minimum-redundancy code is one that is 
constructed in such a way that the average number of 
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coding digits per message is minimised. Another popular 
algorithm LZ77 suggested by Ziv and Lempel (2006) uses 
lossless methods like window sliding and a look ahead 
buffer for lossless compression of data. 

Lossy methodologies like transformation-based 
algorithms (Ahmeda and Abo-Zahhad, 2001; Al-Nashash, 
1995; Wang et al., 2020a) encode the given data into a 
newer domain of reduced dimensions. The inverse operation 
of the former is carried out in order to retrieve the original 
data back. Al-Nashash et al. (1995) suggest an approach 
where ECG signals are modelled as a dynamic Fourier 
series. Fourier coefficients are continuously estimated using 
either a fast Fourier transform algorithm or the adaptive 
least mean square algorithm. Ahmeda and Abo-Zahhad 
(2001) proposed a hybrid transformation algorithm using 
wavelet transformation and achieved a CR of 20 to 1 is 
achieved with a percentage root-mean-square difference 
(PRD) less than 4%. Wang et al. (2020a) suggest a PCA 
approach to compression which consists of effectively 
transforming high-dimensional feature space to  
low-dimensional feature space. The results of this study 
convey the fact that PCA-based approaches perform better 
than transformation-based algorithms like wavelet 
decomposition in terms of better reconstruction results and 
better compression performance. 

Later on, with the rise in computational power, machine 
learning algorithms became popular and were studied 
extensively for the purpose of data compression. Park et al. 
(2018) suggested an approach to use regression for the 
representation of vectors and the divide-and-conquer 
method for cropping the chunks of data at each range and 
merging them using Euclidean distance. Cosine similarity 
was to determine the accuracy of the model performance. 
Linda Senigagliesi et al. (2020) proposed data dimension 
reduction algorithms such as principal component analysis 
(PCA) and t-distributed stochastic neighbour embedding  
(t-SNE) for reducing the dimensions of features which helps 
in proper fast management of samples on IoT devices. PCA 
has provided the best trade-off on comparing with the 
complexity and accuracy for which the computational 
burden is very much reduced. Cherezov et al. (2020) used 
PCA compression on multi-physics reactor data for 
reducing the storage and transfer difficulties. They 
decomposed data into strong and weak components where 
strong parts were approximated using PCA and a sparse 
matrix was used to store weak parts in the memory. 
Chowdhury et al. (2021) used multivariate normal – 
autoregressive integrated moving average for compression 
and decompression. Cross-correlation of variables was 
studied and analysed for reducing the dimension of the data. 
This resulted in reducing the network resource requirements 
and bandwidth utilisation. 

Deep learning approaches were suggested for lossy 
compression of data wherein a particular amount of loss was 
accepted as part of a trade-off between data loss and CR. 
Yildirim et al. (2018) used deep convolutional autoencoders 
compression of ECG signals. Signals were reduced to a 
lower dimension using 27 layers of encoders and decoders. 

The compression rate was 32.35 which was experimented 
on 4,800 ECG signal fragments from 48 unique patients. 
Romero et al. (2017) used quantum autoencoders for 
compression of data of quantum states. Classical algorithms 
were used to train the parameters and the trained model was 
then applied to the ground states of the Hubbard model and 
Hamiltonians. Huang et al. (2019) proposed a deep-stacked 
autoencoder (SAE) for compression and classification of 
electric load data. The accuracy of the fine-tuned SAE using 
a softmax classifier was 91.63% on one of the datasets. 
Nuha et al. (2019) used deep neural networks with extreme 
learning machine for seismic data compression. It consists 
of a deep asymmetric autoencoder where both linear and 
nonlinear activation functions are employed. This model 
achieved a normalised mean squared error of 0.00128 with a 
CR of 10:1. 

Li et al. (2017) used an optimised convolutional 
networks for content-weighted image compression. This 
produced a better result than JPEG and JPEG 2000 with 
sharp edges and rich textures. Cheng et al. (2020) used 
convolutional autoencoder for compression of energy 
compaction-based images. They adopted sampling 
operations, mathematical analysis, and bit allocation method 
to achieve a high CR. Wang et al. (2020b) compressed 
panorama map by employing a densely connected 
convolutional network block-based autoencoder. They 
designed a new cubic projection-based block partition 
scheme, weighted loss function and greedy block-wise 
training method. This method saves 79.69% bit rates 
compared with JPEG. Ameen Suhail and Sankar (2020) 
adopted compression and encryption combining 
autoencoder and chaotic logistic map. Noise attack and 
occlusion attack analysis were carried out for testing the 
recovering accuracy of original images from cipher images. 
This model compresses the size of the input images from 
65,536 pixels to 100 pixels. 

Yang et al. (2020) performed variable rate deep image 
compression with a modulated autoencoder. The proposed 
method achieved the same rate-distortion performance as 
independent models with significantly fewer parameters. 
Kim et al. (2020) proposed lossy image compression using 
deep learning via asymmetric autoencoder and pruning. 
Their model reduces 28.4% and 39.0% of the weight 
parameters and floating point operations (FLOPs), 
respectively. Yang et al. (2019) used a feedback recurrent 
autoencoder for compression of online sequential data with 
temporal dependency. They achieved lower variable bitrate 
using an entropy coder. The model achieved the best  
rate-distortion of around 1.5 Kbps. Chen et al. (2017) used 
convolutional autoencoder neural network for medical 
image analysis. Eight layers were used which consists of a 
convolutional layer, pooling layer, fully connected layer and 
a classifier which produces an accuracy of 0.97%. 

Zeng et al. (2017) adopted a coupled deep autoencoder 
for representing both low and high-resolution images. The 
model produces the highest peak signal to noise ratio 
(PSNR) 0.27 dB higher than that of the second-best 
approach. Zhang et al. (2016) used deep neural networks for 
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compression and classification of halftone images based on 
sparse autoencoder. They proposed an effective patch 
extraction method by measuring the mean and variance of 
the halftone images. The proposed method achieves an 
average correct classification rate (ACCR) of over 99.44%. 
Ma et al. (2018) used a deep coupling autoencoder (DCAE) 
for fault diagnosis with multi-modal sensory data. They 
developed data fusion strategies to effectively handle multi-
modal sensory signals. The DCAE model produces a 
classification rate of 94.3%. 

All deep learning-based approaches discussed above 
including the autoencoders were able to obtain high CR than 
traditional algorithms However, improvement in terms of 
reconstruction loss is still a challenge. Environmental data 
compression is critical in environmental monitoring 
applications that require a high CR with minimal 
reconstruction loss. The contributions of the paper are as 
follows: 

1 Determines the relationship between various 
parameters in the dataset and validates the suitability of 
deep learning algorithms for its compression. 

2 Utilises deep learning architecture to obtain improved 
CR when compressing environmental data with no 
inter-parameter relationships. 

3 Proposes an autoencoder stacked with attention layer 
that prevents the input data spatial transitions during the 
compression and decompression to minimise the 
reconstruction loss. 

4 Performs extensive experimentation with model 
architecture to overcome the performance degradation 
issues faced by machine learning models and deep 
learning models. 

3 Exploratory data analysis 
In this study, before feeding the data to the proposed 
algorithm, it is subjected to analysis for identifying the main 
characteristics and relations by using certain statistical and 
visualisation techniques. The inferences obtained are 
discussed below. 

3.1 Data overview 
The dataset under consideration was provided by CDAC, a 
self-governing scientific organisation in India, monitored by 
the Ministry of Electronics and Information Technology. 
The dataset had multiple files of atmospheric data such as 
temperature, rain, sea level pressure, recorded across the 
globe through 180 latitudes and 360 longitudes. The dataset 
accounted for a total size of 211.56 MB. The type of data 
that the dataset comprised were numeric values. Data 
belonging to adjacent cells were closer to each other in 
terms of numerical value. The dataset files are temperature 
in Celsius [TC], sea level pressure [SLP], dew point  
 
 

temperature [TD], wind speed [WS], temperature at  
2 metres from ground [T2], dew point temperature at  
2 metres from ground [TD2]. The values were represented  
as numerical values. The dataset files TC, TD and WS 
comprise of 360 columns and 30,408 rows while SLP, TD2 
and T2 comprise of 360 columns and 3,801 rows 
respectively. 

3.2 Data pre-processing 
The provided dataset was of ‘.nc’ (NetCDF) format. For 
exploratory data analysis and further processing through the 
algorithm, the dataset had to be represented in a format 
suitable for processing through deep learning libraries. 
Hence, the different files were converted from ‘.nc’ into 
‘.csv’ files using the Panoply tool. Comma separated values 
files are easier to integrate into data analysis tools and 
storage media regardless of system configuration. 

3.3 Pearson correlation analysis 
In deep learning, exploratory data analysis is frequently 
required prior to the algorithm’s application. In this study, 
correlation of parameters across different files in the 
considered dataset is analysed using Pearson coefficient 
(Zou et al., 2003). Pearson coefficient which ranges 
between –1 and +1 is a measure of relation or correlation 
between two variables x and y. A correlation coefficient of 0 
indicates no correlation whereas values above and below 0 
indicate a positive and negative correlation respectively. 

( )( )

( ) ( )2 2

i i

i i

x x y y
r

x x y y

− −
=

− −




 (1) 

where r is the correlation coefficient, xi is the values of  
x-variable in a sample, x  is the mean of values of  
x-variable, yi is the values of y-variable in a sample, y  is 
the mean of values of y-variable. 

Figure 1 depicts the Pearson correlation coefficient 
values between the different parameter files TC, SLP, TD, 
TD2, T2, and WS, of the considered dataset. From Figure 1 
it can be inferred that there is no correlation between the 
parameter files TC, SLP, TD, TD2, T2, and WS. Zou et al. 
(2003) suggest that Pearson coefficient can be used to 
investigate the association of two variables. If two variables 
are said to be ‘highly correlated’, the prediction of one 
variable using the other is possible by generating a 
hypothesis while considering the fact that the two variables 
are correlated. Based on this study, from the plot it was 
inferred that linear modelling and prediction of one type of 
atmospheric data using multiple other atmospheric data 
would not yield satisfactory results. If such a correlation 
existed among the different variables, linear modelling such 
as regression would have been possible. Since the variables 
do not exhibit such favourable characteristics, deep learning 
algorithms like autoencoders are suitable for complex 
modelling of feature extraction. 
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Figure 1 Pearson correlation for the dataset (see online version 
for colours) 

 

4 Problem formulation 
The objective of the proposed work is to identify the 
nonlinear mapping functions FE and FD that helps to 
compress and decompress an input data X respectively as 
shown below, 

( )ˆ ( )D EX F F X=  (2) 

where X̂  is the reconstructed data. The proposed  
attention-based autoencoder aims to increase the CR (FE(X) 
/ X) preserving very negligible difference (X – X̂ ) between 
the actual data and reconstructed data. 

5 Model formulation and configuration 
5.1 Autoencoders 
Autoencoders (Ameen Suhail and Sankar, 2020; Chen et al., 
2019, 2017; Cheng et al., 2020; Huang et al., 2019; Kim  
et al., 2020; Ma et al., 2018; Romero et al., 2017; Yang  
et al., 2020, 2019; Yildirim et al., 2018; Zeng et al., 2017; 
Zhang et al., 2016) are unsupervised deep learning models 
that set the target values to be equal to the inputs, so during 
training, the loss would indirectly indicate reconstruction 
error. Autoencoders can reduce the dimensions of the inputs 
and then represent the input data in a smaller form. To 
obtain the original data back, the encoded component, i.e., 
latent representation should be passed through the decoding 
end of the autoencoder. The general thumb rule in deep 
learning is to use a set of features X in order to predict a 
feature Y. The gravity of the rule can be shifted such that the 
set of features X can be used to predict the same input. This 
property was used in employing autoencoders for 
compression. 

The input data enclosed by the first bounding box of 
Figure 2 represents the input data. After propagation of 
input through the various layers of the autoencoder 
architecture, a latent or compressed representation of the 
input would be obtained at the end of the encoding phase, 
represented by the neurons enclosed by the second 

bounding box of Figure 2. It can be inferred that the latent 
representation is of reduced dimensions than the input data. 
On the application of weights of decoder through multiple 
layers and activations, the decompressed representation can 
be obtained. The reconstructed output would be the  
end-result of the decoding phase which is enclosed by the 
third bounding box of Figure 2. The reconstructed output 
would be of the same dimensions as the input data that was 
propagated initially through the encoder. 

Figure 2 Components of autoencoders (see online version  
for colours) 

 

5.2 Attention mechanism 
The proposed attention mechanism forces the eccentric 
difference between the latent representation of an input at 
the encoder and its corresponding representation in the 
decoder to be minimum so that all common factors of 
variation in the dataset are well captured. This attention is 
added as an additional weightage to the conventional loss 
function of a multi-layer autoencoder. The clusters in the 
dataset are identified using k-means clustering and the 
Euclidean distance between any input in the encoder and 
decoder from its cluster head is estimated as Ze and Zd. 
When the input is passed from one layer to the next in the 
encoder, the base mathematical process that occurs is 
mapping the input vector of higher dimensions to lower 
dimensions. By introducing an attention mechanism that 
focuses on linear alignment of encoded and decoded data in 
latent representations, the model can be penalised with an 
additional factor whenever reconstruction error is 
calculated. Additional calculation is made to the loss 
function where the cluster distance of each and every point 
in the original input form and the points in latent 
representation is added. If points that are supposed to be 
closer to each other in the initial form are spaced out from 
each other in the latent representation during the model 
construction, it may lead to a higher error rate during the 
reconstruction phase. Hence this property is added to the 
conventional loss calculation metric. Now the model will 
able to easily align and try to reconstruct the data during 
decompression. Alignment is one of the key performance 
indicators since alignment score will give how well the 
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input encoded model can match the decoded value at current 
level. This helps to reduce the reconstruction loss during 
decompression. 

5.3 Proposed architecture 
The dataset files TC, SLP, TD, TD2, T2 and WS consisted 
of 360 columns, each column corresponding to reading from 
different latitudes that were recorded for the same longitude. 
The number of columns in each of the data parameters was 
found to be a constant – 360, hence columnar reduction 
would be the right approach instead of a row-wise 
compression approach. Input layer of the model was 
designed with 360 neurons in such a way that each value of 
a row in the dataset is fed into one of the 360 neurons while 
also maintaining that every neuron receives precisely one 
value. In each subsequent layer of the encoder, the number 
of neurons was reduced when compared to the previous 
layer. The general rule used for the encoding phase was  
n(i) < n(i – 1), where n(i) corresponds to the number of 
neurons in ith layer of encoder part of autoencoder 
architecture and n(i – 1) corresponds to the number of 
neurons in the layer immediately preceding the ith layer of 
the encoder. 

This principle forces the autoencoder model to learn the 
general trends and latent characteristic of data. On the other 
end of the autoencoder, the decoding phase is characterised 
by the property where the number of neurons in each 
subsequent layer increases. A symmetric architecture is 
followed while designing the encoder and decoder. Figure 3 
depicts the proposed architecture of autoencoder. The 
numerical values under each layer correspond to the number 
of neurons used in that particular layer. 

Figure 3 Architecture of autoencoder with attention  
(see online version for colours) 

  

The mathematical functions of the autoencoder can be split 
into 2: the encoder and the decoder (Chen et al., 2019). The 
transformation equations of the decoder are the transpose of 
the encoder. The quality of the reconstruction is judged 
based on the similarity between the input given to the 
encoder and the output produced by the decoder. Let us 
consider an input vector fed to the input layer as Xi. The loss 
function of the proposed model is defined as 

1 1

1 1ˆ
n n

i i e d
i i

Loss X X Z Z
n n= =

= − + −   (3) 

where Xi is the input data point, ˆ iX  is the reconstructed data 
point, n is the number of total data points, Ze is the distance 
between the data point and cluster centre in latent space of 

encoder, Zd is the distance between the data point and 
cluster center in latent space of decoder. The difference 
between Ze and Zd in the loss function, inhibits the spatial 
transition of the data points during compression and 
decompression thereby reducing the reconstruction loss. 
From equation (3), the functions FE, FD are the parameters 
of the model estimated using Adam optimiser techniques 
such that, 

* *

,
, arg min

E D
E D

F F
F F Loss=  (4) 

Algorithm for the proposed method is shown in Figure 4, 
which explains the stepwise training of the proposed 
attention-based autoencoder for data compression. 

Figure 4 Training of proposed autoencoder with attention  
(see online version for colours) 

 

5.4 Model configuration 
The total number of layers in the proposed architecture is 
14. There are seven layers in the encoder and seven layers 
in the decoder. The number of neurons in the first layer of 
the encoder, i.e., input layer is 360 neurons, which matches 
the dimension of the input vector. In the second layer, the 
number of neurons is reduced to 256 and this is the first part 
of the bottleneck. After this the bottleneck is narrowed even 
further by using 128, 80, 64, 32 and 16 neurons in each of 
the subsequent layers of the encoder. The architecture of the 
decoder is a symmetric inverse of the encoder’s 
architecture. The number of neurons in the first layer of the 
decoder is 16, which matches the dimension of the input 
that the decoder receives from the encoder. Since decoder is 
concerned with reconstructing the output vector, the number 
of neurons in each of the subsequent layers of decoders are 
increased from 16 to 32, then 64, 80, 128, 256 and then 
finally to 360 neurons in the output layer. 

Before feeding the output of a layer to its successor, the 
output vector is passed through a LeakyReLU activation 
function. LeakyReLU was preferred over ReLU to avoid the 
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‘dying ReLU’ problem. ReLU is represented as  
f(x) = max(0, x) and ReLU considers zero as the value when 
the inputs are lesser than zero. During the backpropagation, 
zero valued gradients boil down to zero and convergence to 
a good local minimum does not occur. 

5.5 Platform and packages 
The processes of training, testing, comparison of various 
deep learning architectures was carried out using a 
computer of 16 GB RAM, Intel Core i7-9750H 2.60 GHz 
processor with a 64-bit operating system. Keras was used 
for the technical implementation of neural networks. 
Pandas, Numpy Python packages were used for loading and 
manipulating datasets. Seaborn, Matplotlib Python packages 
were used for exploratory data analysis and for generating 
graphical representations. Panoply tool was used for 
converting the ‘.nc’ format data into ‘.csv’ files. The 
comparison baseline would be to achieve a higher CR than 
that of compression algorithms used in windows operating 
systems. 

6 Implementation results and discussion 
6.1 Performance metrics 

6.1.1 Mean absolute error 
Mean absolute error (MAE) (Chen et al., 2019) is the 
measured average difference between the predicted values 
and actual value. MAE was used synonymously to the 
reconstruction error depicting loss before compression and 
after decompression. 

1

1 ˆ
n

i i
i

MAE Y Y
n =

= −  (5) 

where, 〖 Y〗_i is the input data point, Y ̂_i is the 
reconstructed data point, n is number of total data points. 

From an interpretation standpoint, MAE is best suited. 
Mean Squared Error or Root Mean Squared Error do not 
describe the average error and have other implications that 
are more difficult to understand. 

6.1.2 Compression ratio 
Data CR (Ilkhechi et al., 2020) is the relative reduction in 
the size of data produced by a data compression algorithm. 
Smaller the value, better the compression performance it is 
expressed as the division of compressed size by the 
uncompressed size. 

size of compressed fileCR
size of uncompressed file

=  (6) 

6.2 Autoencoder training process 
Input X in the form of a multi-dimensional vector was 
passed into the network via the input layer. It was encoded 

into a vector Z of lower dimensions by a mapping function. 
Z is considered as the encoded or latent representation of 
input X. This is termed as the compressed version. Z was 
then decoded into the output vector Y, which was of the 
same dimensions as X, aimed to replicate the input X. 
Reconstruction error |X – Y| with the added attention was 
computed. The goal was to minimise reconstruction error 
and this would be the objective of the training process of the 
model. The error was back propagated for weight updation. 
These were the proceedings that comprised one epoch. 
Iterative training throughout multiple epochs was necessary 
for the complete learning process of the algorithm. Figure 5 
depicts the training process for the proposed autoencoder. 

Figure 5 Autoencoder training pipeline 

 

6.3 Train-test fissure and validation using unseen 
data 

For the purpose of training, the given dataset was split in an 
80:10:10 ratio (Yildirim et al., 2018) for training, validation 
and testing respectively. For a given atmospheric or oceanic 
parameter, readings from multiple days were present in 
individual files. Validation was performed by utilising the 
data records from the files corresponding to days that were 
not used for training. This method of training the model 
with unseen data aids in generalisation capabilities and 
adaptability of the autoencoder algorithm. 

6.4 The compression size – reconstruction error 
trade-off 

The various trail architectures for the file ‘tc.csv’ which had 
temperature values of the sea, is tabulated in Table 1. The 
architecture of the decoder was designed to replicate the 
encoder in reverse. The original size of the file before 
compression was 67.2 megabytes. Few sample values from 
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the dataset are –33.25, –46.15, –62.89, and 4.96. A 
reconstruction error of 0.5 would imply that a value, say 20 
in the reconstructed file (compressed and again 
decompressed) could have been between 19.5 and 20.5 in 
the original input file. 

Table 1 Performance comparison 

Model 
number 

Number of neurons of 
subsequent encoding 

layers of different model 
architectures 

Reconstruction 
error – mean 
absolute error 

Compressed 
file size MB 
– megabytes 

Model 1 360-256-128-64 Loss: 0.5225; 
val_loss: 
0.5629 

19.83 MB 

Model 2 360-256-180-128-64 Loss: 0.5461; 
val_loss: 
0.5843 

20.19 MB 

Model 3 360-256-128-64-32 Loss: 0.6573; 
val_loss: 
0.7494 

10.56 MB 

Model 4 360-256-128-64-32-16 Loss: 0.7846; 
val_loss: 
0.7957 

5.02 MB 

Model 5 360-256-128-80-64-32-
16 

Loss: 0.6536; 
val_loss: 
0.6991 

5.01 MB 

In Table 1, higher compression of a file, by reducing the 
number of neurons in the final output layer of the encoding 
phase of the autoencoder. An individualistic yet interesting 
property was observed wherein, the further the file was 
compressed, higher was the loss. Reduction in the number 
of neurons is performed by stepwise reduction of neurons in 
multiple layers and also in some cases by direct replacement 
of a higher number of neurons with lower number of 
neurons without introduction of additional layers. 

Among the models tested in Table 1, model 5 performed 
the best. The improvement of model 5 over other was 
achieved via usage of additional data for training, 
experimentation with hyperparameters such as learning rate 
and batch size. The conventional batch sizes of powers of 2 
such as 32, 64 and 256 did not yield the best results. Due to 
presence of 181 latitudes (from –90 till +90), batch sizes of 
powers of 181 were tried and a batch size of 905 yielded the 
best result, which is used in model 5. Also, Table 1 infers 
that model 5 – an autoencoder-based compression algorithm 
is able to get improved performance than traditional 
compression algorithms, which failed to compress the file 
size below 11 megabytes. 

6.5 Comparison with statistical and deep learning 
benchmarks 

In order to validate the performance of the proposed 
attention-based autoencoder, their evaluation results are 
compared with the baseline approaches. Among the 
traditional methods, WinRAR and WinZip are the baselines 
considered for this study. Whereas, among the deep learning 
algorithms, multi-layer Autoencoder is the baseline 

considered for comparing the compression performance of 
the proposed algorithm. The research outcome criteria are 
divided into three aspects: CR, time taken for compression 
and decompression, and reconstruction loss. On evaluation, 
it is observed that the size of the compressed file obtained 
using the multi-layer autoencoder and the proposed 
autoencoder with attention are the same. Hence the CR 
obtained by both are the same. Furthermore, it is observed 
that the proposed autoencoder with attention outperforms 
the multi-layer autoencoder in terms of significantly 
reduced reconstruction loss. 

The raw numerical compression size obtained by the 
compression mechanisms such as WinRAR, WinZip,  
multi-layer autoencoder and proposed autoencoder with 
attention is illustrated in Figure 6. The variables under 
‘name of the parameter’ refer to different files in the dataset 
considered. They are ‘tc’ – temperature in Celsius,  
‘slp’ – sea level pressure, ‘td’ – dew point temperature,  
‘ws’ – wind speed, ‘t2’ – temperature at 2 metres above 
ground, ‘td2’ – dew point temperature at 2 metres above 
ground. Figure 6 shows that the compression performance 
of the multi-layer autoencoder and the proposed 
autoencoder are the same in terms of CR, with both 
achieving an average of 40% better CR than the traditional 
windows achievers. Figure 6 also demonstrates that 
autoencoder’s pattern capturing property is more 
appropriate for the ‘TD’ file, for which it achieves the 
highest CR of around 0.18. This establishes the efficient 
nature of the autoencoder model over ‘WinRAR’ and 
‘WinZip’ compressions in terms of the extent to which a file 
can be compressed. 

Figure 6 Numerical bar representation of size of compressed file 
by traditional and proposed methods  
(see online version for colours) 

 

Figure 7 depicts the performance comparison of competitors 
during compression process. Comparison of the percentage 
value of each algorithm’s compressed size with respect to 
the other algorithms in the graph as a whole aid in the 
analysis of one-to-one and part-wise performance 
comparison. The algorithm that produced the least result in 
terms of compression size was taken as the base reference, 
i.e., one whole part (100%). In the above case, ‘WinZip’ 
produced the worst results while the trained autoencoder 
model produced the best result. In terms of percentages, 
autoencoders were able to compress the files to 
approximately 20% more than the compression achieved by 
‘WinZip’ in every case. The overall CR for the proposed 
autoencoder model, WinRAR and WinZip were 0.103, 
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0.247 and 0.260 respectively. Improved CR of autoencoders 
is due to its ability to capture layers of abstraction in data 
during compression. 

Figure 7 Comparison of compression performance in terms of 
percentage (see online version for colours) 

 

Table 2 Performance comparison 

Name of 
parameter 

Sample 
values in the 

dataset 

Loss 
obtained by 
multi-layer 

autoencoder 

Loss obtained by using 
proposed multi-layer 

autoencoder with 
custom attention 

TC –33.25, –46.15, 
–62.89 

0.6536 0.4401 

SLP 992.78, 998.76, 
1,009.60 

1.2494 0.8034 

TD –35.53, –32.55, 
–31.95 

2.7521 1.9923 

WS 37.2, 31.3, 32.6 3.1015 2.5012 
T2 –44.06, –43.86, 

–40.86 
1.2861 0.7577 

TD2 –44, –42.2,  
–41.3 

1.6909 0.9234 

The improved CR of a multi-layer autoencoder is only 
significant when the reconstruction loss is reduced. The 
proposed attention in the autoencoder aids in this 
endeavour. The reconstruction loss, in terms of MAE 
between the original file and the decompressed file is 
obtained for all files in the dataset. The reconstruction loss 
by both multi-layer autoencoder and the proposed 
autoencoder with attention is summarised in the Table 2. It 
can be inferred from Table 2 that the proposed autoencoder 
model achieves on par CR as that of multi-layer 
autoencoder, but overpowers the multi-layer autoencoder in 
terms of the reconstruction error. On an average the 
proposed autoencoder with attention obtains 34% reduced 
reconstruction loss than the multi-layer autoencoder. This 
illustrates the significance of the proposed attention layer in 
autoencoder. The improved CR of the proposed autoencoder 
model with attention than WinRAR and WinZip and its 
enhanced performance towards reducing the reconstruction 
loss than the multi-layer encoder demonstrates its efficiency 
towards environmental data compression. 

After validating the proposed autoencoder’s 
performance in terms of CR and reconstruction loss, it is 
finally evaluated in terms of the time required for the 
processes of original file compression and latent-state file 

decompression. The compression and decompression time 
of the proposed autoencoder and baseline for various files in 
the dataset in the dataset is noted and illustrated in Figures 8 
and 9. Figure 8 shows the time taken for compression and 
Figure 9 shows the time taken for decompression of the 
different parameter files. All tests were carried out under 
standard conditions using a computer of 16 GB RAM, Intel 
Core i7-9750H 2.60 GHz processor with a 64-bit operating 
system. 

Figure 8 Comparison of time taken for compression by 
traditional and proposed methods (see online version 
for colours) 

 

Figure 9 Comparison of time taken for decompression by 
traditional and proposed methods (see online version 
for colours) 

 

Figures 8 and 9 infers that the proposed autoencoder model 
outperforms WinRAR and WinZip compression with 
respect to the time taken for compression and 
decompression. This is due to the fact that the general 
process in autoencoder consists of applying the parametric 
weights from the trained model file, whereas traditional 
compression algorithms include more complex 
computations. 

According to the results of the above-mentioned 
evaluations, the proposed autoencoder with attention 
exhibits efficient compression performance with improved 
CR, reduced time for compression and decompression, and 
minimal reconstruction loss. This makes it more appropriate 
for real-world applications like automatic weather stations, 
IoT powered weather forecasting, and pro-active natural 
disaster response systems. These applications necessitate 
that data collected from various sources, such as weather 
sensors and atmospheric sensors, be compressed as much as 
possible. The proposed autoencoder with attention, which 
outperforms traditional archivers, would be critical in such 
use-cases demanding less transmission time and network 
bandwidth. 
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7 Conclusions and future work 
Data compression is required for data storage in smaller 
sizes, while further reducing bandwidth consumption during 
transmission. Deep learning can achieve effective data 
compression by iteratively propagating reconstruction error 
between original and reconstructed data through the 
network. In terms of compression limit, autoencoders 
outperform traditional algorithms. However, it results in 
significant data loss. To overcome the challenge of reducing 
reconstruction loss, the proposed work employs an attention 
mechanism in the multi-layer autoencoder. The attention 
layer reduces reconstruction loss by preventing data points 
from moving away from a spatial reference during 
compression and decompression. This study evaluated the 
compression performance of the proposed attention-based 
autoencoder with the traditional windows archiver for 
compressing the atmospheric and oceanic data obtained 
from the CDAC. The overall CR of autoencoder model, 
WinRAR and WinZip were 0.103, 0.247 and 0.260 
respectively and from this it can be inferred that the 
autoencoder model outperforms WinRAR and WinZip. 
Also, the reduced reconstruction loss proves the proficiency 
of the proposed model in reducing the variance of the input 
points in the latent or compressed representation. Therefore, 
the proposed attention-based autoencoder is better suited 
than the existing codecs. However, the proposed 
methodology’s performance against datasets devoid of 
statistical/numerical patterns and datasets with greater 
scarcity is dubious. In the future, variational deep learning 
models that could well suit such challenges will be 
investigated for data compression. 
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