

International Journal of System of Systems Engineering

ISSN online: 1748-068X - ISSN print: 1748-0671
https://www.inderscience.com/ijsse

Improved round-robin rule learning for optimal load balancing
in distributed cloud systems

S. Sree Priya, T. Rajendran

DOI: 10.1504/IJSSE.2023.10053120

Article History:
Received: 07 June 2022
Accepted: 03 August 2022
Published online: 16 February 2023

Powered by TCPDF (www.tcpdf.org)

Copyright © 2023 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijsse
https://dx.doi.org/10.1504/IJSSE.2023.10053120
http://www.tcpdf.org

 Int. J. System of Systems Engineering, Vol. 13, No. 1, 2023 83

 Copyright © 2023 Inderscience Enterprises Ltd.

Improved round-robin rule learning for optimal load
balancing in distributed cloud systems

S. Sree Priya* and T. Rajendran
PG and Research Department of Computer Science,
Government Arts & Science College (Affiliated to
Bharathiar University, Coimbatore),
Kangeyam-638108, Tamil Nadu, India
Email: sspriya.sivakumar@gmail.com
Email: rajendran_tm@yahoo.com
*Corresponding author

Abstract: A newly emerging technology that distributes virtualised computer
resources across the internet is referred to as ‘cloud computing’ and is gaining
popularity. These clouds’ ability to evenly distribute the load is vital. Load
balancing in cloud computing distributes dynamic workloads so no database
server is overcrowded or underloaded (LB). As a result, a dynamic load
balancing technique in the cloud may contribute to improved service stability
and resource utilisation. In this study, we model a load balancing system that
balances the cloud’s available resources using a rule-based round-robin
method. Cloud parameters are used to calculate and allocate resources using a
rule-based round-robin technique. The study analyses cloud metrics to
determine cloud loads and resources. The cloud sim tool is used to allocate
resources, and its effectiveness is tested against a variety of performance
measures such as overhead, migration time, and throughput rate. Simulation
results show that rule-based round-robin improves cloud performance. When
compared to existing algorithms, the proposed methodology improves task
performance by about 4%.

Keywords: optimisation; load balancing; cloud computing; rule-based round
robin; overcrowded or underloaded (LB); cloud parameters; CloudSim-3.0.3;
weighted round-robin technique; virtual machines.

Reference to this paper should be made as follows: Priya, S.S. and
Rajendran, T. (2023) ‘Improved round-robin rule learning for optimal load
balancing in distributed cloud systems’, Int. J. System of Systems Engineering,
Vol. 13, No. 1, pp.83–99.

Biographical notes: S. Sree Priya is an Assistant Professor at Guru Nanak
College (Autonomous), Chennai, and a PhD candidate at Government Arts and
Science College, Kangeyam (Affiliated to Bharathiar University, Coimbatore).
She has taught information security, big data, cloud security, cloud computing
and management, Python & R Programming, and IT for over 12 years,
gathering requirements, conducting reviews, designing products, documenting,
and maintaining. Her 2021 Java book was for beginners. UGC-CARE Wesleyan
Journal of Research. She’s interested in data mining, science, and the cloud.

T. Rajendran has 22 years of teaching experience in various Colleges.
He has completed his PhD degree in 2012 at Anna University, Chennai in the
Department of Information and Communication Engineering. Now, he is
working as an Assistant Professor at Government Arts and Science College,
Kangeyam, Tamilnadu, India. His research interests include distributed

 84 S.S. Priya and T. Rajendran

systems, web services, network security and web technology. He is a life
member of ISTE and he is also a member in various professional societies
like IAENG and IACSIT. He has published more than 75 papers in
international/national conferences/journals. He has organised 3 AICTE
sponsored FDP, 3 DRDO sponsored seminar/conference, 3 CSIR sponsored
seminar/symposium/conference, 9 self supporting workshops and 3 national
conferences for the benefit of faculty members and students. He is a reviewer
of Journal of Engineering and Technology Research, and 4 international
conferences. He was honoured with Best Professor Award 2012 by ASDF
Global Awards 2012, Pondicherry.

1 Introduction

The cloud is a shared computing environment in which computing resources are made
available to devices on demand. Since the cloud, it is now possible to charge a fee for the
usage of a certain resource for a set period of time. Virtual machines (VMs) are the
primary execution units in cloud computing, which is why it is called virtualisation. It is
referred to as ‘virtualisation’ and refers to the process of setting up, running, and
maintaining a shared computer environment in which a wide range of software and
resources can be utilised. Load balancing is essential for both maintaining system
stability and preventing poor performance from occurring simultaneously. As a result,
developing an algorithm that can more effectively divide the workload among virtual
machines is essential (Cao et al., 2014).

Gharooni-Fard et al. (2010) and Ghanbari and Othman (2012) described the load
balancing strategies available, including round-robin (RR), weighted RR, first-come,
first-served (FCFS), dynamic load balancing (ESCE), and throttled algorithm. An
environment known as CloudSim-3.0.3 is used to carry out the cloud computing research
and analysis in this case. Cloud computing system components such as VMs and resource
provisioning strategies that may be described are supported by both system and behaviour
modelling, which makes it a powerful tool for architects. It may be used to model and
simulate cloud computing scenarios that involve both single-cloud and networked clouds,
among other things. In internetworked cloud computing settings, it enables customised
APIs for embedding load balancing techniques in VMs, as well as strategies for
distributing VMs to customer requirements. It has the ability to use virtualised services
on-the-fly in order to adapt to changing needs. Fard and Deldari (2008) demonstrated
static and dynamic scheduling, as well as personalised load balancing using improved
weighted round robin (IWRR) for achieving better VM utilisation under different load
patterns. This was accomplished for the application jobs in a considerably shorter amount
of time than the rest of the team, which was a big advantage.

The cloud dynamic pool of VMs must be used to assign computational jobs based on
the requirements of each task and the pressure placed on the VM processors. Client
inquiries can be routed to any of the cloud data centres that are available. As a result,
according to cloud management standards and taking into consideration the load on each
individual VM, the data centre sends similar requests to their most appropriate virtual
machines. When applying the round-robin policy, factors such as resource capabilities,
work priority, and task length are not taken into consideration. As a result, the jobs that
are more important and time-consuming receive the quickest responses. On the other

 Improved round-robin rule learning for optimal load balancing 85

hand, the proposed and implemented technique takes into account the length and priority
of tasks in addition to the task length while selecting the ideal VM to perform tasks with
the quickest reaction times.

One of the most important tasks in cloud computing is load balancing, which involves
balancing network loads based on factors including execution time, reaction time, quality
of services (QoSs), fault tolerance, load balance, scalability, and resource utilisation. In
this paper, we use an Enriched Resourceful Weighted Round Robin technique to create a
load-balancing model that attempts to balance the cloud based on a number of input
factors. Finding the intensity of loads in a cloud environment is aided by the factors of
response time, processing, and resource utilisation. The round-robin approach predicts
the load and assigns the resources based on this, and these inputs define the dynamic
character of load balancing in clouds. In order to maximise the performance of virtual
machines, static and dynamic load balancing proposed by Rahman et al. (2013) will be
used to detect the interdependency of different workloads, identify underutilised virtual
machines, and avoid overloading any of the VMs. Thanks to this new choice, the job
length consideration can assist in planning jobs at any time of day or night and providing
responses in a very short period of time. The efficient scheduling provided by this
technique will also lower the workload on a virtual machine, resulting in a reduction in
the number of task migrations.

This study develops IWRR, where a job normally comprises a number of tasks that
are interconnected with one another. It is feasible for a job to fulfil its entire processing
instructions by utilising a large number of VMs, each of which performs a specific task.
Depending on the task design and availability, it may also make use of several processing
units contained within a single virtual machine.

2 Related works

Task scheduling in the cloud is primarily reliant on virtual machine load balancing. When
some VMs are overcrowded, the burden must be shared with other VMs that are not
overloaded in order to maximise resource utilisation and reduce task completion times for
everyone. Furthermore, the load balancing algorithms must include the overhead impact
on determining resource use and task relocation when evaluating resource use and task
relocation. When it comes to job completion, the VM generally employs two unique
approaches: space sharing and time sharing. The tasks will be completed in a sequential
manner through the use of the space-sharing system. suggesting that only one job is being
executed per CPU/core at a given time. All of the tasks that have been assigned to this
VM should be queued up and completed as soon as possible. When the overloaded VM
has a waiting list of tasks, the underloaded VM can be assigned one of these tasks to
make the task migration procedure on this space sharing approach a little bit easier on
everyone involved.

A time-shared system, on the other hand, has some advantages over a traditional
system in that jobs are completed simultaneously and in a time-sliced manner (Lazar
et al., 2021). Because all jobs are done in time slices, task migration in load balancing is
made more complex in this scenario as a result. As a result of the time-slicing strategy, a
specific percentage of jobs will be completed nearly 90% of the time. Due to the
previously completed component of the job on high-traffic computers and the earlier
execution influence on other job execution timings on high-traffic machines, task

 86 S.S. Priya and T. Rajendran

migration from high-traffic machines to low-traffic machines is time-consuming and
expensive (Laxmi Lydia et al., 2020). This method/process contributes to the
achievement of the quickest possible execution time on the cloud. Job allocation
algorithms should take into account the interdependencies and unpredictable nature of
jobs involving a large number of tasks when allocating work to virtual machines.
Algorithms should be able to function in both homogeneous and heterogeneous
environments, as well as for a variety of job durations. As a result of our research and
the development of our algorithm technique, we were able to achieve our target
(El-Gamal et al., 2020).

Based on the Honey Bee algorithm (Krishna, 2013), it was hypothesised that the
method would produce a well-balanced load across VMs in order to maximise throughput
while also maintaining a balance between the priority of jobs on the VMs. It is as a result
of this that the amount of time that tasks in the queue must wait is minimal. With the use
of this strategy, it was possible to lower the average execution time while simultaneously
improving queue waiting time. This method is appropriate for non-preemptive
independent jobs in heterogeneous systems that do not require preemption.

Gharooni-Fard et al. (2010) explained how to use cloud computing and a queuing
strategy to manage a cluster of heterogeneous multicore servers of varied sizes and
speeds. The optimisation of performance and the decrease in power consumption were
major factors. In particular, the study is essentially an experiment to determine whether
or not it is possible to model power.

Ijaz et al. (2013) presented a weighted round-robin scheduling strategy for cloud
infrastructure services that takes into account the length of jobs and the capability of the
resources being used to schedule them. VMs are utilised to their maximum potential
through the use of a combination of scheduling, which determines the workload length
and their resource requirements, and then anticipates which VMs will be underutilised
and which VMs will be overloaded ahead of time. We take into consideration the
interconnectedness of the responsibilities at different levels. Despite the fact that task
migrations were performed under heavy loads, load balancing was not taken into
consideration (Aoudni et al., 2022).

Munir et al. (2013), Hu et al. (2020) and Kadri et al. (2012) proposed how to use a
grid-based scheduling strategy to schedule dependent jobs. Kiruthiga et al. (2020),
Lin et al. (2009) presented an efficient mapping of the DAG-based application to the
underlying data structure. This algorithm uses the list scheduling approach as its
scheduling strategy. Basker et al. (2014) described a noncritical scheduling strategy that
was based on the earliest-finish principle. When this strategy is applied to a
heterogeneous computing environment, the performance of the system is improved.
A comparable issue to this one has been identified by Lee et al. (2009) in terms of load
distribution in cloud computing. A comparison was made between the soft computing-
based techniques (Subramani and Vijayalakhsmi, 2016).

An efficient workflow scheduling setting reduces the time it takes for workflows to
complete and keeps scheduling overhead to a bare minimum (Rahman et al., 2013).
Robine and Michel (2004) proposed a genetic algorithm called the Chaos Genetic
Algorithm that was created with the goal of handling the scheduling problem while
taking into consideration the deadline and cost specified by the user, among other factors.
Make use of this algorithm if you want better results in a shorter amount of time. The

 Improved round-robin rule learning for optimal load balancing 87

methods (Shenai, 2012; Thakur and Goraya, 2022; VinayaKulkarni et al., 2020; Xu et al.,
2013) deal with concerns that are comparable to those addressed. When developing (Xu
et al., 2011) a cloud task scheduling system, the priority of jobs was employed as a
fundamental QoS criterion. The literature has been reviewed in light of the goal, and an
algorithm has been designed to achieve it.

According to Hu et al. (2020), both the network and the host can be used to measure
the risk associated with network security. Additionally, it suggests a brand-new
framework for a multidimensional assessment method that entails two steps—risk
calculation and risk identification—to identify network security risks. The research
suggests a mechanism for a multidimensional hierarchical index that evaluates the risk
related to cyber security at the risk identification stage (Nandakumar et al., 2021). The
three different elements of the security system’s status – vulnerabilities, threats, and
fundamental operation – are what direct the data collection process.

Based on the services of security (Xu et al., 2009), advised network security.
The structure and use of network security approaches are described in detail in the study.
The amount of data resources that today’s society uses enhances the need for security.
Some of these apps’ security is achieved via encryption techniques like Data Encryption
Standard (DES). However, there are several flaws in the current algorithms that must be
fixed. In order to secure the confidentiality and privacy of data, new algorithm
mechanisms are now the focus of study in the domains of networks and data security. The
current scheduling algorithms used for tasks are as follows:

2.1 First-come, first-served (FCFS) scheduling

In this algorithm, the main concept of First Come, First Serve has been carried out. Here,
the first task that has been scheduled will be carried out first, followed by the next task
scheduled.

2.2 Shortest-job-next (SJN) scheduling

In this algorithm, the main concept of ‘Shortest Job Next’ has been carried out. Here the
task has been scheduled according to the total number of tasks scheduled. Here, the task
which can be finished soon is given priority, followed by consecutive short jobs.

2.3 Priority scheduling

In this algorithm, the main concept of priority scheduling has been carried out. Here the
task has been scheduled based on its priority. Each and every task has a different priority
of execution. According to the needs of the task, the task’s priority is given and executed.

2.4 Shortest remaining time scheduling

In this algorithm, the main concept of shortest remaining time scheduling has been
carried out. Here the task has been scheduled based on priority of time. Each and every
task has a different time of execution. According to the needs of the task, the task is given
and executed based on time.

 88 S.S. Priya and T. Rajendran

2.5 Multiple-level queues scheduling

In this algorithm, the main concept of Multiple-Level Queues Scheduling has been
carried out. Here the task has been scheduled based on the priority of multiple-level
queues. Each and every task has a different time of execution and queues. According to
the needs of the queues, tasks are being executed.

2.6 Multilevel feedback queues scheduling

In this algorithm, the main concept of Multiple-Feedback Queues Scheduling has been
carried out. Here the task is being scheduled based on the priority of Multiple-Feedback
Queues. Each and every task has a different time of execution and feedback queues. The
Feedback Queues task has been executed according to plan.

2.7 Highest response ratio next scheduling

In this algorithm the main concept of Highest Response Ratio Next Scheduling is been
carried out. Here the task is being scheduled based Highest Response Ratio. Each and
every task has different time of execution and Highest Response Ratio. According to the
need of the Highest Response Ratio task is been executed.

3 Proposed method

As shown in Figure 1, the scheduler determines which VMs are best suited for each task
and then distributes those tasks to those VMs using the proposed technique. Jobs that
arrive at runtime are assigned to VMs that are least likely to be overcrowded at that
precise point in time, allowing them to be finished as fast and efficiently as possible. The
below architecture diagram consists of blocks such as User, Interface, Task Manager,
Scheduler, Resource Manager, IWRR Load Balancer, and finally resources. Here, the
Task Manager plays a vital role in scheduling the task which has been received from the
user. The user makes a clear debut in giving the total task to the Task Manager. The
block interface acts as the interface link between the user and the task manager. The Task
Manager gives the instruction to the Scheduler, and the Scheduler is connected to the
Resource Manager, which has been filled with enough resources. Both Task Manager and
Scheduler Tasks will be balanced by the IWRR Load Balancer, which acts as our
proposed system that helps in balancing data during task scheduling.

Based on the current condition of the resources, the load balancer determines whether
a job should be transferred from a heavily loaded to a lightly loaded or idle loaded VM
during runtime. In addition, it communicates with each individual VM resource prober in
order to acquire information such as their current load and the number of jobs running or
waiting to be processed on each VM through the Resource Monitor. The user provides
the scheduler with the task requirements, which includes the time of the tasks that need to
be done. The scheduler then takes operational decisions based on the information
provided by the user.

 Improved round-robin rule learning for optimal load balancing 89

Figure 1 Load balancing design

User

Interface

Task
Manager Scheduler

IWRR Load
Balancer

Resource
Manager

R
es

ou
rc

es

Job
Queue

Dependent
Task Queue

Independent
Task Queue

3.1 Load balancing design

A request for a job is sent over the interface, and the task manager examines it to see
whether it has any dependencies or independent tasks. This module accepts a job and
determines if it consists of a single task or if it contains a number of tasks that must all be
done. When there are numerous jobs to do, the interdependence of the various tasks is
confirmed. Both the dependent and independent task queues have been identified and
located. Due to the fact that the scheduler will be notified of the dependent tasks, parent
tasks will be able to be scheduled after the completion of child tasks. It is planned to
include a dependency task queue for tasks that are dependent on the execution of other
tasks on the VMs.

In contrast, once the tasks in the queue are completed, and the VMs are allocated to
their parent jobs, the independent task queue contains jobs that are fully independent of
one another. The scheduler receives information about the job queues that are
independent and dependent on one another. The resource management system supplies
this scheduler with information about the resources that are now accessible. An algorithm
is used to identify which virtual machine is most appropriate for a certain task based on
the processing capabilities of each virtual machine.

In addition, each virtual machine maintains its own distinct ExecutionList, PauseList,
and WaitingList lists of tasks. The jobs currently running on the VM are listed in the
ExecutionList, while the jobs currently paused on the VM are listed in the PausedList.
During each request, each of the virtual machines transmits a list of its execution, pause,
and waiting lists to the WaitingList Queue, which uses this information to calculate
which VM is being utilised the least for each request that comes in. After that, the
scheduler will be informed of the VMs that are used the least frequently.

In order to gather the capabilities of all of the VMs, the resource management team
communicates with each one individually to determine the number of processors and
processing capacity available for each of them. VMs are weighted according to their
processing capacity, which is determined by the virtual machine processing capacity
allotted to them. Here you can also see how much memory has been allocated to each of

 90 S.S. Priya and T. Rajendran

the virtual machines and how much of it has been configured for usage. The load
balancer is in charge of determining the ratio of active workloads to virtual machines on
the network. There are times when a VM needs to be identified for a job, and the
scheduler communicates this information to them by referring to the job execution list of
each VM in the system pool.

After the job has been identified, it will be assigned to the appropriate VM. The
computing resources available in the configured data centres are made up of hosts, virtual
machines, and processing elements. It is necessary to monitor for inactivity and severe
strain on resources in order to correctly assign task requests to the most useful resource.

3.2 Load imbalancing factor (LIF)

The total VM loads is what this term refers to.

1

k

i
i

L l
=

=∑ (1)

where i – total VMs.

1

m
ii

LLPC
c

=

=
∑

- (2)

Ti = LPC * ci (3)

As an example of load per unit capacity, consider the following:
where ci – node capacity.

Underloaded
if Overloaded

Balanced

i

i

i

T L
VM T L

T L

⎧< −
⎪> −⎨
⎪= −⎩

 (4)

The LIF for a VM is calculated in the following way:
It is possible to allow task migration from the overloaded to underloaded VM when

the cloud load goes below the threshold and hence the difference between the two is
equal to μi.

If the overall load of all the virtual machines running on a virtual machine is less than
the threshold value established for that particular VM, the virtual machine is called
underloaded. In order to prevent the underloaded VM from becoming overheated, the
overloaded VM transfers its load to it until it exceeds the threshold value of λj, as
illustrated in the diagram above.

The overloaded VM is moved until the load falls below the threshold value. The
result is that the virtual machine cannot become overloaded if it is operating at a low
enough load level. The amount of load that can be transferred from a virtual machine that
is underloaded should fall between μi and λj in the range.

3.3 Improved round robin

As part of the proposed IWRR technique, jobs are distributed to the most appropriate
virtual machines based on information about the virtual machines such as their processing

 Improved round-robin rule learning for optimal load balancing 91

capability, load on the VMs, and duration of tasks that have been received in order of
priority. The processing capability of the virtual machine, the number of incoming jobs,
and the length of each task are all taken into consideration in the static scheduling of this
algorithm.

The dynamic scheduling algorithm is used in conjunction with the VM load and the
previously specified information to determine where a job should be assigned. In some
cases, run-time data makes the job execution more difficult, resulting in a longer task
execution time than anticipated.

As a result, the load balancer intervenes and transfers pending work from the severely
overloaded VMs to the other under-utilised or unutilised VMs, saving the scheduling
controller from failure. A resource probe is used by the load balancer to determine
whether virtual machines are under-utilised or not used at all. If there are no unutilised
virtual machines, load balancing will not perform any job migration.

When an under-utilised or unused VM is discovered, the workload will be transferred
there from the overburdened one. Performing the resource load analysis is only
performed once any of the VM responsibilities have been finished. As a result, when it
comes to evaluating the resource load, there is no overhead on the virtual machines. Task
migrations across VMs and resource probe executions within VMs will both be decreased
as a result of this change.

3.4 Load balancing algorithm

The load balancer collects the execution time of pending tasks from all of the freshly
formed virtual machines and sorts them ascendingly to discover how many tasks are
present in each one. An unfinished paper with a long-term pending time is identified by
estimating the job execution time in VMs and then assigning it to the VM with the best
likelihood of completing it. The final stage in load balancing is to reorganise the order of
the tasks in accordance with the altered execution times of each virtual machine (refer to
Algorithm 1).

The trained model size is around 1 GB. First, the task schedule work has been
stimulated. Then we must identify executing tasks in VM and arrange them on a queue in
ascending order. Now estimate total number of tasks in queue using waiting task in VMs.
Give condition and If the first queue tasks ≥ 1 now terminate the load balancing logic or
Else. If the last queue tasks ≤ now terminate the load balancing logic. Now find pending
execution time and arrange VMs from low to high pending task and eliminate higher
pending task and stop the process.

Algorithm 1 Load Balancing

Step 1: Start

Step 2: Identify executing tasks in VM and

Step 3: Arrange the task in ascending order on a Queue.

a. Estimate number of tasks in queue using waiting task in VMs

Step 4: If the first queue tasks ≥ 1

a. Terminate the load balancing logic

 92 S.S. Priya and T. Rajendran

Step 5: Else

a. Go to step 6

Step 6: End

Step 7: If the last queue tasks ≤ 1

a. Terminate the load balancing logic

Step 8: Else

a. Go to step 3

Step 9: End

Step 10: Find pending execution time

Step 11: Arrange VMs from low to high pending task

Step 12: Eliminate higher pending task

Step 13: Execute from step 1

Step 14: End

4 Results and discussions

The performance of the IWRR algorithm was evaluated in light of the results of the
CloudSim simulation. CloudSim simulator classes have been enhanced in order to
accommodate the new technique. When heterogeneous and homogeneous job lengths are
mixed with heterogeneous resources, the RR, WRR, and IWRR algorithms are used to
assess reaction time, the number of work migrations, the total idle task time, and the
delayed tasks, among other things. In our research, we have used parameters such as time
complexity (TC), average time complexity (TC), space complexity (SC), average space
complexity (ASC), and retrieval time (RT).

4.1 Dataset information

This dataset was downloaded from the Kaggle Repository, which is a repository for
online databases in general. This collection includes the Aadhar information for
individuals who reside in about 8 states across our nation. It has 12 columns and 44,800
rows. The dataset uses a total of 12 attributes in total.

4.2 Time complexity

Time complexity is generally defined as the time taken for the entire process of
encryption to decryption. That is the time calculated from the first process of loading the
dataset followed by encryption and decryption stages.

() () () () () ()1 1 2 2 3 3 P n T n P n T n P n T n+ + (5)

where () () ()1 2 3, , T n T n T n … represents the execution time.

 Improved round-robin rule learning for optimal load balancing 93

() () ()1 2 3, , . P n P n P n … indicates the input probability values.

4.3 Average time complexity

() IT n BiometricProcessTime
D

= + (6)

where I denotes the total input file or text file

D indicates distributed size of each block.

4.4 Average space complexity

Average time complexity is generally defined as the overall time taken by each algorithm
in the entire iteration process. The lower the time complexity, the higher the performance.

. SpaceAverageSpaceComplexity Temp space Input= + (7)

where Temp. Space denotes Temporary Space.

Input_Space denotes Space occupied by Input File.

4.5 Retrieval time
Average space complexity is defined as the space occupied by the dataset that has been
divided into blocks and temporarily stored at some particular place during the entire
encryption and decryption process. The lower the space complexity, the lower the
retrieval time.

SizeRTime TotalFile TimeComplexity
Average

= (8)

where R denotes Retrieval Time.

Total File Size denotes the actual size of the Input File.

Average Time Complexity denotes the overall time consumed by each algorithm.

4.6 Overall execution time on heterogeneous resources with homogeneous task

Following the results of Figure 2, IWRR by job length outperforms RR and WRR in the
case of the heterogeneous resources and homogeneous workloads domains, respectively.
The IWRR static scheduler method considers the length of the job as well as the
processing capabilities of the heterogeneous virtual machines when allocating a job to
them. Table 1 and Figure 2 represent the Execution Time taken during each set of tasks.
From the results we can prove that the proposed IWRR Execution Time ranges from
13 ms to 2 ms whereas existing WRR Execution Time ranges from 15 ms to 5.3 ms and
RR Execution Time ranges from 16 ms to 8.1 ms. So it is proved that the proposed IWRR
execution time is much less than other existing techniques.

The outcome is that in heterogeneous systems with homogeneous workloads, virtual
machines with higher capacity are assigned to a greater number of jobs than virtual

 94 S.S. Priya and T. Rajendran

machines with lower capacity. This assists in completing the task in a shorter amount of
time than previously anticipated. When assessing the current load of the dynamic
scheduler, it takes into account all of the virtual machines that have been configured and
estimates when the current load will be completed. The scheduler then estimates the
completion time of a job for each VM that is created, and this time is added to the current
load on each VM by the scheduler. In light of the aforementioned computations, the VM
that would complete this particular paper the quickest is identified, and finally the job is
allocated to a VM. As a result, this algorithm performs optimally in data centres that have
a diverse collection of resources. The following Table 2 and Figure 3 represent the Task
Migration during each set of tasks. From the results we can prove that the proposed
IWRR Task Migration ranges is 0.1 ms whereas existing WRR Task Migration ranges
from 0.5 ms to 0.1 ms and RR Task Migration ranges from 5.5 ms to 0.1 ms. So its
proved that proposed IWRR Task Migration is very less than other existing techniques.

Table 1 Execution time

No. of tasks IWRR (ms) WRR (ms) RR (ms)
10 13 15 16
20 9 12 14
30 6 8 12
40 5 6 10
50 4 6 9
60 3 5.8 8.5
70 3 5.8 8.5
80 2 5.5 8.3
90 2 5.5 8.2
100 2 5.3 8.1

Figure 2 Execution time (see online version for colours)

10 20 30 40 50 60 70 80 90 100
4

6

8

10

12

14

16

18

VMs

E
xe

cu
tio

n
Ti

m
e

(1
0-4

s)

IWRR
WRR
RR

 Improved round-robin rule learning for optimal load balancing 95

As soon as each task is completed, the IWRR job-length load balancer kicks in and
begins balancing the workload. The load balancer identifies the heavily loaded VM and
estimates the calculated job completion time for those that are currently running in the
most heavily loaded VM and those that are currently running in the least heavily
loaded/idle VM. It is planned to transfer one of those jobs from the highly strained virtual
machines to the least stressed virtual machine as soon as one of those jobs is completed
on the highly stressed VMs (Figure 3).

Table 2 Task migration

No. of tasks IWRR (ms) WRR (ms) RR (ms)
10 0.1 0.5 5.5
20 0.1 0.5 5.2
30 0.1 0.5 5
40 0.1 0.5 4.5
50 0.1 0.1 1.5
60 0.1 0.1 1.5
70 0.1 0.1 0.1
80 0.1 0.1 0.1
90 0.1 0.1 0.1
100 0.1 0.1 0.1

Figure 3 Task migration (see online version for colours)

10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

VMs

Ta
sk

 M
ig

ra
tio

n
Ti

m
e

IWRR
WRR
RR

While calculating the WRR, it considers the relationship between VM capacity and
overall VM capacity and then distributes the proportionate quantity of work that has
arrived to each VM. As a result, it is able to achieve higher levels of performance.

 96 S.S. Priya and T. Rajendran

Because of the above computation, jobs that are longer in duration will take longer to
finish if they are allocated to virtual machines with low capacity (Figure 4). The
following Table 3 and Figure 4 represent the Delayed Task during each set of tasks. From
the results we can prove that the proposed IWRR Delayed Task ranges is 92 ms to 0 ms
whereas existing WRR Delayed Task ranges from 95 ms to 0 ms and RR Delayed Task
ranges from 100 ms to 20 ms. So its proved that proposed IWRR Delayed Task is very
less than other existing techniques.

Table 3 Delayed task

No. of tasks IWRR (ms) WRR (ms) RR (ms)
10 92 95 100
20 72 80 80
30 42 50 50
40 20 23 38
50 10 15 30
60 0 0 28
70 0 0 23
80 0 0 22
90 0 0 20
100 0 0 20

Figure 4 Delayed task (see online version for colours)

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

VMs

D
el

ay
ed

 T
as

k

IWRR
WRR
RR

The environment, VM capabilities, and job durations are not taken into consideration by
the simple RR (Figure 5). An orderly distribution of VM lists is ensured by assigning
them one after the other. As a result, it takes significantly longer time to complete work
than the other two algorithms combined. The following Table 4 and Figure 5 represent

 Improved round-robin rule learning for optimal load balancing 97

the Million Instructions Re-executed during each set of tasks. From the results we can
prove that the proposed IWRR Million Instructions Re-executed ranges from 1550 to 900
whereas existing Million Instructions Re-executed range from 1000 to 0 and RR Million
Instructions Re-executed ranges from 100 ms to 20 ms. So it is proved that the proposed
IWRR Million Instructions Re-executed is better than other existing techniques.

Table 4 Million instructions re-executed

No. of tasks IWRR WRR RR
10 1550 1000 1500
20 1300 800 1290
30 1100 500 1100
40 1010 0 1000
50 1000 0 1000
60 980 0 980
70 970 0 970
80 960 0 960
90 950 0 950
100 900 0 950

Figure 5 Million instructions re-executed (see online version for colours)

10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

1200

1400

1600

VMs

In
st

ru
ct

io
ns

 re
ex

ec
ut

ed
 x

 1
0-4

RR
WRR
IWRR

From the above results obtained, the parameters such as execution time, task migration,
delayed task, and million instructions re-executed obtained by the proposed IWRR
perform better and in a unique way in all aspects related to task scheduling. It is clearly
proved that the proposed IWRR task scheduling is unique as it gives importance to all
tasks in the same amount of time and does not give individual priority, which results in
better performance. Our proposed IWRR has overcome the major drawbacks, such as
Execution Time, Task Migration, Delayed Task, and Millions of instructions re-executed.

 98 S.S. Priya and T. Rajendran

5 Conclusion

It is proposed in this research to employ a round-robin technique to construct a cloud-
based load balancing system that makes use of the available cloud resources in a fair and
equitable manner. Resources are allocated according to a rule-based round-robin
technique, with cloud parameters serving as input tools for the algorithm. The IWRR load
balancer is operated once each task has been completed. When a job is completed, this
ensures that there is no idle time for participating VMs and that the workload is evenly
distributed across all of those participating in the activity. Based on the findings of the
performance analysis and the experiments, it was determined that the modified weighted
round robin technique was the most acceptable solution for the heterogeneous and
homogeneous tasks performed with virtual machines. When using this strategy, response
time is the most important QoS indicator. According to the findings of the study, several
cloud factors were investigated in order to evaluate the loads and available resources in a
distributed cloud environment. Our resource allocation is done using cloudsim, and our
outcomes are then evaluated in relation to several performance metrics like throughput
and migration times, among other things.

References
Aoudni, Y., Donald, C., Farouk, A., Sahay, K.B., Babu, D.V., Tripathi, V. and Dhabliya, D. (2022)

‘Cloud security based attack detection using transductive learning integrated with hidden
markov model’, Pattern Recognition Letters, Vol. 157, pp.16–26.

Basker, R., Uthariaraj, V.R. and Devi, D.C. (2014) ‘An enhanced scheduling in weighted round
robin for the cloud infrastructure services’, International Journal of Recent Advance in
Engineering and Technology, Vol. 2, No. 3, pp.81–86.

Cao, J., Li, K. and Stojmenovic, I. (2014) ‘Optimal power allocation and load distribution for
multiple heterogeneous multicore server processors across clouds and data centers’, IEEE
Transactions on Computers. Institute of Electrical and Electronics Engineers, Vol. 63, No. 1,
pp.45–58, doi: 10.1109/tc.2013.122.

El-Gamal, A.H., Mostafa, R.R. and Hikal, N.A. (2020) ‘Load balancing enhanced technique for
static task scheduling in cloud computing environments’, Internet of Things–Applications and
Future, Springer, Singapore, pp.411–430.

Fard, H.M. and Deldari, H. (2008) ‘An economic approach for scheduling dependent tasks in grid
computing’, 2008 11th IEEE International Conference on Computational Science and
Engineering-Workshops, July, IEEE, San Paulo, pp.71–76.

Ghanbari, S. and Othman, M. (2012) ‘A priority based job scheduling algorithm in cloud
computing’, Procedia Engineering, Vol. 50, No. 1, pp.778–785.

Gharooni-fard, G., Moein-darbari, F., Deldari, H. and Morvaridi, A. (2010) ‘Scheduling of
scientific workflows using a chaos-genetic algorithm’, Procedia Computer Science, Vol. 1,
No. 1, pp.1445–1454.

Ijaz, S., Munir, E.U., Anwar, W. and Nasir, W. (2013) ‘Efficient scheduling strategy for task
graphs in heterogeneous computing environment’, Int. Arab J, Inf. Technol., Vol. 10, No. 5,
pp.486–492.

Hu, J., Guo, S., Kuang, X., Meng, F., Hu, D. and Shi, Z., 2020) ‘I-HMM-based multidimensional
network security risk assessment’, IEEE Access, Vol. 8, pp.1431–1442.

Kadri, W., Yagoubi, B. and Meddeber, M. (2012) ‘Efficient dependent tasks assignment algorithm
for grid computing environment’, Proceedings of the 2nd International Symposium on
Modelling and Implementation of Complex Systems (MISC’12), May, Constantine, Algeria.

 Improved round-robin rule learning for optimal load balancing 99

Kiruthiga, G. and Mary Vennila, S. (2020) ‘Intelligent resource scheduling with neutrosophic
knowledge and optimized cache management using cuckoo search method in cloud
computing’, International Journal of Intelligent Engineering and Systems, Vol. 13, No. 3,
pp.327–338, doi: 10.22266/ijies2020.0630.30.

Krishna, P.V. (2013) ‘Honey bee behavior inspired load balancing of tasks in cloud computing
environments’, Applied Soft Computing, Vol. 13, No. 5, pp.2292–2303.

Laxmi Lydia, E., Kannan, S., Rajest, S.S. and Satyanarayana, S. (2020) ‘Correlative study and
analysis for hidden patterns in text analytics unstructured data using supervised and
unsupervised learning techniques’, Int. J. Cloud Computing, Vol. 9, Nos. 2–3, pp.150–162.

Lazar, A.J.P., Sengan, S., Cavaliere, L.P.L., Nadesan, T., Sharma, D., Gupta, M.K.,
Palaniswamy, T., Vellingiri, M., Sharma, D.K. and Subramani, T. (2021) ‘Analysing the user
actions and location for identifying online scam in internet banking on cloud’, Wireless
Personal Communications, pp.1–24.

Lee, L.T., Chen, C.W., Chang, H.Y., Tang, C.C. and Pan, K.C. (2009) ‘A non-critical path earliest-
finish algorithm for inter-dependent tasks in heterogeneous computing environments’, 2009
11th IEEE International Conference on High Performance Computing and Communications,
June, IEEE, Korea, pp.603–608.

Lin, C., Lu, S., Fei, X., Chebotko, A., Pai, D., Lai, Z. and Hua, J. (2009) ‘A reference architecture
for scientific workflow management systems and the VIEW SOA solution’, IEEE
Transactions on Services Computing, Vol. 2, No. 1, pp.79–92.

Nandakumar, K., Vinod, V., Akbar Batcha, S.M., Sharma, D.K., Elangovan, M., Poonia, A.,
Mudlappa Basavaraju, S., Dogiwal, S.R., Dadheech, P. and Sengan, S. (2021) ‘Securing data
in transit using data-in-transit defender architecture for cloud communication’, Soft
Computing, Vol. 25, No. 18, pp.12343–12356.

Rahman, M., Hassan, R., Ranjan, R. and Buyya, R. (2013) ‘Adaptive workflow scheduling for
dynamic grid and cloud computing environment’, Concurrency and Computation: Practice
and Experience, Vol. 25, No. 13, pp.1816–1842.

Robine, J.M. and Michel, J.P. (2004) ‘Looking forward to a general theory on population aging’,
The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, Vol. 59,
No. 6, pp.M590–M597.

Shenai, S. (2012) ‘Survey on scheduling issues in cloud computing’, Procedia Engineering,
Vol. 38, pp.2881–2888.

Subramani, R. and Vijayalakhsmi, C. (2016) ‘Design of Lagrangian decomposition model for
energy management using SCADA system’, Proc. of the 3rd International Symposium on Big
Data and Cloud Computing Challenges. Smart Innovation, Systems and Technologies,
Vol. 49, pp.353–361.

Thakur, A. and Goraya, M.S. (2022) ‘RAFL: a hybrid metaheuristic based resource allocation
framework for load balancing in cloud computing environment’, Simulation Modelling
Practice and Theory, 102485.

VinayaKulkarni, S., Patil, S. and Patil, C.H. (2020) ‘Study on network security algorithm’,
International Journal of Engineering Research and Technology Conference Proceedings,
Bangalore, Vol. 8, No. 05, pp.1–3.

Xu, B., Zhao, C., Hu, E. and Hu, B. (2011) ‘Job scheduling algorithm based on Berger model in
cloud environment’, Advances in Engineering Software, Vol. 42, No. 7, pp.419–425.

Xu, M., Cui, L., Wang, H. and Bi, Y. (2009) ‘A multiple QoS constrained scheduling strategy of
multiple workflows for cloud computing’, 2009 IEEE International Symposium on Parallel
and Distributed Processing with Applications, August, IEEE, China, pp.629–634.

Xu, Y., Li, K., He, L. and Truong, T.K. (2013) ‘A DAG scheduling scheme on heterogeneous
computing systems using double molecular structure-based chemical reaction optimization’,
Journal of Parallel and Distributed Computing, Vol. 73, No. 9, pp.1306–1322.

