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Abstract: A newly emerging technology that distributes virtualised computer 
resources across the internet is referred to as ‘cloud computing’ and is gaining 
popularity. These clouds’ ability to evenly distribute the load is vital. Load 
balancing in cloud computing distributes dynamic workloads so no database 
server is overcrowded or underloaded (LB). As a result, a dynamic load 
balancing technique in the cloud may contribute to improved service stability 
and resource utilisation. In this study, we model a load balancing system that 
balances the cloud’s available resources using a rule-based round-robin 
method. Cloud parameters are used to calculate and allocate resources using a 
rule-based round-robin technique. The study analyses cloud metrics to 
determine cloud loads and resources. The cloud sim tool is used to allocate 
resources, and its effectiveness is tested against a variety of performance 
measures such as overhead, migration time, and throughput rate. Simulation 
results show that rule-based round-robin improves cloud performance. When 
compared to existing algorithms, the proposed methodology improves task 
performance by about 4%. 

Keywords: optimisation; load balancing; cloud computing; rule-based round 
robin; overcrowded or underloaded (LB); cloud parameters; CloudSim-3.0.3; 
weighted round-robin technique; virtual machines. 
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1 Introduction 

The cloud is a shared computing environment in which computing resources are made 
available to devices on demand. Since the cloud, it is now possible to charge a fee for the 
usage of a certain resource for a set period of time. Virtual machines (VMs) are the 
primary execution units in cloud computing, which is why it is called virtualisation. It is 
referred to as ‘virtualisation’ and refers to the process of setting up, running, and 
maintaining a shared computer environment in which a wide range of software and 
resources can be utilised. Load balancing is essential for both maintaining system 
stability and preventing poor performance from occurring simultaneously. As a result, 
developing an algorithm that can more effectively divide the workload among virtual 
machines is essential (Cao et al., 2014). 

Gharooni-Fard et al. (2010) and Ghanbari and Othman (2012) described the load 
balancing strategies available, including round-robin (RR), weighted RR, first-come, 
first-served (FCFS), dynamic load balancing (ESCE), and throttled algorithm. An 
environment known as CloudSim-3.0.3 is used to carry out the cloud computing research 
and analysis in this case. Cloud computing system components such as VMs and resource 
provisioning strategies that may be described are supported by both system and behaviour 
modelling, which makes it a powerful tool for architects. It may be used to model and 
simulate cloud computing scenarios that involve both single-cloud and networked clouds, 
among other things. In internetworked cloud computing settings, it enables customised 
APIs for embedding load balancing techniques in VMs, as well as strategies for 
distributing VMs to customer requirements. It has the ability to use virtualised services 
on-the-fly in order to adapt to changing needs. Fard and Deldari (2008) demonstrated 
static and dynamic scheduling, as well as personalised load balancing using improved 
weighted round robin (IWRR) for achieving better VM utilisation under different load 
patterns. This was accomplished for the application jobs in a considerably shorter amount 
of time than the rest of the team, which was a big advantage. 

The cloud dynamic pool of VMs must be used to assign computational jobs based on 
the requirements of each task and the pressure placed on the VM processors. Client 
inquiries can be routed to any of the cloud data centres that are available. As a result, 
according to cloud management standards and taking into consideration the load on each 
individual VM, the data centre sends similar requests to their most appropriate virtual 
machines. When applying the round-robin policy, factors such as resource capabilities, 
work priority, and task length are not taken into consideration. As a result, the jobs that 
are more important and time-consuming receive the quickest responses. On the other 
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hand, the proposed and implemented technique takes into account the length and priority  
of tasks in addition to the task length while selecting the ideal VM to perform tasks with 
the quickest reaction times. 

One of the most important tasks in cloud computing is load balancing, which involves 
balancing network loads based on factors including execution time, reaction time, quality 
of services (QoSs), fault tolerance, load balance, scalability, and resource utilisation. In 
this paper, we use an Enriched Resourceful Weighted Round Robin technique to create a 
load-balancing model that attempts to balance the cloud based on a number of input 
factors. Finding the intensity of loads in a cloud environment is aided by the factors of 
response time, processing, and resource utilisation. The round-robin approach predicts 
the load and assigns the resources based on this, and these inputs define the dynamic 
character of load balancing in clouds. In order to maximise the performance of virtual 
machines, static and dynamic load balancing proposed by Rahman et al. (2013) will be 
used to detect the interdependency of different workloads, identify underutilised virtual 
machines, and avoid overloading any of the VMs. Thanks to this new choice, the job 
length consideration can assist in planning jobs at any time of day or night and providing 
responses in a very short period of time. The efficient scheduling provided by this 
technique will also lower the workload on a virtual machine, resulting in a reduction in 
the number of task migrations. 

This study develops IWRR, where a job normally comprises a number of tasks that 
are interconnected with one another. It is feasible for a job to fulfil its entire processing 
instructions by utilising a large number of VMs, each of which performs a specific task. 
Depending on the task design and availability, it may also make use of several processing 
units contained within a single virtual machine. 

2 Related works 

Task scheduling in the cloud is primarily reliant on virtual machine load balancing. When 
some VMs are overcrowded, the burden must be shared with other VMs that are not 
overloaded in order to maximise resource utilisation and reduce task completion times for 
everyone. Furthermore, the load balancing algorithms must include the overhead impact 
on determining resource use and task relocation when evaluating resource use and task 
relocation. When it comes to job completion, the VM generally employs two unique 
approaches: space sharing and time sharing. The tasks will be completed in a sequential 
manner through the use of the space-sharing system. suggesting that only one job is being 
executed per CPU/core at a given time. All of the tasks that have been assigned to this 
VM should be queued up and completed as soon as possible. When the overloaded VM 
has a waiting list of tasks, the underloaded VM can be assigned one of these tasks to 
make the task migration procedure on this space sharing approach a little bit easier on 
everyone involved. 

A time-shared system, on the other hand, has some advantages over a traditional 
system in that jobs are completed simultaneously and in a time-sliced manner (Lazar  
et al., 2021). Because all jobs are done in time slices, task migration in load balancing is 
made more complex in this scenario as a result. As a result of the time-slicing strategy, a 
specific percentage of jobs will be completed nearly 90% of the time. Due to the 
previously completed component of the job on high-traffic computers and the earlier 
execution influence on other job execution timings on high-traffic machines, task 
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migration from high-traffic machines to low-traffic machines is time-consuming and 
expensive (Laxmi Lydia et al., 2020). This method/process contributes to the 
achievement of the quickest possible execution time on the cloud. Job allocation 
algorithms should take into account the interdependencies and unpredictable nature of 
jobs involving a large number of tasks when allocating work to virtual machines. 
Algorithms should be able to function in both homogeneous and heterogeneous 
environments, as well as for a variety of job durations. As a result of our research and  
the development of our algorithm technique, we were able to achieve our target  
(El-Gamal et al., 2020). 

Based on the Honey Bee algorithm (Krishna, 2013), it was hypothesised that the 
method would produce a well-balanced load across VMs in order to maximise throughput 
while also maintaining a balance between the priority of jobs on the VMs. It is as a result 
of this that the amount of time that tasks in the queue must wait is minimal. With the use 
of this strategy, it was possible to lower the average execution time while simultaneously 
improving queue waiting time. This method is appropriate for non-preemptive 
independent jobs in heterogeneous systems that do not require preemption. 

Gharooni-Fard et al. (2010) explained how to use cloud computing and a queuing 
strategy to manage a cluster of heterogeneous multicore servers of varied sizes and 
speeds. The optimisation of performance and the decrease in power consumption were 
major factors. In particular, the study is essentially an experiment to determine whether 
or not it is possible to model power. 

Ijaz et al. (2013) presented a weighted round-robin scheduling strategy for cloud 
infrastructure services that takes into account the length of jobs and the capability of the 
resources being used to schedule them. VMs are utilised to their maximum potential 
through the use of a combination of scheduling, which determines the workload length 
and their resource requirements, and then anticipates which VMs will be underutilised 
and which VMs will be overloaded ahead of time. We take into consideration the 
interconnectedness of the responsibilities at different levels. Despite the fact that task 
migrations were performed under heavy loads, load balancing was not taken into 
consideration (Aoudni et al., 2022). 

Munir et al. (2013), Hu et al. (2020) and Kadri et al. (2012) proposed how to use a 
grid-based scheduling strategy to schedule dependent jobs. Kiruthiga et al. (2020),  
Lin et al. (2009) presented an efficient mapping of the DAG-based application to the 
underlying data structure. This algorithm uses the list scheduling approach as its 
scheduling strategy. Basker et al. (2014) described a noncritical scheduling strategy that 
was based on the earliest-finish principle. When this strategy is applied to a 
heterogeneous computing environment, the performance of the system is improved.  
A comparable issue to this one has been identified by Lee et al. (2009) in terms of load 
distribution in cloud computing. A comparison was made between the soft computing-
based techniques (Subramani and Vijayalakhsmi, 2016). 

An efficient workflow scheduling setting reduces the time it takes for workflows to 
complete and keeps scheduling overhead to a bare minimum (Rahman et al., 2013). 
Robine and Michel (2004) proposed a genetic algorithm called the Chaos Genetic 
Algorithm that was created with the goal of handling the scheduling problem while 
taking into consideration the deadline and cost specified by the user, among other factors. 
Make use of this algorithm if you want better results in a shorter amount of time. The  
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methods (Shenai, 2012; Thakur and Goraya, 2022; VinayaKulkarni et al., 2020; Xu et al., 
2013) deal with concerns that are comparable to those addressed. When developing (Xu 
et al., 2011) a cloud task scheduling system, the priority of jobs was employed as a 
fundamental QoS criterion. The literature has been reviewed in light of the goal, and an 
algorithm has been designed to achieve it. 

According to Hu et al. (2020), both the network and the host can be used to measure 
the risk associated with network security. Additionally, it suggests a brand-new 
framework for a multidimensional assessment method that entails two steps—risk 
calculation and risk identification—to identify network security risks. The research 
suggests a mechanism for a multidimensional hierarchical index that evaluates the risk 
related to cyber security at the risk identification stage (Nandakumar et al., 2021). The 
three different elements of the security system’s status – vulnerabilities, threats, and 
fundamental operation – are what direct the data collection process. 

Based on the services of security (Xu et al., 2009), advised network security.  
The structure and use of network security approaches are described in detail in the study. 
The amount of data resources that today’s society uses enhances the need for security. 
Some of these apps’ security is achieved via encryption techniques like Data Encryption 
Standard (DES). However, there are several flaws in the current algorithms that must be 
fixed. In order to secure the confidentiality and privacy of data, new algorithm 
mechanisms are now the focus of study in the domains of networks and data security. The 
current scheduling algorithms used for tasks are as follows: 

2.1 First-come, first-served (FCFS) scheduling 

In this algorithm, the main concept of First Come, First Serve has been carried out. Here, 
the first task that has been scheduled will be carried out first, followed by the next task 
scheduled. 

2.2 Shortest-job-next (SJN) scheduling 

In this algorithm, the main concept of ‘Shortest Job Next’ has been carried out. Here the 
task has been scheduled according to the total number of tasks scheduled. Here, the task 
which can be finished soon is given priority, followed by consecutive short jobs. 

2.3 Priority scheduling 

In this algorithm, the main concept of priority scheduling has been carried out. Here the 
task has been scheduled based on its priority. Each and every task has a different priority 
of execution. According to the needs of the task, the task’s priority is given and executed. 

2.4 Shortest remaining time scheduling 

In this algorithm, the main concept of shortest remaining time scheduling has been 
carried out. Here the task has been scheduled based on priority of time. Each and every 
task has a different time of execution. According to the needs of the task, the task is given 
and executed based on time. 
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2.5 Multiple-level queues scheduling 

In this algorithm, the main concept of Multiple-Level Queues Scheduling has been 
carried out. Here the task has been scheduled based on the priority of multiple-level 
queues. Each and every task has a different time of execution and queues. According to 
the needs of the queues, tasks are being executed. 

2.6 Multilevel feedback queues scheduling 

In this algorithm, the main concept of Multiple-Feedback Queues Scheduling has been 
carried out. Here the task is being scheduled based on the priority of Multiple-Feedback 
Queues. Each and every task has a different time of execution and feedback queues. The 
Feedback Queues task has been executed according to plan. 

2.7 Highest response ratio next scheduling 

In this algorithm the main concept of Highest Response Ratio Next Scheduling is been 
carried out. Here the task is being scheduled based Highest Response Ratio. Each and 
every task has different time of execution and Highest Response Ratio. According to the 
need of the Highest Response Ratio task is been executed. 

3 Proposed method 

As shown in Figure 1, the scheduler determines which VMs are best suited for each task 
and then distributes those tasks to those VMs using the proposed technique. Jobs that 
arrive at runtime are assigned to VMs that are least likely to be overcrowded at that 
precise point in time, allowing them to be finished as fast and efficiently as possible. The 
below architecture diagram consists of blocks such as User, Interface, Task Manager, 
Scheduler, Resource Manager, IWRR Load Balancer, and finally resources. Here, the 
Task Manager plays a vital role in scheduling the task which has been received from the 
user. The user makes a clear debut in giving the total task to the Task Manager. The 
block interface acts as the interface link between the user and the task manager. The Task 
Manager gives the instruction to the Scheduler, and the Scheduler is connected to the 
Resource Manager, which has been filled with enough resources. Both Task Manager and 
Scheduler Tasks will be balanced by the IWRR Load Balancer, which acts as our 
proposed system that helps in balancing data during task scheduling. 

Based on the current condition of the resources, the load balancer determines whether 
a job should be transferred from a heavily loaded to a lightly loaded or idle loaded VM 
during runtime. In addition, it communicates with each individual VM resource prober in 
order to acquire information such as their current load and the number of jobs running or 
waiting to be processed on each VM through the Resource Monitor. The user provides 
the scheduler with the task requirements, which includes the time of the tasks that need to 
be done. The scheduler then takes operational decisions based on the information 
provided by the user. 
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Figure 1 Load balancing design 
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3.1 Load balancing design 

A request for a job is sent over the interface, and the task manager examines it to see 
whether it has any dependencies or independent tasks. This module accepts a job and 
determines if it consists of a single task or if it contains a number of tasks that must all be 
done. When there are numerous jobs to do, the interdependence of the various tasks is 
confirmed. Both the dependent and independent task queues have been identified and 
located. Due to the fact that the scheduler will be notified of the dependent tasks, parent 
tasks will be able to be scheduled after the completion of child tasks. It is planned to 
include a dependency task queue for tasks that are dependent on the execution of other 
tasks on the VMs. 

In contrast, once the tasks in the queue are completed, and the VMs are allocated to 
their parent jobs, the independent task queue contains jobs that are fully independent of 
one another. The scheduler receives information about the job queues that are 
independent and dependent on one another. The resource management system supplies 
this scheduler with information about the resources that are now accessible. An algorithm 
is used to identify which virtual machine is most appropriate for a certain task based on 
the processing capabilities of each virtual machine. 

In addition, each virtual machine maintains its own distinct ExecutionList, PauseList, 
and WaitingList lists of tasks. The jobs currently running on the VM are listed in the 
ExecutionList, while the jobs currently paused on the VM are listed in the PausedList. 
During each request, each of the virtual machines transmits a list of its execution, pause, 
and waiting lists to the WaitingList Queue, which uses this information to calculate 
which VM is being utilised the least for each request that comes in. After that, the 
scheduler will be informed of the VMs that are used the least frequently. 

In order to gather the capabilities of all of the VMs, the resource management team 
communicates with each one individually to determine the number of processors and 
processing capacity available for each of them. VMs are weighted according to their 
processing capacity, which is determined by the virtual machine processing capacity 
allotted to them. Here you can also see how much memory has been allocated to each of 
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the virtual machines and how much of it has been configured for usage. The load 
balancer is in charge of determining the ratio of active workloads to virtual machines on 
the network. There are times when a VM needs to be identified for a job, and the 
scheduler communicates this information to them by referring to the job execution list of 
each VM in the system pool. 

After the job has been identified, it will be assigned to the appropriate VM. The 
computing resources available in the configured data centres are made up of hosts, virtual 
machines, and processing elements. It is necessary to monitor for inactivity and severe 
strain on resources in order to correctly assign task requests to the most useful resource. 

3.2 Load imbalancing factor (LIF) 

The total VM loads is what this term refers to. 

1

k

i
i

L l
=

=∑  (1) 

where i – total VMs. 

1

m
ii

LLPC
c

=

=
∑

- (2) 

Ti = LPC * ci (3) 

As an example of load per unit capacity, consider the following: 
where ci – node capacity. 

Underloaded
if Overloaded

Balanced

i

i

i

T L
VM T L

T L

⎧< −
⎪> −⎨
⎪= −⎩

 (4) 

The LIF for a VM is calculated in the following way: 
It is possible to allow task migration from the overloaded to underloaded VM when 

the cloud load goes below the threshold and hence the difference between the two is 
equal to μi. 

If the overall load of all the virtual machines running on a virtual machine is less than 
the threshold value established for that particular VM, the virtual machine is called 
underloaded. In order to prevent the underloaded VM from becoming overheated, the 
overloaded VM transfers its load to it until it exceeds the threshold value of λj, as 
illustrated in the diagram above. 

The overloaded VM is moved until the load falls below the threshold value. The 
result is that the virtual machine cannot become overloaded if it is operating at a low 
enough load level. The amount of load that can be transferred from a virtual machine that 
is underloaded should fall between μi and λj in the range. 

3.3 Improved round robin 

As part of the proposed IWRR technique, jobs are distributed to the most appropriate 
virtual machines based on information about the virtual machines such as their processing 
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capability, load on the VMs, and duration of tasks that have been received in order of 
priority. The processing capability of the virtual machine, the number of incoming jobs, 
and the length of each task are all taken into consideration in the static scheduling of this 
algorithm. 

The dynamic scheduling algorithm is used in conjunction with the VM load and the 
previously specified information to determine where a job should be assigned. In some 
cases, run-time data makes the job execution more difficult, resulting in a longer task 
execution time than anticipated. 

As a result, the load balancer intervenes and transfers pending work from the severely 
overloaded VMs to the other under-utilised or unutilised VMs, saving the scheduling 
controller from failure. A resource probe is used by the load balancer to determine 
whether virtual machines are under-utilised or not used at all. If there are no unutilised 
virtual machines, load balancing will not perform any job migration. 

When an under-utilised or unused VM is discovered, the workload will be transferred 
there from the overburdened one. Performing the resource load analysis is only 
performed once any of the VM responsibilities have been finished. As a result, when it 
comes to evaluating the resource load, there is no overhead on the virtual machines. Task 
migrations across VMs and resource probe executions within VMs will both be decreased 
as a result of this change. 

3.4 Load balancing algorithm 

The load balancer collects the execution time of pending tasks from all of the freshly 
formed virtual machines and sorts them ascendingly to discover how many tasks are 
present in each one. An unfinished paper with a long-term pending time is identified by 
estimating the job execution time in VMs and then assigning it to the VM with the best 
likelihood of completing it. The final stage in load balancing is to reorganise the order of 
the tasks in accordance with the altered execution times of each virtual machine (refer to 
Algorithm 1). 

The trained model size is around 1 GB. First, the task schedule work has been 
stimulated. Then we must identify executing tasks in VM and arrange them on a queue in 
ascending order. Now estimate total number of tasks in queue using waiting task in VMs. 
Give condition and If the first queue tasks ≥ 1 now terminate the load balancing logic or 
Else. If the last queue tasks ≤ now terminate the load balancing logic. Now find pending 
execution time and arrange VMs from low to high pending task and eliminate higher 
pending task and stop the process. 

Algorithm 1 Load Balancing 

Step 1: Start 

Step 2: Identify executing tasks in VM and 

Step 3: Arrange the task in ascending order on a Queue. 

a. Estimate number of tasks in queue using waiting task in VMs 

Step 4: If the first queue tasks ≥ 1 

a. Terminate the load balancing logic 
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Step 5: Else 

a. Go to step 6 

Step 6: End 

Step 7: If the last queue tasks ≤ 1 

a. Terminate the load balancing logic 

Step 8: Else 

a. Go to step 3 

Step 9: End 

Step 10: Find pending execution time 

Step 11: Arrange VMs from low to high pending task 

Step 12: Eliminate higher pending task 

Step 13: Execute from step 1 

Step 14: End 

4 Results and discussions 

The performance of the IWRR algorithm was evaluated in light of the results of the 
CloudSim simulation. CloudSim simulator classes have been enhanced in order to 
accommodate the new technique. When heterogeneous and homogeneous job lengths are 
mixed with heterogeneous resources, the RR, WRR, and IWRR algorithms are used to 
assess reaction time, the number of work migrations, the total idle task time, and the 
delayed tasks, among other things. In our research, we have used parameters such as time 
complexity (TC), average time complexity (TC), space complexity (SC), average space 
complexity (ASC), and retrieval time (RT). 

4.1 Dataset information 

This dataset was downloaded from the Kaggle Repository, which is a repository for 
online databases in general. This collection includes the Aadhar information for 
individuals who reside in about 8 states across our nation. It has 12 columns and 44,800 
rows. The dataset uses a total of 12 attributes in total. 

4.2 Time complexity 

Time complexity is generally defined as the time taken for the entire process of 
encryption to decryption. That is the time calculated from the first process of loading the 
dataset followed by encryption and decryption stages. 

( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 3 3  P n T n P n T n P n T n+ +  (5) 

where ( ) ( ) ( )1 2 3, , T n T n T n …  represents the execution time. 
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( ) ( ) ( )1 2 3, , .  P n P n P n …  indicates the input probability values. 

4.3 Average time complexity 

( )   IT n BiometricProcessTime
D

= +  (6) 

where I  denotes the total input file or text file 

D  indicates distributed size of each block. 

4.4 Average space complexity 

Average time complexity is generally defined as the overall time taken by each algorithm 
in the entire iteration process. The lower the time complexity, the higher the performance. 

. SpaceAverageSpaceComplexity Temp space Input= +  (7) 

where Temp. Space denotes Temporary Space. 

Input_Space denotes Space occupied by Input File. 

4.5 Retrieval time 
Average space complexity is defined as the space occupied by the dataset that has been 
divided into blocks and temporarily stored at some particular place during the entire 
encryption and decryption process. The lower the space complexity, the lower the 
retrieval time. 

SizeRTime TotalFile TimeComplexity
Average

=  (8) 

where R denotes Retrieval Time. 

Total File Size denotes the actual size of the Input File. 

Average Time Complexity denotes the overall time consumed by each algorithm. 

4.6 Overall execution time on heterogeneous resources with homogeneous task 

Following the results of Figure 2, IWRR by job length outperforms RR and WRR in the 
case of the heterogeneous resources and homogeneous workloads domains, respectively. 
The IWRR static scheduler method considers the length of the job as well as the 
processing capabilities of the heterogeneous virtual machines when allocating a job to 
them. Table 1 and Figure 2 represent the Execution Time taken during each set of tasks. 
From the results we can prove that the proposed IWRR Execution Time ranges from 
13 ms to 2 ms whereas existing WRR Execution Time ranges from 15 ms to 5.3 ms and 
RR Execution Time ranges from 16 ms to 8.1 ms. So it is proved that the proposed IWRR 
execution time is much less than other existing techniques. 

The outcome is that in heterogeneous systems with homogeneous workloads, virtual 
machines with higher capacity are assigned to a greater number of jobs than virtual 
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machines with lower capacity. This assists in completing the task in a shorter amount of 
time than previously anticipated. When assessing the current load of the dynamic 
scheduler, it takes into account all of the virtual machines that have been configured and 
estimates when the current load will be completed. The scheduler then estimates the 
completion time of a job for each VM that is created, and this time is added to the current 
load on each VM by the scheduler. In light of the aforementioned computations, the VM 
that would complete this particular paper the quickest is identified, and finally the job is 
allocated to a VM. As a result, this algorithm performs optimally in data centres that have 
a diverse collection of resources. The following Table 2 and Figure 3 represent the Task 
Migration during each set of tasks. From the results we can prove that the proposed 
IWRR Task Migration ranges is 0.1 ms whereas existing WRR Task Migration ranges 
from 0.5 ms to 0.1 ms and RR Task Migration ranges from 5.5 ms to 0.1 ms. So its 
proved that proposed IWRR Task Migration is very less than other existing techniques. 

Table 1 Execution time 

No. of tasks IWRR (ms) WRR (ms) RR (ms) 
10 13 15 16 
20 9 12 14 
30 6 8 12 
40 5 6 10 
50 4 6 9 
60 3 5.8 8.5 
70 3 5.8 8.5 
80 2 5.5 8.3 
90 2 5.5 8.2 
100 2 5.3 8.1 

Figure 2 Execution time (see online version for colours) 
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As soon as each task is completed, the IWRR job-length load balancer kicks in and 
begins balancing the workload. The load balancer identifies the heavily loaded VM and 
estimates the calculated job completion time for those that are currently running in the 
most heavily loaded VM and those that are currently running in the least heavily 
loaded/idle VM. It is planned to transfer one of those jobs from the highly strained virtual 
machines to the least stressed virtual machine as soon as one of those jobs is completed 
on the highly stressed VMs (Figure 3). 

Table 2 Task migration 

No. of tasks IWRR (ms) WRR (ms) RR (ms) 
10 0.1 0.5 5.5 
20 0.1 0.5 5.2 
30 0.1 0.5 5 
40 0.1 0.5 4.5 
50 0.1 0.1 1.5 
60 0.1 0.1 1.5 
70 0.1 0.1 0.1 
80 0.1 0.1 0.1 
90 0.1 0.1 0.1 
100 0.1 0.1 0.1 

Figure 3 Task migration (see online version for colours) 
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While calculating the WRR, it considers the relationship between VM capacity and 
overall VM capacity and then distributes the proportionate quantity of work that has 
arrived to each VM. As a result, it is able to achieve higher levels of performance. 
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Because of the above computation, jobs that are longer in duration will take longer to 
finish if they are allocated to virtual machines with low capacity (Figure 4). The 
following Table 3 and Figure 4 represent the Delayed Task during each set of tasks. From 
the results we can prove that the proposed IWRR Delayed Task ranges is 92 ms to 0 ms 
whereas existing WRR Delayed Task ranges from 95 ms to 0 ms and RR Delayed Task 
ranges from 100 ms to 20 ms. So its proved that proposed IWRR Delayed Task is very 
less than other existing techniques. 

Table 3 Delayed task 

No. of tasks IWRR (ms) WRR (ms) RR (ms) 
10 92 95 100 
20 72 80 80 
30 42 50 50 
40 20 23 38 
50 10 15 30 
60 0 0 28 
70 0 0 23 
80 0 0 22 
90 0 0 20 
100 0 0 20 

Figure 4 Delayed task (see online version for colours) 
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The environment, VM capabilities, and job durations are not taken into consideration by 
the simple RR (Figure 5). An orderly distribution of VM lists is ensured by assigning 
them one after the other. As a result, it takes significantly longer time to complete work 
than the other two algorithms combined. The following Table 4 and Figure 5 represent 
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the Million Instructions Re-executed during each set of tasks. From the results we can 
prove that the proposed IWRR Million Instructions Re-executed ranges from 1550 to 900 
whereas existing Million Instructions Re-executed range from 1000 to 0 and RR Million 
Instructions Re-executed ranges from 100 ms to 20 ms. So it is proved that the proposed 
IWRR Million Instructions Re-executed is better than other existing techniques. 

Table 4 Million instructions re-executed 

No. of tasks IWRR WRR RR 
10 1550 1000 1500 
20 1300 800 1290 
30 1100 500 1100 
40 1010 0 1000 
50 1000 0 1000 
60 980 0 980 
70 970 0 970 
80 960 0 960 
90 950 0 950 
100 900 0 950 

Figure 5 Million instructions re-executed (see online version for colours) 
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From the above results obtained, the parameters such as execution time, task migration, 
delayed task, and million instructions re-executed obtained by the proposed IWRR 
perform better and in a unique way in all aspects related to task scheduling. It is clearly 
proved that the proposed IWRR task scheduling is unique as it gives importance to all 
tasks in the same amount of time and does not give individual priority, which results in 
better performance. Our proposed IWRR has overcome the major drawbacks, such as 
Execution Time, Task Migration, Delayed Task, and Millions of instructions re-executed. 
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5 Conclusion 

It is proposed in this research to employ a round-robin technique to construct a cloud-
based load balancing system that makes use of the available cloud resources in a fair and 
equitable manner. Resources are allocated according to a rule-based round-robin 
technique, with cloud parameters serving as input tools for the algorithm. The IWRR load 
balancer is operated once each task has been completed. When a job is completed, this 
ensures that there is no idle time for participating VMs and that the workload is evenly 
distributed across all of those participating in the activity. Based on the findings of the 
performance analysis and the experiments, it was determined that the modified weighted 
round robin technique was the most acceptable solution for the heterogeneous and 
homogeneous tasks performed with virtual machines. When using this strategy, response 
time is the most important QoS indicator. According to the findings of the study, several 
cloud factors were investigated in order to evaluate the loads and available resources in a 
distributed cloud environment. Our resource allocation is done using cloudsim, and our 
outcomes are then evaluated in relation to several performance metrics like throughput 
and migration times, among other things. 
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