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1 Introduction 

Direction-of-Arrival (DOA) estimation is one of the most 
crucial tasks for numerous classical and modern 
communication systems. Among the main areas of interest to 
DOA we mention radio astronomy, radar, sonar, wireless 
communications, navigation, (Jiang et al., 2013; Krim and 
Viberg, 1996; Van Trees, 2002; Zheng and Mu, 2020). In the 
last years, the estimation of DOA has occupied a great place 
in the array processing area thanks to its solid theoretical 
basis which is associated with wide practical application 
diversity. In reality, sophisticated signal processing 
algorithms play a key role in finding the Angle of Arrival 
(AOA) of electromagnetic waves which are generated and 
transmitted from radiating sources, and impinged on one or 
more antennas (Aounallah et al., 2014; Aounallah, 2018). 

In array processing theory, the DOA methods are 
usually divided into two categories; conventional algorithms 
which are based on classical beamforming techniques,  
 
 

and subspace-based algorithms which exploit the eigen 
structure of the input signal matrix (Jeffrey et al., 2008). 
Additionally, the algorithms of the second class, like 
Minimum-Norm that will be investigated in this paper, are 
characterised by their high-resolution capability even in the 
case that the sources to be estimated are partially correlated. 
Nevertheless, the performances of the classical subspace 
decomposition algorithms remain limited for real 
environment when the signal propagation by multipath are 
highly correlated and thus causes a coherence limitation 
(Shan et al., 1985). 

To solve the estimation inability problem of subspace-
based algorithms in case of coherent signals scenario, 
numerous techniques have been proposed in literature. The 
spatial smoothing scheme first suggested by Evans et al. 
(1981) as a pre-processing method used to decorrelate 
coherent signals impinging on a uniform linear array. This 
noteworthy scheme has been then more completely analysed 
by Shan et al. (1985). Thereafter, it has been shown in the  
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article of Pillai and Kwon (1989) that by reconstituting a 
smoothed array output covariance matrix which structurally 
resembles a covariance matrix in some noncoherent 
condition, eigen-structure algorithms can use this smoothed 
covariance matrix and become able to precisely estimate 
directions of arrival irrespective of their correlation. Not long 
ago, for achieving the purpose of decoherence and restoring 
the full rank of the received data covariance matrix, a 
received data matrix has been reconstructed by using a 
subarray space-time correlation matrix. This idea of space 
time smoothing algorithm (STSS) has been proposed by Qi 
and Liu (2021) and Ding et al. (2022) as improved tool to 
eliminate noise and benefit from the high use of the signal 
strong correlation in both time and space domains. 
Consequently, the spatial smoothing decorrelation technique 
has become more popular over time and has seen various 
improvements to be able to incorporate into several 
applications (Changgan and Yumin, 2014; Liu and 
Vaidyanathan, 2015; Pan et al., 2020; Wen et al., 2022). 

On other hand, another kind of decorrelation techniques 
based on Toeplitz matrices has been alternatively appeared as 
a sharp rival to the spatial smoothed techniques. In fact, the 
inexpensive computation of this sort does not cause any loss 
of resolvability (Pham et al. 2016). The direction finding 
problem of narrowband source on an equispaced linear array 
has been addressed by Kung et al. (1986) using Toeplitz’s 
approximation method of stochastic system identification. 
Low-rank reconstruction of the Toeplitz covariance matrix 
has been proposed by Liu et al. (2021) to accomplish 
enhanced DOA estimation performance. The recovered 
covariance matrix allows the application of subspace-based 
spectral approaches in coprime array. Bingbing et al. (2021) 
devised an improved technique to be combined with the 
ESPRIT algorithm by exploiting all rows of the time-space 
correlation matrix to recover the Toeplitz matrix. In fact, this 
decoherence technique exploits strong and weak correlations 
of signal and noise, respectively, in time and space domains 
to increase the noise cancellation. As an extension of DOA 
into two dimensions, Chen et al. (2010) introduced a 2-D 
ESPRIT-like algorithm that can decorrelate sources by a 
Toeplitz matrix reconstruction. Likewise, Chen and Zhang 
(2013) proposed an improved 2D-DOA algorithm based on 
combination of PM algorithm with Toeplitz Hermitian matrix 
reconstruction. Also, to fulfil a decoherence purpose and a 
accurate coherent source DOA estimation of two-dimensional  
MIMO radar, the paper of Fei et al. (2021) suggested an 
improved Toeplitz matrix set reconstruction algorithm based 
on the 2-D creation of Toeplitz class algorithm. Indeed, the 
whole receiving signal vector is utilised to create two Toeplitz 
matrix sets including all of the data, as well as their conjugate 
transposes, resulting in a full-rank matrix.  

Basing on the joint diagonalisation structure of a set of 
Toeplitz matrices, a favourable scheme that does not need to 
any knowledge of source number has been devised by Qian  
et al. (2014). This algorithm property allows it to be useful for  
ractical applications where it is difficult to detect the source 
number. It is also interesting to note that for coherent 
scenario, some other approaches like the maximum likelihood 

algorithms (Choi, 2000) and sparse-representation-based 
algorithms (Liu et al., 2014) can be usable.  

The main contribution that carries our work is summed as 
follows. 

Based on two efficient decorrelation techniques, two 
different Toeplitz matrices are constructed, by means of 
which the array signal coherence can be well reduced. 

Using the previous reconstituted Toeplitz matrices, two 
new eigenstructure techniques are derived, by which the 
estimation of DOAs of coherent sources can be correctly 
computed. 

The present paper is structured as follows. Section 2 
develops the signal model which corresponds to a system 
using linear uniform array. Section 3 is reserved to present 
DOA estimation algorithms including the standard Min-Norm 
and the two proposed algorithms. Section 4 is devoted to 
simulation examples and their results, and finally, Section 5 
summarises the main conclusions. 

2 Signal model 

In this paper section, we introduce the general signal model 
that is considered for DOA estimation problem. For clarity 
sake, we consider a Uniform Linear Array (ULA) consists of 
M isotropic sensors; each two adjacent sensors are equally 
separated by a distance d . The array receives K  

narrowband plane waves  ks t , 1 k K  , that come at 

distinct angles k  as illustrated in Figure 1. 

Figure 1  System model for DOA estimation using a ULA of M 
sensors receiving K plane waves 

 

The received signal  x t  at any time t  is a 1M   complex 

vector often written as: 

             
1

K

k k

k

x t a s t n t A S t n t 


     (1) 

where        1 2, , ..., kA a a a        is a M K matrix 

containing the 1M   array steering vectors  ka  , 
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       1 2, , ..., 
T

kS t s t s t s t    is the incident signals vector, 

and  n t  is the 1M  complex noise vector modelled as a 

zero mean Gaussian with a variance 2 . 
For an array of uniform linear geometry, the k-th 

antenna steering vector  ka   corresponding to the angle of 

arrivals k  is given as: 

      2 / 2 1 /1, , ... ,  k k
Tj d sin j M d sin

ka e e            (2) 

where λ  is the carrier wavelength and  T is the transpose 

operator. 
The M M  covariance matrix R  of the received signal 

can be derived as (Krim and Viberg, 1996):  

   

             
             

         
. .

H

H

H H H

H H H

H
S N

R E x t x t

E A S t n t A S t n t

A E S t S t A A E S t n t

E n t S t A E n t n t

AR A R

 

  



   
   
 

       
       

 

 (3) 

where    H
SR E S t S t     is the signal covariance matrix, 

and    H
NR E n t n t     is the noise covariance matrix. 

 E   and  H  stand for the expectation and the Hermitian 

transpose, respectively. 
Under the uncorrelated signal and noise assumption and the 

zero-mean noise property, the expectation of the cross-term 

matrices     H
SNR E S t n t     and     H

NSR E n t S t     

between the signal and noise vectors is zero. 
Notice that SR  is a diagonal matrix when the signals are 

uncorrelated, and in this case its rank is equal to the number 
of sources K. The matrix SR  is non-diagonal and non-

singular when the signals are partially correlated. The matrix 

SR  is non-diagonal but singular when some signals are fully 

correlated (or coherent) (Shan et al., 1985), and in this case 

SR  has a rank degradation   Srank R K . 

Under other mathematical matrix writing, the expanded 
form of the covariance matrix of (3) gives a M M  coherent 
data covariance matrix which can be expressed as:    

     
     

     

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

xx xx xx

xx xx xx

xx xx xx

r r r M

r r r M
R

r M r M r M M

 
 
   
 
  




   


  (4) 

Generally, the true spatial covariance matrix is unknown in 
practice, and in theory, an estimated sample data covariance  
matrix for L  snapshots should be defined as follows: 

   
1

ˆ 1 L
H

l

x l x l
L

R


    (5) 

Once the composite array covariance matrix is defined,  
the most of narrowband methods can be applied to generate  
a DOA estimation using this matrix.  Accordingly,  
Eigen-Value Decomposition (EVD) on the said matrix must 
be necessary for all approaches belonging to the DOA 
subspace methods category including the conventional Min-
Norm. The proposed approaches that will be investigated in 
this paper will also require an eigenvalue decomposition but 
on the Toeplitz matrices which will be reconstructed. 

The EVD of R̂  can be then expressed as: 

1

ˆ Ω Ω
M

H H H
i i i S S S N N N

i

e e E E ER E


      (6) 

where i  is the i-th eigenvalue associated with the i-th 

eigenvector ie , and  1 2Ω , , ..., Mdiag     is a diagonal 

matrix containing the eigenvalues. 

If the M  eigenvalues of the matrix R̂  are sorted from 
the largest to the smallest which is equal to the noise 
variance 2 , the eigenvectors corresponding to the biggest 
eigenvalues span the signal subspace SE  which is 

orthogonal to the noise subspace NE . This last is spanned 

by the other eigenvectors corresponding to the smaller 
eigenvalues. 

3 DOA estimation algorithms 

The first part of this section reviews briefly the minimum 
norm DOA method which is based on the eigen 
decomposition of the covariance matrix into a signal  
and a noise subspaces, while the second and the third parts 
explain in detail the transformations that the covariance 
matrix will be undergone in the context of the proposal of 
novel algorithms. 

3.1 Standard minimum-norm algorithm 

The standard Min-Norm algorithm was proposed for the first 
time by Reddi (Qian et al. (2014) and it saw a development 
thereafter by Kumaresan and Tufts (Choi, 2000). Min-Norm 
is referred to as a high resolution algorithm which is based 
either on the EVD of the auto-covariance matrix or on the 
Singular-Value Decomposition (SVD) of the signal 
covariance matrix. 

The principle of this method is to determine a vector 1u  

belonging to the noise subspace whose first element is unity 
and its other elements are zero. This minimum norm vector 
is optimum because it can minimise the norm of the antenna 
array response (Aounallah, 2017). 

Then, the DOAs can be estimated by finding the maxima 
of the following expression: 

 
  2

1

1
MN

H H
N N

P
a E E u




   (7) 
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The above-mentioned equation is the pseudo-spectrum of the 
Min-norm DOA estimation method, and the peak angle of the 
incident signal can be obtained by performing the peak search 
on the pseudo-spectrum. 

In a completely coherent environment there is a rank 
degradation of the signal covariance matrix which is 
exhibited by a deficiency in the signal subspace size. Hence, 
there is no orthogonality between the noise subspace NE  and 

the array steering vector  a   of coherent sources, and the 

determination of the true peak angle from the Min-Norm 
pseudo-spectrum becomes weak and not guaranteed. 

In order to tackle such an algorithm weakness in front of 
coherent sources, it is possible to successfully compensate for a 
rank deficiency by proposing a pre-processing scheme 
applying to the received array signals. The purpose of this pre-
processing scheme is to ensure a decorrelation (decoherence) 
between all this signals before eigendecomposition and 
estimation stages. 

3.2 First proposed algorithm 

Theoretically and under certain constraints, the Min-Norm 
algorithm can achieve very high resolution in estimating 
directions of arrival. Furthermore, the weakness of this 
algorithm becomes apparent when it comes to estimating a 
signal with low SNR or even strongly correlated or coherent 
signal sources. To overcome these limitations, this sub-
section proposes and explains the first new algorithm which 
is based on a transformation of estimated Toeplitz spatial 
covariance matrix. 

We develop a first new min-norm DOA scheme 
employing a technique of decorrelation. This last is an 
averaging to construct the elements of a Toeplitz matrix. 
Whereas, the algorithm proposed here is termed the 
Averaging Toeplitz for Min-Norm (AT-MN). 

The decorrelation technique takes the coherent array 
covariance matrix R  to average the oblique diagonal 
elements of its lower triangular part. The elements  av i  of 

the 1M   obtained vector can be calculated according to the 
following expression: 

   1
, 1 ,       1, 2, ..., 

1

M

a xx
m i

v i r m m i i M
M i 

   
     (8) 

Hence, we can define a resulting M M  Toeplitz matrix vaT  

as: 

     
     

     

* *

*

1 2

2 1 1

1 1

a a a

a a a
va

a a a

v v v M

v v v M
T

v M v M v

 
    
 

  




   


 (9)	

The last new Toeplitz matrix vaT  is mainly reconstituted from 

the averages of diagonals of coherent array covariance matrix 
R . Thus, the superdiagonal entries of the reconstructed 
matrix vaT  are a mixture of independent DOA terms and 

biased terms. This means that every column or row has one 

entry containing biased terms which leads to resolve the 
coherence signals problem, but it can result lower accuracy in 
the DOA estimation. 

Now, we use the decorrelated Toeplitz matrix vaT  instead 

of the covariance matrix R  for the min-norm algorithm to 
find the DOA. The matrix vaT can be described still by its 

eigenvalues and eigenvectors as: 

1 1 1 1 1 1 1 1 1
1

Ω Ω
M

H H H
va i i i S S S N N N

i

T e e E E E E


      (10) 

where 1SE  and 1NE  are the new signal and noise subspaces, 

respectively. 
The formulation of the new AT-MN spectrum expression is 

based on the calculation of a new min-norm vector 11u  belongs 

to the noise subspace 1NE  extracted from the Toeplitz matrix 

decomposition. Thus, this spectrum is formed as: 

 
  2

1 1 11

1
AT MN

H H
N N

P
a E E u




    (11) 

The AT-MN algorithm can be classified among the spectral-
based approaches. The function expressed in equation (11) 
can be used to plot the AT-MN spectrum, and the locations of 
the separated highest peaks are taken as the estimated DOAs. 

For simple clarity, the first proposition is summarised in the 
steps of Algorithm 1, whereas, the flow chart of this 
proposition for estimating DOA of coherent signals is 
presented in Figure 2. 

Figure 2  The flow chart of our first proposed algorithm 

Estimated DOAs 

Based on the noise subspace, new 
min-norm expression is defined 

 Determination of the largest peaks  

Received array signals 

Decorrelation: average the 
oblique diagonal elements of the 

R lower triangular 

Construction of Toeplitz matrix vaT  

 Eigen Value Decomposition of vaT  

Estimated covariance matrix R  
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Algorithm 1: AT-MN for estimating DOA of coherent 
signals 

Step 1: Estimate the autocorrelation matrix of receiving 
signals using equation (5) 

Step 2: Compute the average of oblique diagonal elements 
of the R  lower triangular part using equation (8) 

Step 3: Form the Toeplitz matrix vaT  defined in equation 

(9) 

Step 4: Apply the EVD on vaT to define the signal 

subspace 1SE and the noise subspace 1NE  

Step 5: Define new min-norm vector 11u  from the noise 

subspace 1NE  

Step 6: Estimate the DOAs of coherent signals by using 
the AT-MN spectrum expression according to 
equation (11) 

3.3 Second proposed algorithm 

In this sub-section, a second novel approach is developed for 
estimating the DOAs of both coherent and non-coherent 
signals by exploiting another new structure of Toeplitz spatial 
covariance matrix. 

The idea is to make the Min-Norm DOA algorithm works 
with a reconstituted Toeplitz matrix instead of the spatial 
covariance matrix. The reconstituted matrix resulting from 
efficient decorrelation technique which is known as cross-
Correlation Vectors Toeplitz (CVT) method. And that’s why, 
the name CVT-Min-Norm is given to our second proposed 
method. 

We remind that the 1M   received signal vector  x t  

can be rewritten as: 

       1 2, ,..., Mx t x t x t x t      (12) 

Basing on the CVT decorrelation method (Bai et al. 2010), 
we compute a received cross-correlation vector cv . This 

vector comes from the cross-correlation between the first 
element of  x t , which is the output of the first array sensor, 

and each element of the received signal vector that represents 
each sensor output. Therefore, the elements of the received 
cross-correlation vector cv  can be given as: 

     1 ,     1, 2,..., H
c iv i x t x t i M     (13) 

and the received cross-correlation vector is given as: 

     1 , 2 , ..., c c c cv v v v M       (14) 

Now, we use the vector expressed in (14) to generate the 
following constructed Toeplitz matrix:    

     
     

     

1 2

2 1 1

1 1

c c c

c c c
vc

c c c

v v v M

v v v M
T

v M v M v

 
    
 

  




   


  (15) 

The reconstruction of a Toeplitz matrix vcT  from the first row 

of R leads to have precise DOA information. In fact, the new 
matrix row space becomes identical to that of the ideal 
covariance matrix. The CVT decorrelation method retrieves 
information on DOA without interaction between sources and 
thus achieves robust decorrelation for coherent signals. The 
development of a new Min-Norm algorithm version basing 
on the decomposition (EVD) of such a decorrelated Toeplitz 
matrix will lead us to an efficient DOA estimation for 
coherent sources. 

The EVD of vcT  can be then expressed as: 

2 2 2 2 2 2 2 2 2
1

Ω Ω
M

H H H
vc i i i S S S N N N

i

T e E E E E


      (16) 

where 2SE and 2NE are the signal and noise subspaces 

obtained thanks to the last matrix eigenvalue decomposition. 
The CVT-Min-Norm spatial-spectrum can be formulated 

as: 

 
  2

2 2 21

1
CVT MN

H H
N N

P
a E E u




    (17) 

where 21u is the minimum norm vector belonging to the noise 

subspace 2NE . 

The expression (17) is used to plot the CVT-Min-Norm 
spectrum. The locations of the peaks on CVT-Min-Norm 
spectrum indicate the correct DOAs of the incident signals. 

Thereupon, we can summarise this second proposition in 
the steps of Algorithm 2. 

Algorithm 2: CVT-MN for estimating DOA of coherent 
signals 

Step 1: Estimates the autocorrelation matrix of receiving 
signals using equation (5) 

Step 2: Computes the received cross-correlation vector 

cv via equation (13) 

Step 3: Constructs the Toeplitz matrix vcT  defined in 

equation (15) 

Step 4: Generates the EVD of vcT to determinate the signal 

subspace 2SE and the noise subspace 2NE  

Step 5: Define new min-norm vector 21u from the noise 

subspace 2NE  

Step 6: Estimate the DOAs of coherent signals by 
employing the CVT-MN spectrum expression via 
equation (17)		

3 Simulation and results 

In this section, the results obtained by means of computer 
simulations are provided to verify the performance of the 
proposed algorithms by comparing with the original Min-
norm algorithm. Simulation examples are carried out for 
Uniform Linear Array (ULA) of 8 sensors equidistant by half 
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wavelength. We assume that the noise is ideal additive white 
Gaussian. 

Example 1: Three narrowband coherent signals are 
considered in the far field with SNR =10 dB. They arrive at 
the array elements from directions –20°, 40° and 45°. The 
phases of coherent signals are [ / 5 , / 4 , / 4 ]. We set 
300 for the number of snapshots. 

Figure 3 shows the normalised space spectrum versus 
Direction of Arrival (DOA) which are obtained with the three 
investigated methods. 

Figure 3  Normalised space spectrum versus DOA with three 
investigated methods 

 

As is clear from Figure 3, both the AT-Min-Norm and the 
CVT-Min-Norm estimator methods exhibit certain degree of 
robustness in the presence of the coherent signals, whereas 
the classical Min-norm estimator yields a poor representation 
of the spatial spectrum. In other words, due to the coherency 
of signals, Min-norm spectrum may fail to produce peaks at 
the DOA locations. The ability of the AT-Min-Norm to 
resolve spaced signals is good but it can be reduced in the 
case of closely spaced sources. The results prove also that the 
CVT-Min-Norm approach performs reasonably well in 
producing three clear peaks exactly at the corresponding 
DOA locations. Thus, the CVT-Min-Norm is more robust and 
has the highest resolution for estimating coherent sources 
either distant or even closely spaced. 

Example 2: To illustrate the effectiveness of the proposed 
techniques in terms of Root-Mean-Square Error (RMSE) 
and probability of resolution, we consider two coherent 
signals with equal power impinging on the 8-element ULA 
from sources directions 1 15   and 2 10   . In this 

example we change the value of the SNR and we set 1000 
for the number of snapshots. At each SNR, 500 Monte Carlo 
trials are performed to obtain the statistic results. 

The RMSE of the estimated DOAs is defined as: 

  2

1 1

1 ˆ
Q K

k k
q k

RMSE q
QK

 
 

    (18) 

where  k̂ q  is the estimated angle of k  for the q trial, k  

is the number of Monte Carlo runs, and 2K  is the number 
of all sources. 

The Root-Mean-Square Error (RMSE) versus SNR is 
depicted in Figure 4. From this Monte Carlo simulation 
results, we can see that the RMSE of the Min-Norm is of 
important value comparing with those of the other methods, 
and this means that this classical algorithm cannot work for a 
scenario of coherent sources. However, the two proposed 
algorithms have a reduced RMSE which indicates their 
accurate estimation performance. In fact, the CVT-Min-Norm 
algorithm significantly outperforms the AT-Min-Norm with 
its better decorrelation ability for the coherent sources, and 
this indicates its better estimation precision over the entire 
SNR region. 

Figure 4  RMSE of DOA estimates versus SNR for two coherent 
sources, where L=1000 snapshots and Q=500 Monte-
Carlo trials 

 

Figure 5 illustrates that the CVT-Min-Norm method has higher 
resolution DOA estimation than the AT-Min-Norm and the 
conventional methods, and it obviously outperforms them 
across a wide range of SNR. Additionally, we can say that in 
the presence of coherency between sources, serious difficulties 
which manifest as a loss of resolution can face the functional 
performance of the conventional Min-norm algorithm. 

Example 3: To assess the performance of the three studied 
techniques in terms of RMSE and probability of resolution 
versus the number of snapshots, we consider a scenario with 
the same parameters as those used for example 2, except 
that the SNR is fixed at 10 dB and we compute the results 
for different number of snapshots. 

It can be clearly seen from results of Figure 6 that with the 
increase of snapshots number the AT-Min-Norm scheme 
achieves a much better RMSE performance than the 
conventional method. Meanwhile, the CVT-Min-Norm scheme 
can give better RMSE than the AT-Min-Norm scheme 
especially with the increase in the number of snapshots. 
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Figure 5  Probability of resolution of DOA estimates versus SNR 
for two coherent sources, where L=1000 snapshots and 
Q=500 Monte-Carlo trials 

 

Figure 6  RMSE of DOA estimates versus number of snapshots 
for two coherent sources, where SNR=10 dB and Q= 
500 Monte-Carlo trials 

 

As shown in Figure 7, the CVT-Min-Norm method has 
higher resolution DOA estimation than the AT-Min-Norm 
and the conventional methods whatever the number of 
snapshots. The resolution probability of the AT-Min-Norm 
increases with the increase of snapshot number and it remains 
between 60% and 70% when the number of snapshots 
exceeds 100. The resolution probability of the CVT-Min-
Norm increases proportionally with the snapshot number, it 
reaches over 90% for a number of snapshots that exceeds 
about 250. The resolution probability of the Min-Norm is 
weak and not stable. 
 
 
 

Figure 7  Probability of resolution of DOA estimates versus 
number of snapshots for two coherent sources, where 
SNR =10 dB and Q = 500 Monte-Carlo trials 

 

4 Conclusions  

The correctness of the DOA estimation by means of eigenvalue 
decomposition algorithms like the Min-Norm depends 
essentially on the non-singularity propriety of the signal 
covariance matrix. In the case of non-coherent signals, the rank 
of this matrix is identical to the number of sources and thus 
non-singularity is ensured. Otherwise, in the case of coherent 
signals, the rank of this matrix degrades and becomes less than 
the number of sources, and therefore the non-singularity is not 
guaranteed. 

In this paper, two attractive solutions are proposed for the 
particular difficulties encountered by the Min-Norm algorithm 
in DOA estimation of coherent signals. These solutions are a 
pre-processing scheme applying to the received array signals, 
the purpose of which is to ensure a decorrelation between all 
this signals before the estimation step. The performance of the 
two devised algorithms is evaluated through some simulation 
examples in terms of spatial spectrum, RMSE and probability 
of resolution. In many simulations cases, we have found that 
the named CVT-Min-Norm algorithm is more accurate, robust 
and it offers better resolution than the called AT-Min-Norm 
algorithm. 

In the future, it is planned to apply the scheme proposed in 
this paper for other antenna array geometries. Also, it is 
considered to look at more advanced de-coherence approaches 
basing on the exploitation of deep learning technology for 
DOA estimation. In other words, many deep learning models 
can be integrated with robust DOA estimation schemes, and 
different evaluation criteria can be derived according to various 
parameters which affect the estimation to analyse the DOA 
topic. 
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