Characteristic analysis of discontinuous function modelling-based nano-biosensor and its detection for hyaluronidase
by Fangfang Zhang
International Journal of Nanotechnology (IJNT), Vol. 19, No. 6/7/8/9/10/11, 2022

Abstract: This study draws attention to the characteristics of a nano-biosensor based on a discontinuous function algorithm and its application in hyaluronidase (HAase) detection. The discontinuous algorithm model is introduced in the construction of sensor. AuNPs nanoparticles and nanocomposite materials of Nation-Ru(bpy)32+-AuNPs and Nation-Ru(bpy)32+-AuNPs-TTX are prepared for chemical modification of the electrode. Finally, a new nano-electrochemical immunosensor is successfully constructed. Twenty ICR male mice aged 6-8 months were selected as research subjects. They were randomly divided into control group and observation group, with their sperm protein extracted for Western blot and enzyme activity detection. The results show that AuNPs nanomaterials have good biocompatibility and conductivity, and demonstrate good sensitivity in the detection process. The enzyme detection results show that the enzyme activity of the observation group is higher than that of control group, indicating that the prepared sensor system has relatively high accuracy, with the detection being simple, more sensitive, and quicker.

Online publication date: Mon, 13-Feb-2023

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Nanotechnology (IJNT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com