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Abstract: To increase the efficiency of photovoltaic (PV) array output under variable 
environmental conditions, maximum power point tracking (MPPT) of the solar arrays is needed. 
This paper proposes fuzzy logic controller (FLC)-based MPPT, artificial neural network  
(ANN)-based MPPT, neuro-fuzzy (NF)-based MPPT, particle swarm optimisation (PSO)-based 
MPPT, and cuckoo search (CS) algorithm-based MPPT to combine an adaptive controller and an 
optimisation, to guarantee global stability and a constant settling time for all operation 
conditions. This combination enables an increase in the power generated in comparison with 
conventional MPPT techniques. Simulation results show that the proposed photovoltaic/storage 
generator is able to supply the suggested dynamic loads under different conditions, and achieve 
good performance. It is also noticed that operating the photovoltaic array based on maximum 
power point tracking conditions gives about 43% extra power generation than in the case of 
normal operation. 

Keywords: DC‐DC power converters; fuzzy control; fuzzy neural controller; maximum power 
point trackers; photovoltaic systems; particle swarm optimisation; PSO; renewable energy 
sources. 
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1 Introduction 
The energy crisis is the most critical issue threatening the 
world today because conventional energy sources, such as 
coal, oil and natural gas are finite. Also, carbon dioxide 
produced by burning fossil fuels causes climate change. 
Thus, the use of renewable energy sources, such as wind, 
solar, geothermal, and biomass resources, is an urgent 
requirement. The focus of this paper is on solar energy 
because its advantages surpass the advantages of other 
resources. Solar energy is clean, noiseless and renewable.  
It does not produce greenhouse gases, which cause 
environmental pollution or contamination. It can be 
generated at any place where sunlight is available and is 
useful in places where establishing an electricity grid is 
difficult (Abouadane et al., 2017). Electricity can be 
generated from solar energy, using either a direct method or 
an indirect method; the direct method uses photovoltaic 
systems and the indirect method uses optical devices, which 
provide steam to propel a turbine and generate electricity 
(Camacho et al., 2010). This paper discusses the direct 
method. 

Photovoltaic systems are preferred in distributed 
generation (DG) because electricity generators can be 
located close to the loads (Gonzalez-Longatt, 2005). The 
most crucial advantage of DG is power saving, as during the 
transmission of power from the power source to the user, 
4.2%–8.9% of the power can get wasted because the 
equipment used for power transmission is quite old (Ilyas  
et al., 2013). 

Photovoltaic systems have two main disadvantages, 
namely their high installation cost and their low efficiency 
(Dolara et al., 2009). To reduce their cost of generating  
1 kilowatt hour, the efficiency of photovoltaic systems has 
to be increased by using a dynamic tracking algorithm to 
track the maximum operating point, especially when the 
solar radiation and ambient temperature change. There are 
two types of maximum power point trackers: mechanical 
trackers and electronic trackers. Mechanical trackers direct 
the photovoltaic panel to track the sun using single or  
dual-axis trackers (Alexandru, 2019; Tudorache and 
Kreindler, 2010). Since these mechanical trackers have 

disadvantages, such as complexity, low efficiency, and high 
cost, electronic trackers are always preferred. 

Electronic maximum power point tracking (MPPT) 
techniques can be categorised into three classes: 
conventional, soft computing and optimisation-based MPPT 
techniques. Conventional MPPT techniques include the 
fractional open circuit voltage (FOCV) technique (Ahmad, 
2010), the fractional short circuit current (FSCC) technique 
(Sher et al., 2015), the perturb and observe (P&O) technique 
(Sera et al., 2013), and the incremental conductance  
(INC) technique (Safari and Mekhilef, 2010). As adaptive 
controllers have proved their efficiency over classical 
control methods (Wang et al., 2020; Wang. 2021), soft 
computing algorithms are used in MPPT. These algorithms 
include fuzzy logic controllers (FLCs) (Chim et al., 2011; 
Rajavel and Prabha, 2020), artificial neural networks 
(ANNs) (Hiyama and Kitabayashi, 1997; Elobaid et al., 
2012), and neuro-fuzzy (NF) controllers (Abido et al., 2015; 
Douiri, 2019), which are also used to track the maximum 
power points of photovoltaic systems. To further improve 
the efficiency of MPPT, optimisation-based MPPT 
techniques are used, including genetic algorithms (GAs) 
(Dahmane et al., 2013), differential evolutionary (DE) 
algorithms (Tajuddin et al., 2013), particle swarm 
optimisation (PSO) algorithms (Figueiredo et al., 2019), ant 
colony optimisation (ACO) algorithms (Titri et al., 2017), 
artificial bee colony (ABC) algorithms (Soufyane 
Benyoucef et al., 2015), grey wolf optimisation (GWO) 
algorithms (Mohanty et al., 2015) and cuckoo search (CS) 
algorithms (Ahmed and Salam, 2013). 

Increasing the efficiency of MPPT has been the focus of 
many researchers in the last decade. As stated in Saidi et al. 
(2019), Feroz Mirza et al. (2020) and Baimel et al. (2019), 
considerable research has been done on modifying 
conventional methods to improve their efficiency. For this 
purpose, the use of hybrid algorithms, which combine  
two algorithms to increase the MPPT efficiency (Labeeb  
et al., 2016; Padmanaban et al., 2019), has been employed. 
The speed, cost, complexity, number of sensors used, and 
dynamic and steady-state efficiencies of the different MPPT 
techniques vary. Thus, power engineers have to carefully 
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consider the advantages of each technique in selecting the 
most effective technique for an application (Ezinwanne  
et al., 2017). 

In this paper, the PSO algorithm with changing inertia 
weight is discussed, as many researchers have stated that the 
PSO with fixed inertia weight has a weakness in tracking 
the maximum power point. To highlight the proposed 
algorithm’s efficiency in tracking the MPPT, it is compared 
to conventional methods, soft computing methods, and the 
CS algorithm under constant, gradually changing, and 
rapidly changing atmospheric conditions, in addition to 
partial shading conditions. The paper is organised as 
follows: Section 2 presents a sample photovoltaic system, 
Section 3 is the preliminary, Section 4 proposed optimal 
MPPT techniques, Section 5 presents the simulation results, 
and Section 6 presents the concluding remarks. 

2 Photovoltaic system 
A stand-alone photovoltaic system consists of a 
photovoltaic array, a charge controller, a battery bank, an 
inverter, and the loads (Figure 1). A photovoltaic array 
converts sunlight into electrical energy. The charge 
controller consists of a DC-DC converter and an MPPT 
algorithm. The MPPT algorithm controls the DC-DC 
converter duty cycle. This takes place in order to match the 
internal resistance of the photovoltaic array to the load’s 
resistance and deliver maximum power. A DC-AC inverter 
converts the generated electricity from DC to AC to feed the 
AC loads. The battery bank is used to store any excess 
electricity, for use at night or during cloudy days. 

2.1 Modelling of photovoltaic array 
The single-diode model and the double-diode model are the 
two most commonly used photovoltaic models (Figure 2). 
The single-diode model is more popular and simpler than 
the double-diode model, although the latter provides more 
accurate results than the former (Eltamaly et al., 2019). 

Figure 1 A stand-alone photovoltaic system (see online version 
for colours) 

 

 

 

Figure 2 Photovoltaic cell models (a) single-diode model and  
(b) double-diode model 

 

 
(a) 

 
(b) 

The single-diode photovoltaic model can be represented by 
a photocurrent source connected to a resistance in series and 
a diode and a shunt resistance in parallel. To simplify the 
model, the resistances can be neglected, although the model 
will then be less reliable. The single-diode model can be 
represented by equation (1): 

exp 1pv pv s pv pv s
pv ph s

f th sh

V I R V I R
I I I

I V R
 +  + = − − −  

  
 (1) 

where Ipv and Vpv are the photovoltaic output current and 
voltage, respectively. Iph is the photo generated current, Is is 
the diode saturation current, If is the diode ideality factor,  
Rs and Rsh are the series and shunt resistances, respectively, 
and Vth is the thermal voltage defined in equation (2). 

B ath
c

K TV q=  (2) 

where KB is the Boltzmann’s constant (KB = 1.38  
× 10–23 J/K), Ta is the ambient temperature, and qc is the 
electron charge (qc = 1.6 × 10–19 C). 

The double-diode photovoltaic model is similar to the 
single-diode model, with one additional parallel diode. The 
following equation represents the double-diode model: 

1
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Figure 3 Photovoltaic array structures (a) series-parallel (SP)  
(b) bridge link and (c) total crossed tie structures  
(see online version for colours) 

 
(a) 

 
(b) 

 
(c) 

Since the amount of power generated by a PV cell is small, 
the cells can be connected in series or in parallel, to produce 
a higher voltage or a higher current, respectively. A 
photovoltaic module is obtained by connecting several 
photovoltaic cells. Many modules can be connected to 
construct a photovoltaic array, to produce the desired 
voltage and current. Three methods are available to connect 
photovoltaic arrays (Zou et al., 2020) (Figure 3). 

Figures 4 and 5 show the characteristics of the 
photovoltaic current-voltage (I-V) and power-voltage (P-V), 
respectively, of a single-diode model-based photovoltaic 
system, under changing atmospheric conditions. 

Figure 4 Photovoltaic I-V characteristics for (a) different solar 
irradiance levels and (b) different ambient temperature 
(see online version for colours) 

 
(a) 

 
(b) 

Figure 5 Photovoltaic P-V characteristics for (a) different solar 
irradiance levels and (b) different ambient temperature 
(see online version for colours) 

 
(a) 

 
(b) 

It is evident that there is only one maximum power point 
that changes with changes in solar irradiance and ambient 
temperature. It is important to operate the photovoltaic 
system at the maximum power point, so MPPT techniques 
are used to extract the maximum power from the 
photovoltaic system. 

2.2 DC-DC converter 
A boost converter is also called a step-up converter because 
its output voltage is always higher than the input voltage. 
Figure 6 shows the topology of the DC-DC boost converter. 
The boost converter consists of a voltage source, an 
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inductor, a capacitor, a diode, a switch, and the load 
resistance. 

Figure 6 Boost converter topology 

 

The switch (S) can be closed or opened to obtain the desired 
output voltage. The relationship between the input and 
output voltages is given in equation (4). 

1
s

o
VV

D
=

−
 (4) 

The inductor and capacitor values can be calculated using 
equations (5) and (6), respectively. 

2

min
(1 )

2
D D RL

f
−=  (5) 

min
rfDv

C
R

=  (6) 

where Δ .o
r

o

Vv
V

=  

The average inductor current can be obtained using the 
following equation: 

2(1 )
s

L
VI
D R

=
−

 (7) 

Since the output voltage and the inductor current depend on 
the duty cycle, the working status of the boost converter can 
be controlled by adjusting the duty cycle. An MPPT 
technique is used to control this duty cycle and obtain the 
desired voltage. It is also used to get the boost converter to 
operate the photovoltaic system at the voltage, at which the 
maximum power point occurs. 

3 Preliminary 
The main drawback of the photovoltaic system is its low 
efficiency and high initial cost, and dependency on 
atmospheric conditions, as shown in Figures 4 and 5. Thus, 
the photovoltaic system has to be operated at its maximum 
power point under any atmospheric condition. MPPT 
techniques can be used to extract maximum power from a 
photovoltaic system irrespective of the atmospheric 
conditions. MPPT uses an electronic system to change the 
electrical operating point of the photovoltaic module to 
deliver maximum power. Figure 7 shows the schematic 
diagram of the photovoltaic system with MPPT technique. 

 

Figure 7 Schematic diagram of MPPT (see online version  
for colours) 

 

The MPPT techniques discussed can be classified as: 

1 conventional 

2 soft computing 

3 optimisation-based MPPT techniques. 

Under optimisation-based MPPT techniques, the PSO 
algorithm and CS algorithm are discussed, and they are 
compared with other conventional and soft computing 
techniques to prove that the PSO algorithm surpasses other 
techniques in performance. 

In order to make the comparison, the conventional 
MPPT techniques (FSCC, FOCV, P&O and INC) 
techniques are recalled in this section. They are developed 
in former work in detail in Sher et al. (2015), Baimel et al. 
(2019), Elgendy et al. (2011) and Bollipo et al. (2020). 

3.1 Fractional short circuit current 
This technique depends on the linearity of the relationship 
between the current at which the maximum power point 
occurs (IMPP) and the short circuit current (Isc) (Sher et al., 
2015). This linear relationship is presented in the following 
equation: 

MPP p scI I I≈  (8) 

where Ip is the current proportional factor, which depends 
on the used photovoltaic panel. It will vary between 0.72 
and 0.92. 

The advantages of this method are its low cost – only 
one current sensor is required – simplicity, and ease of 
implementation. However, its efficiency is low because  
of the approximate relationship given in equation (8). 
Furthermore, it cannot track the maximum power point 
under changing atmospheric conditions. The flowchart of 
the FSCC technique is shown in Figure 8. 
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Figure 8 Flowchart of FSCC technique (see online version  
for colours) 

 

 

Figure 9 Flowchart of FOCV technique (see online version  
for colours) 

 

 

Figure 10 Flowchart of P&O technique (see online version for colours) 
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3.2 Fractional short circuit current 
The FOCV technique is similar to the FSCC technique 
because it also depends on the linear relationship between 
the maximum power voltage (VMPP) and the open-circuit 
voltage (Voc) (Baimel et al., 2019), as shown in equation (9). 

MPP p ocV V V≈  (9) 

where Vp is the voltage proportional factor, which is unique 
to each photovoltaic module and provided in the module’s 
datasheet. Its value is between 0.7 and 0.9. The flowchart of 
the FOCV technique is shown in Figure 9. This technique 
also has the same advantages and disadvantages as the 
FSCC technique. 

3.3 Perturb and observe 
The P&O technique is commonly used because of its 
simplicity and ease of implementation; it has only a few 

parameters to be measured. Figure 10 shows the flowchart 
of the P&O technique. 

Figure 11 Maximum power point of the P-V curve (see online 
version for colours) 

 

Figure 12 Flowchart of INC technique (see online version for colours) 
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In this technique, the DC-DC converter duty cycle is 
periodically increased or decreased. The output parameters 
are measured after every perturbation, and the output power 
is computed. The computed output power at any given time 
is compared with its previous value, and if this previous 
value is less than the current value, the duty cycle would be 
perturbed in the same direction and vice versa (Elgendy  
et al., 2011). 

The MPPT efficiency of the P&O technique is 
satisfactory. However, once the maximum power point is 
reached, the perturbations in the duty cycle will not cease, 
causing oscillations to occur around the maximum power 
point. The efficiency also depends on the step size ΔD. If 
ΔD has a low value, the convergence speed would be low; if 
its value is large, the oscillations will increase. 

3.4 Incremental conductance 
The INC technique is based on the fact that the derivative of 
the photovoltaic power with respect to the photovoltaic 
voltage is equal to zero at the maximum power point, as 
shown in Figure 11. It compares the instantaneous 
conductance with the INC as shown in the equations below. 

At maximum power point 

0pv

pv

dP
dV

=  (10) 

( )
0pv pvpv

pv pv

d I VdP
dV dV

×
= =  (11) 

0pv
pv pv

pv

dI
I V

dV
+ =  (12) 

pv pv

pv pv

dI I
dV V

= −  (13) 

where pv

pv

I
V

 is the instantaneous conductance and pv

pv

dI
dV

 is 

INC. 
According to equation (13), the maximum power point 

occurs when .pv pv

pv pv

dI I
dV V

= −  

If the operating point is to the right of the maximum 

power point, then pv pv

pv pv

dI I
dV V

< −  and the photovoltaic 

voltage (Vpv) would decrease. If the operating point is to the 

left of the maximum power point, then pv pv

pv pv

dI I
dV V

> −  and 

the photovoltaic voltage (Vpv) would increase (Bollipo et al., 
2020). 

The flowchart of the INC technique is shown in  
Figure 12. 

The INC technique, unlike the P&O technique, can 
cease when it reaches the maximum power point. Thus, 
although it does not cause oscillations around the maximum 
power point, its efficiency depends on the step size ΔD. 

4 Proposed optimal MPPT techniques 
4.1 Fuzzy logic controllers 
FLCs have proved their ability in controlling nonlinear 
systems and are used in many applications (Qu et al., 2012). 
FLCs are used for tracking the maximum power points of 
photovoltaic systems because they can emulate human 
expert behaviour using knowledge gained from experience; 
they are also simple and reliable. Using an FLC, a nonlinear 
controller can be constructed using heuristic knowledge. 
Many past researchers have presented the basic principles of 
FLCs (Bai and Wang, 2006; Lee, 1990). The FLC process is 
shown in Figure 13. 

Figure 13 FLC process (see online version for colours) 

 

In the fuzzification step, the inputs to the controller are 
transformed from physical forms into fuzzy forms, and the 
degree of membership of a parameter can be determined  
by applying any fuzzy membership function, such as 
trapezoidal, triangular, Gaussian and sigmoid membership 
functions. The rule base step is represented by a group of  
if-then rules that represent heuristic knowledge. The 
inference mechanism decides whether the rules are 
appropriate to the current time. The defuzzification step 
converts the fuzzy controller output to a crisp signal to be 
processed. 

In MPPT, the FLC inputs are the voltage change (ΔVpv) 
and the power change (ΔPpv) and the controlled signal is the 
DC-DC converter duty cycle change (ΔD). Five fuzzy sets 
are used to express the linguistic variables negative big 
(NEB), negative small (NES), zero (ZE), positive small 
(POS), and positive big (POB) for both the input and output 
variables of the designed controller. Table 1 presents the 
fuzzy rule base used to control the converter duty cycle. 
Figures 14, 15 and 16 show the Gaussian membership 
functions for the FLC inputs and outputs. The flowchart of 
the FLC-based MPPT technique is shown in Figure 17. 

Table 1 Rule-base of the FLC 

dp 
dv 

NB NS ZE PS PB 

NB NS NB NB PB PS 
NS ZE NS NS PS ZE 
ZE ZE ZE ZE ZE ZE 
PS ZE PS PS NS ZE 
PB PS PB PB NB NS 
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Figure 14 Membership function for the voltage change ΔVpv (see online version for colours) 

 

Figure 15 Membership function for the voltage change Δppv (see online version for colours) 

 

Figure 16 Membership function for the voltage change ΔD (see online version for colours) 

 

 
4.2 Artificial neural network 
An ANN is a mathematical model used to mimic the 
structure and the functions of a biological neural network. 
ANN has proved its efficiency in controlling a nonlinear 

system in many applications (Sun and Zhu, 2012; Kankar  
et al., 2012; Bansal, 2009). The structure of an ANN can be 
represented by a group of neurons connected to process 
information. An ANN is an adaptive system that can change 
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its own structure based on internal or external information. 
ANNs can solve complicated problems encountered in 
control systems, signal processing and pattern recognition. 

Figure 17 Flowchart of FLC-based MPPT technique (see online 
version for colours) 

 

In the last decade, ANNs were used to extract  
maximum power from photovoltaic systems because of their 
self-learning capabilities and the ability to predict the 
maximum power points of the photovoltaic systems under 
different atmospheric conditions. The structure of an ANN 
is shown in Figure 18. It has three layers: input layer, 
hidden layer and output layer. The input layer consists of 
two neurons to represent the inputs of the ANN, the hidden 
layer of four neurons, and the output layer of one neuron to 
represent the ANN output. 

In MPPT, the inputs of the ANNs are the photovoltaic 
voltage and power changes represented by X1 and X2, 
respectively and the output is the converter’s duty cycle 
change (D) represented by U as shown in Figure 18. After 
calculating the duty cycle using the ANN technique, the 
photovoltaic output power (Popv) is compared with the 
desired photovoltaic power (Pdpv) to calculate the error (e) 
which is used by the error back propagation tuning (EBPT) 
algorithm to adjust the weights of the hidden layer (wij,  
i = 1, ……, 4, j = 1, 2) and the weights of the output layer 
(Vi, i = 1, ……, 4). 

4.3 NF controller 
NF controllers have the advantages of both ANNs and FLCs 
but do not have the disadvantages of the latter two. The 

heuristic knowledge and commentary power of an FLC can 
be combined with the computational and learning ability of 
an ANN to form a transparent ANN and a competent FLC 
that learns from previous experience. NF controllers have 
proved their efficiency in controlling nonlinear systems in 
many applications (Singh et al., 2009; Yang and Zhao, 
2012). An NF controller is illustrated in detail in Abdulaziz, 
et al. (2019). Figure 19 shows the NF network structure. 
The purpose and the tasks of each layer are given below: 

• Layer 1 (input layer): This layer conveys the crisp input 
to the fuzzification layer 

(1) , 1, 2,iiX X i= = ……  (14) 

where X represents the inputs of the NF network. 

• Layer 2: The fuzzification process is performed in this 
layer to calculate the degree to which the crisp input 
matches the fuzzy membership function. The process 
can be described using equation (15) given below. 

( )2(1)
(2)

2
exp iji

ij
ij

X c
X

σ

 − = − 
 

 (15) 

where cij and σij represent the mean and the deviation of 
the Gaussian membership function, respectively, for the 
ith dimension and jth rule node. 

• Layer 3: This is the rule node that calculates the firing 
strength by using the product operation shown below: 

(3) (2) .i iji
X X= ∏  (16) 

• Layer 4: This is the defuzzification layer, which 
calculates the crisp output as shown below: 

( )(4) (3) (3)
1 1

m n
zi i ii z

X X O X
= =

= ∗   (17) 

z = 1, 2, ……, n, where the number of output 
membership functions is denoted by n, and the centre of 
the output membership function is denoted by Oz. 

In MPPT, the inputs of the NF controllers are the changes in 
the photovoltaic output voltage (ΔVpv) and power (ΔPpv) and 
the output is the change in the duty cycle (ΔD). When the 
duty cycle change (ΔD) is calculated using the NF 
controller, the actual photovoltaic output power (Popv) is 
compared with the desired photovoltaic power (Pdpv) to 
adjust the NF parameters (i.e., width and deviation of the 
fuzzy membership function) using the EBPT algorithm 
described below. 

Assuming a single output parameter, the EBPT 
algorithm distinguishes the objective function shown in 
equation (18). 

( )1( ) ( ) ( )
2 ppv opvE d P d P d 2= −  (18) 

where E(d) is the error signal for the present iteration. 
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Figure 18 Structure of ANN (see online version for colours) 

 

 
Figure 19 Structure of NF network (see online version  

for colours) 

 

The centre of the output membership function in Layer 5 
can be updated using the following equation: 

( 1) ( ) Δ ( )

( )

z z z z
z

z
z

EO d O d O O d η
O

E YO d η η
Y c

∂+ = + = −
∂

∂ ∂= − ∗
∂ ∂

 (19) 

where Y is the output of the NF network. 

The following equations are used to update the 
parameters cij and σij in Layer 2: 

(3) (2)

(3) (2)

( 1) ( )

( )

ij ij
ij

i i
ij

iji i

Ec d c d η
c

E Y D Dc d η
Y cD D

∂+ = −
∂

 ∂ ∂ ∂ ∂= − ∗ ∗ ∗ ∂ ∂∂ ∂ 

 (20) 

(3) (2)

(3) (2)

( 1) ( )

( )

ij ij
ij

i i
ij

iji i

Eσ d σ d η
σ

E Y D Dσ d η
Y σD D

∂+ = −
∂

 ∂ ∂ ∂ ∂= − ∗ ∗ ∗ ∂ ∂∂ ∂ 

 (21) 

where η < 1 is the learning constant. 

4.4 PSO-based MPPT techniques 
Swarm-based algorithms can solve complex problems 
because they can cover a wide range of applications owing 
to their robustness, ease of implementation, low cost and 
flexibility (Huynh and Dunnigan, 2012; Shivakumar et al., 
2012). PSO is a swarm-based algorithm introduced by 
Kennedy and Eberhart (1995). PSO is used in many 
applications because it is accurate, reliable, and easy to 
implement, requires only a small calculational memory, and 
has only a few lines of code and parameters to be 
determined. PSO is inspired by a biological herd of birds 
seeking food in a specific area. In PSO, the herd is called 
the ‘swarm’, and the birds are called ‘particles’. Firstly,  
the swarm is initialised in the search space with several 
particles in random positions. These particles search for the 
optimum solution. The position and velocity of each particle 
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are updated after each iteration, based on the following 
equations (Poli et al., 2007): 

( )
( )

1 1

2 2

( 1) ( 1) ( ) ( )
( )

i i best i

best i

v t ω t v t C r p p t
C r g p t

+ = + ∗ + −

+ −
 (22) 

( 1) ( ) ( 1)i i ip t p t v t+ = + +  (23) 

where vi(t + 1) is the current velocity, vi(t) the previous 
velocity, pi(t + 1) the current position, pi(t) the previous 
position of the particle i, and r1 and r2 are random numbers 
where r1, r2 ∈ [0, 1], C1 and C2 are the cognitive learning 

rates, ω(t + 1) is the inertia weight in the current iteration, 
pbest is the best position achieved by the particle, and gbest is 
the best position achieved by the particle neighbours. 

After updating the position and velocity of each particle, 
the fitness evaluation function is calculated. If the fitness 
value of the updated particle is better than the memorised 
personal best position (pbest), pbest is adjusted to make it 
equal to the position of the current particle, and the same 
procedure is repeated for the global best position (gbest). The 
flowchart of the PSO algorithm is shown in Figure 20. 

Figure 20 Flowchart of PSO algorithm 
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Figure 21 Pseudo-code of the CS algorithm 

 

 
According to equation (22), the velocity of the current 
particle is affected by many parameters, such as ω, C1, C2, 
r1 and r2. Therefore, they have to be carefully chosen to 
obtain the globally optimal solution and avoid a local 
optimal solution. 

In order to avoid falling in local optimal solution, the 
inertia weight for each iteration can be obtained using the 
following equation: 

max min
max

max
iter

ω ωω ω iter
iter

−= − ∗  (24) 

where ωmax is the maximum inertia weight (ωmax = 0.9), 
ωmin is the minimum inertia weight (ωmin = 0.4), itermax is 
the maximum number of iterations, and iter is the current 
iteration number. According to this equation, the inertia 
weight (ω) will be at its maximum value at the start of the 
iterations in order to accelerate the particles’ velocity and 
reach the optimal solution as quickly as possible. The value 
of (ω) will be reduced at the end of iterations to ensure that 
the global optimal solution is reached. 

C1 and C2 have to be adjusted because if C1 is larger 
than C2, the algorithm would be stuck in the local optimal 
solution rather than the globally optimal solution. If C2 is 
larger than C1, the result would be an extreme movement in 
the search space (He et al., 2016). As a result, the values of 
all the parameters should be carefully chosen to obtain the 
globally optimal solution. 

In MPPT, the particle position represents the converter’s 
duty cycle, while the fitness evaluation function represents 
the photovoltaic generated power. The PSO algorithm in 
MPPT has the following steps: 

Step 1 Initialisation step – In this step, a swarm is 
initialised with several particles placed at fixed 
positions and covering the search space. The search 
space extends from Dmax to Dmin where Dmax and 
Dmin are the maximum and minimum duty cycles 
of the converter, respectively. 

Step 2 Fitness evaluation – After calculating the 
converter’s duty cycle, the photovoltaic generated 
current (Ipv) and voltage (Vpv) are measured to 
calculate the photovoltaic power (Ppv). The 
photovoltaic power is the fitness function, and the 
PSO algorithm has to maximise its value. 

Step 3 Updating the personal and global best position –  
If the fitness value of the particle is greater than its 
memorised value, (pbest) has to be updated to make 
it equal to the current particle’s position, and the 
same procedure has to be followed for (gbest). 

Step 4 Updating – The velocity and position of each 
particle has to be updated according to  
equations (22) and (23), respectively. 

 



 Optimal control strategies-based maximum power point tracking for photovoltaic systems 77 

Step 5 Repeating – The previous steps have to be repeated 
until the generated photovoltaic output power 
(Popv) is equal to the desired photovoltaic power 
(Pdpv) or the maximum number of iterations is 
reached. 

4.5 CS algorithm 
Yang and Deb (2009) developed the CS algorithm. It is a 
metaheuristic algorithm inspired by the breeding strategy of 
cuckoo birds. Cuckoo birds lay their own eggs on other 
birds’ nests; these birds are called host birds. To increase 
the reproduction probability of their own eggs, cuckoo birds 
may throw away the host birds’ eggs. Cuckoo eggs are often 

very similar to host eggs except that they are slightly bigger. 
Cuckoo eggs are hatched earlier than host eggs, and once 
the cuckoo chick is hatched, it will expel the host eggs from 
the nest to increase its feeding chance. The host bird can 
discover the cuckoo eggs with probability pa where  
pa ∈ [0, 1]. When the host bird discovers cuckoo eggs, it 
will either destroy them or abandon the nest and build 
another one. 

Looking for the host nests is similar to the process of 
searching for food. It is found that Drosophila melanogaster 
fruit flies search the landscape using a sequence of straight 
forward flight directions interrupted by a rapid 90° shift 
which leads to the Lévy flight style (Reynolds and Frye, 
2007). 

Figure 22 Flowchart of CS algorithm 
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The eggs in the nest refer to a set of solutions in the CS 
algorithm, and the cuckoo egg is the new solution. There are 
three main rules: 

1 The cuckoo bird lays only one egg at a time in a 
randomly selected nest. 

2 The nest with eggs similar to the host egg is the best 
nest and will carry over to the next generation. 

3 The number of nests is fixed, and the probability that 
the host bird discovers the cuckoo egg is pa ∈ [0, 1]. 
This is the worst solution, and the nest will be replaced 
in the next generation by randomly generated nests with 
random solutions. 

The new nests are generated by the Lévy flight equation as 
shown below: 

( 1) ( ) ( )t t
i ix x Lévy λ+ = + ⊕α  (25) 

where ( 1)t
ix +  is the new solution, ( )t

ix  is the current solution, 
α is the step size and α > 0, ⊕ is entry wise multiplication, 
and Lévy(λ) can be obtained by the following equation: 

( ) λLévy λ u l−≈ =  (26) 

where 1 < λ < 3. 
For further explanation of the CS algorithm steps,  

it is explained in pseudo-code and flowchart in Figures 21 
and 22, respectively. 

In MPPT, the nest position represents the converter’s 
duty cycle, while the fitness evaluation function represents 
the photovoltaic generated power. 

5 Simulation results 
MSX-60 photovoltaic module was built using 
MATLAB/Simulink program to analyse the performance of 
the MPPT techniques. The specifications of the MSX-60 
photovoltaic module are presented in Table 2. The 
simulation was done for different solar irradiance levels 
with the temperature fixed at 25℃. 

 

Table 2 Specification of MSX-60 module 

No. of cells per module 36 
Open circuit voltage 21.8 V 
Short circuit current 3.8 A 
Voltage at the maximum power point 17.1 V 
Current at the maximum power point 3.5 A 
Open circuit voltage temperature coefficient –0.08 V/°C 
Short circuit current temperature coefficient 0.003 A/°C 
No. of series connected modules 2 
No. of parallel connected modules 2 
Maximum power point 59.85 W 

5.1 Constant solar irradiance 
In this case, the solar irradiance is maintained at  
1,000 W/m2. The photovoltaic generated power for each 
technique is shown in Figure 23. 

5.2 Gradually changing solar irradiance 
The solar irradiance is changed gradually from 700 to  
1,000 W/m2, as shown in Figure 24. The performance of 
each technique is shown in Figure 25. 

5.3 Rapidly changing solar irradiance 
The solar irradiance is unstable and changes rapidly from 
550 to 1,000 W/m2, as shown in Figure 26. 

Figure 27 shows the photovoltaic generated power using 
different MPPT techniques. 

Figures 23, 25 and 27 indicate that the FSCC and FOCV 
techniques cannot track the maximum power point, even 
when the solar irradiance is constant. The P&O technique 
has acceptable performance and fast response, although it 
continuously oscillates around the maximum power point. 
INC also has acceptable performance but slightly oscillates 
around the maximum power point. It is obvious that the 
P&O and INC techniques take some time to reach the 
maximum power point, at the beginning of iterations, but 
they reach to the maximum power point very fast in case of 
rapid transition of the solar irradiance. 

Figure 23 Performance of different MPPT techniques under constant atmospheric conditions 
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Figure 24 Solar irradiance vs. time (see online version for colours) 

 

Figure 25 Performance of different MPPT techniques under gradually changing solar irradiance (see online version for colours) 

 

Figure 26 Solar irradiance vs. time (see online version for colours) 

 

Figure 27 Performance of different MPPT techniques under rapidly changing solar irradiance (see online version for colours) 
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Figure 28 Partial shading conditions scenario (see online version for colours) 

 

Figure 29 Performance of different MPPT techniques under partial shading conditions (see online version for colours) 

 

 
The FLC technique has satisfactory performance with no 
oscillation at all; however, it takes a long time to track the 
maximum power point. The ANN technique also has 
satisfactory performance with no oscillations, but it takes a 
long time to yield output. The performance of the NF 
technique is better than the performance of any of the other 
techniques already mentioned, but it has slight oscillations 
at the beginning of iterations. It is also clear that the soft 
computing techniques take a while to reach the maximum 
power point, in case of rapid change in solar irradiance. 

The CS and PSO techniques have the best performance 
under any atmospheric condition because they can track the 
optimum maximum power point efficiently and robustly, 
but the performance of the PSO algorithm is slightly faster 
and better than the performance of the CS algorithm. It is 
obvious that the CS and PSO techniques have the fastest 
response at the beginning of iterations and acceptable 
convergence speed during rapidly changing solar irradiance. 
However, conventional techniques have a faster response 
under rapidly changing solar irradiance. 

5.4 Partial shading conditions 
The photovoltaic array is tested under partial shading 
condition scenario, as shown in Figure 28. The performance 
of each MPPT technique is shown in Figure 29. 

Figure 29 indicates that the conventional and soft 
computing techniques failed to track the maximum power 
point, under partial shading conditions. It is evident that the 
CS and PSO algorithms can track the maximum power point 
efficiently, under partial shading conditions, but the 
performance of the CS algorithm is not stable at the 
beginning of iterations. Table 3 shows comparisons in 
performance between the discussed MPPT techniques. 

Table 3 Performance comparison of MPPT techniques 

Technique Efficiency 
(%) 

Computational 
complexity 

Convergence 
speed 

FSCC 67.23% Simple Low 
FOCV 53.67% Simple Medium 
P&O 93.32% Simple High 
INC 93.86% Simple High 
FLC 94.12% Simple Medium 
ANN 94.08% Simple Medium 
NF 94.34% Medium Medium 
PSO 99.14% Medium High 
CS 98.46% Medium High 

6 Conclusions 
In this paper, conventional, soft computing, and 
optimisation-based MPPT techniques were discussed  
and applied to a photovoltaic system using the 
MATLAB/Simulink program, to determine the performance 
of each technique under changing atmospheric conditions. 
Simulation results indicate that the FSCC and FOCV 
techniques cannot reach the maximum power point and their 
tracking efficiency is low. The tracking efficiency of the 
P&O technique is acceptable, and it can quickly reach the 
steady-state. The efficiency of the INC technique is better 
than that of the P&O technique, but the P&O technique still 
displays a faster response than INC. Soft computing 
techniques are more efficient than conventional techniques, 
but they take a long time to reach the steady-state. The NF 
technique is the most efficient soft computing technique. 
The performance of the CS algorithm is better than the 
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performance of any of the other techniques already 
mentioned. The PSO algorithm is superior in performance 
to others because it can robustly and efficiently track the 
maximum power point, with a fast response. However, it 
takes a long execution time, and its response is slightly 
slower than that of conventional techniques under rapidly 
changing solar irradiance. It is expected that researchers will 
work to develop a new technique that combines between the 
convergence speed of conventional techniques under rapidly 
changing atmospheric conditions and the efficiency of the 
PSO technique, to further track the maximum power point 
more efficiently. 
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