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Abstract: This paper presents the modelling and parameter identification of the gas exchange
dynamics during cycling. A discrete-time linear parameter-varying model is proposed, which
relates the dynamics of oxygen consumption and carbon dioxide production with the developed
pedal power. A state-dependent nonlinear function is used for modelling the excess carbon
dioxide production. The approach proposed for parameter identification is based on specific
exercise scenarios tailored to the considered individual, which reduces the data acquisition
process. The parameter identification process is performed as a solution of a sequence of
nonlinear unconstrained optimisation problems using measured data from different cycling
scenarios. An illustration of the methodology used for the identification and the validation of
the model is also presented.
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1 Introduction

A human body performing a cycling workout can be
considered as a dynamical system. The whole rider-bicycle
system can be seen as an energetic system which transforms
chemical energy into mechanical energy. Similar to an
electric machine, the mechanical variables as cadence,
torque and power allow us to obtain information about
the mechanical capabilities of a given human body to
produce mechanical effort. On the other hand, physiological
variables as gas exchange, heart rate (HR), blood lactate,
among others, are often used to determine the physiological
capabilities of a cyclist to produce an effort. In this
paper, we deal with the modelling and identification of
gas exchange dynamics, for a given individual, seen as
a consequence of the produced mechanical power during
cycling.

Physiology studies provide the basis for understanding
the relationships between variables involved in energy
transformations within humans (Krogh and Lindhard, 1913;
Hill and Lupton, 1923; Casaburi et al., 1989). During
a physical activity, molecules of adenosine triphosphate
(ATP) are hydrolysed in the muscles in order to ensure
the balance between the energy produced and the energy
required to perform the exercise. The resynthesis of ATP
can occur based on two different pathways: the aerobic
pathway, in presence of oxygen (O2), or the anaerobic
pathway, without oxygen. Thus, to face the increase
in energy demand, the human ventilatory system adapts
with an increased oxygen consumption, denoted V̇ O2 (in
l/min) and carbon dioxide production (V̇ CO2) to enable
ATP resynthesis. Mainly, HR and gas exchange are used
to assess human performance during exercise (Abbiss
and Laursen, 2005; Noakes, 2000), but gas exchange is
considered as a standard method to calculate some widely
known physiological indices. The most common is the
anaerobic threshold (AT), proposed by Casaburi et al.
(1989). The AT marks the onset of a nonlinear increase
of V̇ CO2 during exercise associated with the metabolic
acidosis and is easily identified using the V-slope method
during an incremental cycling test (ICT) (Wasserman et al.,
1973; Beaver et al., 1986). The AT is used extensively to
adapt the intensity of an exercise session to the individual.

The possibility of improving the capacity and
performance of human beings in activities such as athletics
or cycling, has motivated the research in modelling
the relationship between physiological and mechanical
variables (Aftalion and Bonnans, 2014; Le et al., 2008;
Meyer and Senner, 2018). The interest of obtaining a gas
exchange dynamics model for a given individual resides in
the capability to estimate and/or predict the behaviour of
an individual with respect to the work load.

One approach for the modelling of dynamical systems
is the use of physical laws accepted by the scientific
community, like energy balances, mass balances or
Newton laws. In the case of the respiratory system
phenomenological equations based on gaseous pressure
or cardiovascular system changes can be used as in Pal
et al. (2020). However, there is an inherent difficulty in

knowing and measuring the chemical reactions that are
occurring within the body. Other popular approaches to
model V̇ O2 kinetics include models based on a single
or multiple exponential functions (Barstow and Molé,
1991; Bell et al., 2001; Casaburi et al., 1989; Hughson
et al., 1988). From a control engineering point of view,
this behaviour can be modelled by first order differential
equations used for describing simple dynamical systems.
In Gaskill et al. (2001), other static methods are presented
to describe the changes in oxygen consumption or carbon
dioxide production. In Olds et al. (1993) and Morton
(2006), differential equations are used for the description
of oxygen uptake, but calibration of parameters is
performed experimentally under strong assumptions. Here,
a data-based linear parameter-varying (LPV) dynamical
model is obtained for the cyclist gas exchange dynamics, in
contrast to phenomenological or static models.

Recently, the control community proposed different
approaches to tackle the modelling of gas exchange
dynamics. Both Su et al. (2007) and Savkin et al.
(2012) proposed to use a nonlinear Hammerstein model
to express the transfer between V̇ O2 and the running
speed, and V̇ O2 and the HR and respiratory frequency
respectively. Nonlinear models based on machine learning
and sensor fusion were proposed in Altini et al. (2015),
Beltrame et al. (2017) and Shandhi et al. (2020). Even
though the proposed models allow the user to predict the
physiological response of the exercising individual their
applicability is often restricted to V̇ O2 prediction and do
not take V̇ CO2 into account. Machine learning approaches
require the collection of large data bases, which is not
always compatible with physiological applications given the
fact that data acquisition requires the availability of the
considered individual. Also, from a control point of view,
nonlinear models are difficult to use in practice in order
to design control laws, which could, in this case, enable to
adapt or optimise training to the individual (Atkinson et al.,
2003).

Our model considers a state-dependent varying
parameter in the output which allows the modelling of
transitions between two modes:

1 low excess of carbon dioxide (low εCO2), related
with aerobic pathway

2 high excess of carbon dioxide (high εCO2) related
with anaerobic pathway.

This time-varying parameter has been written in terms of
a novel physiological index by using a transition function,
which significantly helps the classification of those modes.
The presented model is intended for conceiving real-time
applications as observation, control design and system
analysis, as it is illustrated in Rosero et al. (2021) for
designing an LPV observer of CO2. In particular, it is
envisaged to use the proposed model to design novel
electrical assistance systems for bicycles. Due to the limited
size of the available datasets, the proposed structure of
the model consist in a limited number of parameters
tailored to the individual performing the cycling tests. These
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parameters are identified using a sequence of nonlinear
unconstrained optimisation problems. The proposed model
identification methodology uses different tests according to
the varying parameter values as in Huang and Zhao (2018).
Results are illustrated and validated by using experimental
data of two given individuals in different scenarios.

This paper is an extended version of the work presented
in Rosero et al. (2018). The previous work is extended
with the explanation of the structure of the gas exchange
model, the experiment design, the description of the model
identification process with further details, the complete
validation process and an illustration of the methodology
with experimental data concerning untrained and trained
individuals.

Within the context of modelling O2 and CO2 dynamics
during cycling activities, the direct contribution of the paper
is twofold:

1 First, we present a novel dynamical model that
simultaneously describes the O2 and CO2 dynamics
as function of pedal power. In addition, this model
also provides information about the excess CO2

dynamics. This model can be used for simulation,
prediction, filtering and/or estimation, both for off-line
or on-line applications.

2 Second, we propose a new parameter identification
methodology intended for calibration of the model for
a given individual. This could be useful for
personalised applications. In particular, the parameter
identification methodology includes a choice of the
model structure intended for reducing the number of
parameters to be found. This point is useful for
applications where collecting data is difficult or
expensive.

The paper is organised as follows: in Section 2, the
chemical reactions for producing energy are explained
from a physiological point of view. Section 3 reports the
procedure, equipment and tests used to obtain the data.
Section 4 addresses the proposed approach concerning
the system modelling. Section 5 presents the proposed
model and its structure. Section 6 describes the parametric
identification methodology. Finally, Section 7 illustrates
the approach by using measured data of two different
individuals on different cycling scenarios and presents the
criteria used for the validation of the model.

2 Gas exchange during cycling

The energy required to perform a physical activity is
obtained from a series of chemical reactions that transform
nutrients into ATP, the muscular energy currency.

According to McArdle et al. (2006), there are mainly
three pathways to synthesise ATP:

1 aerobic

2 alactic anaerobic

3 lactic anaerobic.

The aerobic pathway is the most efficient, but requires
an adequate supply of oxygen to the muscles and it
activates slowly. During the transient required to adapt
the respiratory system, energy is produced through the
alactic anaerobic pathway. This pathway uses molecules of
phosphocreatine (PCr) and adenosine diphosphate (ADP) to
synthesise ATP. During moderate and prolonged exercise,
energy comes mainly from the aerobic pathway, using
firstly glycogen stored in active muscles and liver glycogen,
which provides almost half the energy requirement, with the
remainder from fat breakdown with minimal amounts from
blood glucose.

Examples of aerobic ATP synthesis from glucose and fat
can be represented by the reactions (1) and (2), respectively.

C6H12O6 + 36Pi+ 36ADP + 6O2

−→ 6CO2 + 6H2O + 36ATP (1)

CH3(CH2)14COOH + 130Pi+ 130ADP + 23O2

−→ 16CO2 + 16H2O + 130ATP (2)

The above chemical reactions come from the decomposition
of substrates to produce ATP and carbon dioxide in
presence of oxygen. It is possible to simplify the aerobic
ATP synthesis in a very general way as follows:

Substrate+O2 −→ CO2 +ATP +Ω (3)

where Ω represents other chemical substances produced
during the reaction (including water), and where only the
involved molecules are mentioned without specifying their
number.

Figure 1 The model for lactic acid buffering by bicarbonate
and the control of hyperventilation above ventilatory
threshold: from Wasserman et al. (2005) redrawn by
Péronnet and Aguilaniu (2006)

Figure 1 shows a scheme of how energy is obtained
from substrates. When a moderate exercise is performed,
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energy is mainly obtained through aerobic reactions as
equation (3) and carbon dioxide output is proportional to
oxygen consumption.

Figure 2 Example of evolution of pedal power, the proposed
index z(k), RER and HR during high-intensity and
moderate workouts (see online version for colours)

When a supra-maximal exercise is performed, anaerobic
reactions occur, where the substrate forms molecules of
pyruvate which is then reduced to lactate (La).

Substrate −→ Pyruvates −→ La+ATP (4)

The presence of lactate and an excess of hydrogen
ions H+ activates the lactate clearance mechanisms to
maintain proper acid base balance (McArdle et al., 2006).
The sodium bicarbonate NaHCO3 in the blood buffers
or ‘neutralises’ the lactate generated during anaerobic
metabolism in the following reaction:

HLa+NaHCO3 −→ NaLa+H2CO3

−→ CO2 +H2O (5)

In pulmonary capillaries, carbonic acid breaks down into
carbon dioxide and water to allow carbon dioxide to readily
exit through the lungs. Therefore, that buffering adds ‘extra’
CO2 to expired air above the quantity normally released
during cellular energy metabolism. Relatively low CO2

production occurs after exhaustive exercise when carbon
dioxide remains in body fluids to replenish bicarbonate

that buffered the accumulating lactate. Then, anaerobic
pathway implies additional carbon dioxide production.
More explanations on the topic of CO2 overproduction can
be found in Wasserman et al. (1973), Wasserman et al.
(2005) and Péronnet and Aguilaniu (2006).

It is possible to simplify the anaerobic ATP synthesis in
a very general way using equations (4) and (5) as follows:

Substrate −→ CO2 +ATP +Ω (6)

Equations (3) and (6) do not contain the details of chemical
reactions, but they give an idea of the inputs and outputs
involved in gas exchange during physical exercise. In this
sense, measured variables V̇ O2 and V̇ CO2 give relevant
information about the amount of energy being processed in
the body.

3 Experiment description

A physiological dynamical model is highly dependent on
the subject. Characteristics such as age, training level,
health state or sex change values of parameters. For this
reason, in this paper we propose a methodology to identify
a model that is tailored to the considered individual. The
methodology can be reproducible in similar conditions and
using equivalent measurements.

Figure 3 An individual performing a cycling test for system
identification (see online version for colours)

Ten apparently healthy adults (including male, female,
ranges of age from 17 to 55 and different training levels)
perform the protocol test. Results of two male subjects
with different training level are shown in Section 7. Similar
results were found for the other subjects.
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Participants were instructed to avoid alcohol, caffeine,
and strenuous exercise on each assessment day and heavy
meals 2 hours prior to testing. Visits were separated by a
minimum of 24 h.

During visit 1, participants performed a low intensity
exercise on the cycle ergometer for familiarisation, allowing
them to choose a comfortable pedalling cadence. Then, they
performed the ICT from which the AT is identified in order
to choose the intensity for next tests.

During visit 2, participants completed the constant
power aerobic test (CPAT) followed by a resting period.
Then, they performed the constant power anaerobic test
(CPAnT).

Finally, during visit 3, participants performed the
combined aerobic/anaerobic test (CAAT).

The experimental benchmark is located at GIPSA-Lab,
Control System Department. Gas exchange data was
collected breath-by-breath and then resampled by
interpolation with a constant sampling period of 1 sec.
Figure 3 shows an individual performing a cycling test.

3.1 Experimental setup

The used experimental setup is formed by:

• A mechanical cyclist trainer, Hammer (CycleOps,
Madison, USA), for setting different cycling
scenarios. It provides measurements of pedal power
and cadence.

• A medical equipment to measure respiratory gases
exchanges during exercise, Metalyzer 3b-R3 (Cortex
Biophysik, Liepzig, Germany).

• A chest belt with HR sensor Polar H10 (Polar Electro
Oy, Kempele, Finland), which transmits HR data via
Bluetooth Low Energy.

3.2 Description of the chosen scenarios

Different datasets are needed for the identification and
further validation of the model. Four scenarios are chosen
to apply the parametric identification method.

3.2.1 Incremental cycling test

It consists in maintaining a specific cadence while the load
is increased progressively, i.e., the load is increased 15W
per minute. The test is finished when the cyclist is not able
to maintain the power output (imposed by the mechanical
cyclist trainer).

3.2.2 Constant power aerobic test

It consists in maintaining a low specific power and constant
cadence during pedaling for ten min. The exercise intensity
is chosen to perform a moderate exercise, below the AT of
the considered individual.

3.2.3 Constant power anaerobic test

It consists in maintaining a high specific power and constant
cadence during pedaling for five min. The power level is
chosen for performing a high intensity workout (twice the
power used during the aerobic test), above the AT of the
considered individual. The energy required to perform both
the CPAT and the CPAnT is the same, only the power
varies.

3.2.4 Combined aerobic/anaerobic test

It consists in a scenario which combines several CPATs
and CPAnTs. This scenario contains a moderate intensity
workout, a high intensity workout and their associated
recovery periods. This scenario is used for the calibration
of the transition function (15).

4 Gas exchange model approach

The behaviour of oxygen consumption and carbon dioxide
production over time reflects intramuscular biochemical
events, humoral transport delays and changes in gas stores
as stated in Casaburi et al. (1989). These phenomena
are characterised as dynamic processes. In view of these
aspects, a static description would suffice neither to
represent these dynamical responses, nor to determine a
specific flipping point, as in the case of the AT. For this
reason, the dynamic behaviour of physiological variables is
addressed here by the use of differential equation models.

In practice, the measurements of consumed oxygen and
produced carbon dioxide as well as the measurement of the
pedal power are available at every time-instant. However,
it is not possible to explicitly distinguish the origin of
the produced carbon dioxide. It can be produced from
aerobic pathway and/or from anaerobic pathway. In this
paper, we assume that the output of the system is composed
of measured variables. In addition, the knowledge of
the relationships between variables coming from chemical
reactions and briefly summarised in equations (3) and (6),
is taken into account in the structure of the model.

Because using physical laws would lead in this case to
a high complexity of the model, we choose to define a
structure a priori and identify the value of its coefficient
using experimental data. Also, to ensure that our model
is compatible with the principle of mass conservation, the
quantities of O2 consumed and CO2 produce are expressed
in mass instead of volume as it is usually found in the
litterature.

For the parameter identification of the data-based model,
we propose to state an optimisation problem to find the
optimal parameters that minimises the error between data
and model, calculated by the cumulative sum of the norm-2
of the residuals:

e(k) = y(k)− ym(k) (7)

for k = {1, ..., N}, where ym(k) denotes the available
measured output data at the instant k, while y(k) concerns
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the obtained output signals by using the models (10)–(11)
with measured input data u(k).

5 Structure of the gas exchange model

5.1 Novel index for AT identification

The principle of mass conservation states that for any closed
system, the mass of the system must remain constant over
time, this means that in a chemical reaction, all of the atoms
present at the start of the reaction are present at the end
of the reaction. Accordingly, we propose the use of masses
per unit of time of O2 and CO2, instead of volumes as it
is usually found into the literature.

In this way, a novel index for identification of the AT
is proposed. It is denoted z(k). It concerns the difference
between the mass of oxygen consumption and the mass of
carbon dioxide production per unit time. It can be written
in terms of V̇ CO2 and V̇ O2, measured at the instant k, as
follows:

z(k) := δ1V̇ O2(k)− δ2V̇ CO2(k) (8)

where V̇ O2(k) and V̇ CO2(k) are the the flows of oxygen
and carbon dioxide respectively in l/min and the constants
δ1 and δ2 correspond to the volumetric mass density in g/l
(or equivalently kg/m3) of O2 and CO2, respectively. The
values used here are δ1 = 1.429 g/l and δ2 = 1.842 g/l.

An example of the behaviour of the index z(k) for a
given individual during a cycling test is shown in Figure 2.
Remark that the amplitude of the index z(k) is small
and around zero for moderate workout, i.e., for pedal
power smaller than 100 W, however it takes more negative
values for high-intensity workout, i.e., for pedal power near
200 W. For comparison, the curves concerning the so-called
respiratory exchange ratio (RER) and the HR have been
included in this figure.

The RER is defined as the ratio between the volumes of
produced carbon dioxide and consumed oxygen. That is:

RER =
V̇ CO2

V̇ O2

. (9)

This index is usually employed as an approximation of the
respiratory quotient (RQ) at cellular level and constitutes
an indicator of the substrate (carbohydrate or fat), which is
being metabolised. If the value of RER is greater than 1, it
is associated to high-intensity exercise and it is often used
as a criterion for determining the AT, as it is described in
Solberg et al. (2005).

Concerning the HR, it is often used for estimating the
amount of pedal power developed by the cyclist. However,
this variable does not reach the same values for the same
pedal powers and its steady-state values depend on the
duration of the exercise.

In this paper, it is proposed to use the index (8) instead
of the RER or the HR values for estimating the AT.
One of the motivations for this choice is the fact the
index (8) easily allows us to distinguish the level of the

exercise (moderate or high-intensity workouts). In addition,
compared to RER, the index (8) benefits from a good signal
to noise ratio. The latter could be explained by the fact that
noises on signals are additive in equation (8) while they are
multiplicative in equation (9). The proposed index z(k) is
quite similar to that proposed and analysed in Issekutz and
Rodahl (1961) for estimation of excess CO2 production.
Next, this index is used to classify the dynamical data into
two modes: low carbon dioxide production (low εCO2)
or high carbon dioxide production (high εCO2), as it is
depicted in Figure 5.

Figure 4 Equivalent block diagram of the proposed model

5.2 Structure of the model matrices

An equivalent block diagram of the gas exchange model
is depicted in Figure 4. We propose a discrete-time model
with input u(k), the pedal power. The output y(k) is
formed by the mass of consumed oxygen y1 and the mass
of produced carbon dioxide y2, calculated from V̇ O2 and
V̇ CO2 measurements. Assuming that the input and two
outputs are available at every constant sample time, the
proposed dynamical system follows:

x(k + 1) = A(θ)x(k) + B(θ)u(k) + B(θ)w (10)

where the system states at the time instant k are denoted as
x(k) =

(
x1(k) x2(k) x3(k)

)T ∈ R3 and its successor x(k +
1) ∈ R3. These states concern the mass per unit time
of consumed oxygen x1 = O2, produced carbon dioxide
through aerobic pathway x2 = CO2 and excess of carbon
dioxide produced by anaerobic pathway denoted x3 =
εCO2. The matrices A(θ) ∈ R3×3 and B(θ) ∈ R3×1 depend
on a vector of constant parameters, denoted θ. These
parameters have to be identified for each studied individual.
The system inputs are u(k) and w, the pedal power and
the basal metabolic rate (BMR), respectively. The BMR
w is a physiological quantity characterising the energy
consumption of the human body at rest and can be
expressed in Watts. It comprises the minimum functions
the body requires such as breathing, regulating the body
temperature or ensuring the brain activity. In this work we
suppose the value of w constant and to be identified along
with the other parameters of the model.

The output consists of two variables, one for the total
mass per unit time of consumed oxygen, calculated from
consumed oxygen and total mass per unit time of produced
carbon dioxide, calculated from produced carbon dioxide.
That is, y(k) ∈ R2 described as

y(k) = C(ρ(k))x(k) (11)
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where the matrix C(ρ(k)) ∈ R2×3 is intended to include the
different additive contributions on the production of carbon
dioxide. The varying parameter ρ(k) allows us to include
or exclude the anaerobic contribution of carbon dioxide into
the output equation. Thus, the excess carbon dioxide is part
of the output whenever a certain number of state conditions
hold. Here, it is supposed that the varying parameter ρ(k),
which verifies 0 ≤ ρ(k) ≤ 1, depends on the system vector
x(k). A hyperbolic tangent function is used for modelling
the relationship of ρ(k) with respect to the state vector x(k).

The system matrices are defined as follows:

A =

θ1 θ2 0
0 θ3 0
0 θ5 θ6

 B =

θ4θ4
θ7

 (12)

C(ρ(k)) =
[
1 0 0
0 1 ρ(k)

]
(13)

0 ≤ ρ(k) ≤ 1 (14)

where θi for i = {1, ..., 7} are constant parameters
depending on the individual. The interest of the proposed
matrices structure comes from the fact that we consider that
all the system states (mass per unit of time of O2, CO2 and
εCO2) are influenced by the pedal power and respond as
first order dynamical systems. The latter is justified by the
obtained data and by considering that the system involves
storage and dissipation phenomena of such gases. Matrices
A and B are shaped according to these assumptions. In
addition, in this work it is proposed the inclusion of two
more parameters (θ2 and θ5 in A) for modelling the possible
interactions between CO2 produced in an aerobic way and
the values of O2 and εCO2. These interactions can be
justified from the chemical reactions (3) and (6).

Figure 5 Graphical representation of transition function used to
model the progressive transition between two
operation modes of the system (see online version
for colours)

Notes: Here the function follows equation (15) with
zt = –1 g/min and h = 0.5.

5.3 Transition function

The following function is proposed to model the
relationship between the parameter ρ(k) and the system
states:

ρ(k) := ρ(z(k)) = 0.5 + 0.5 tanh
(
zt − z(k)

h

)
(15)

where z(k) represents the difference between oxygen
consumption and carbon dioxide production at the instant
k, as it is defined in equation (8). The symbols zt and
h are constant parameters that can be identified from
experimental data. The choice of function (15) is motivated
by the fact that it can be used for modelling abrupt or
smooth transitions of ρ(k) around zt by means of the
constant parameter h. The values of ρ(k) are taken between
0 and 1 since it represents the fraction of the excess of
carbon dioxide, εCO2, that can be measured in the ouput
of the system.

Figure 6 Scenario for parameter identification of the mode 1:
low εCO2, by fixing ρ(k) = 0, (a) individual 1
(untrained) (b) individual 2 (trained)
(see online version for colours)
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Thus, here, it is assumed that there is a progressive
transition of the observed εCO2 on the total measured
CO2. Hence, the value of zt is the translation of the AT in
the z space, which allow us to define two operation modes,
as depicted in Figure 5. They are:

z(k) ≤ zt for mode 1: low εCO2

z(k) > zt for mode 2: high εCO2
(16)

Thus, the parameter ρ(k) := ρ(z(k)) is the percentage of
the excess of CO2, i.e., εCO2, contained into the total
measured CO2.

6 Parameter identification process

As described in Sename et al. (2013), two main approaches
are available to identify LPV systems.

The first one is the local approach. It supposes that the
varying parameter of the LPV model is available and can
be set at frozen values while collecting the input and output
data necessary to identify linear time invariant (LTI) models
around these points by prediction error minimisation. These
models are then interpolated to obtain the full model in LPV
form.

The second one is the global approach. These methods
use input and output data as well as varying parameter
data, which are directly measured or estimated, in order to
identify the model in LPV form. However, these methods
require a persisting excitation of the varying parameter
during data collection, which can be difficult to ensure in
practice.

In the context of this work, the varying parameter is
the fraction ρ of εCO2 that is measured in the output
of the system, and can not be directly measured or
controlled. This parameter takes continuous values between
two extreme setups, the first one being the aerobic state,
during low physical effort, and the second one being
the anaerobic state, during high physical effort. Based on
insights coming from the exercise physiology literature, we
proposed equations (8) and (15) to model its behaviour. In
this context, neither the local or the global approach can
grasp the problem completely, we thus propose a hybrid
approach in the following.

6.1 Optimisation-based parameter identification

The proposed methodology supposes the availability of
uniformly sampled data of developed pedal power, flow
of consumed oxygen V̇ O2 and produced carbon dioxide
V̇ CO2. Next, the proposed model structure is used to find
a vector of parameters p minimising the simulation error.
The identification problem is formulated as:

Find the vector of parameters p = [θ, w, zt, h]T which
minimises

J :=
N∑

k=1

∥y(k)− ym(k)∥2 (17)

subject to

x(k + 1) = A(θ)x(k) + B(θ)u(k) + B(θ)w (18)
y(k) = C(ρ(k))x(k) (19)
ρ(k) = ρ(z(k)) (20)

for k = {1, ..., N}, with u(k) the measured input, ym the
measured output and y the model output. The function
ρ(z(k)) defined in equation (15) and z(k) defined in
equation (8) and computed using the predicted values from
the model.

Due to the nature of the problem and the fact that
available data contains different modes, this optimisation
problem cannot be solved in one shot. Therefore, a
methodology is proposed to solve the problem in three
stages using pre-selected sets of data. First, the dynamics
of O2 and CO2 are identified using data obtained
during a moderate intensity cycling session, supposed
aerobic. Then, the dynamics of εCO2 are identified using
data obtained during a high intensity cycling session,
supposed anaerobic. Finally, the transition function ρ(z(k))
defined in equation (15) is identified using data obtained
during a training session with both aerobic and anaerobic
components.

6.2 Identification of the mode 1: low εCO2

The parametric identification of the aerobic dynamics
requires a sequence of data where the pedal power
corresponds to an aerobic exercise, i.e., of moderate
intensity. The level of the pedal power for each individual is
chosen below the a priori AT, calculated with the criterion
RER < 1.

The identification process is carried out by considering
only the parameters describing the aerobic dynamics, they
are θi for i = {1, ..., 4} and w.

Here, ρ = 0 because it is assumed that there is no excess
of carbon dioxide production in the considered dataset due
to the aerobic nature of the effort performed.

The optimisation-based identification problem is
formulated as the problem of finding the vector of
parameters [θ1, θ2, θ3, θ4, w]T which minimises
equation (17), subject to equations (18) and (19), with
matrices A(θ) = A1, B(θ) = B1 and C(ρ(k)) = C1, where,

A1 =

θ1 θ2 00 θ3 0
0 ∗ ∗

 B1 =

θ4θ4
∗

 C1 =

[
1 0 0
0 1 0

]
(21)

The value of the coefficients denoted by ∗ is identified
during the next steps of the identification process.

6.3 Identification of the mode 2: high εCO2

The parametric identification of the anaerobic dynamics
requires a sequence of data where the pedal power
corresponds to an anaerobic exercise, i.e., a high intensity
workout. The identification process is carried out by
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considering only the parameters describing the anaerobic
dynamics, they are θi for i = {5, 6, 7}.

Here, ρ = 1 because it is assumed that there is an
important excess of carbon dioxide production in the
considered dataset. Coefficients θi for i = {1, ..., 4} and w
are set to their identified value.

The optimisation-based identification problem is now
formulated as finding the vector of parameters [θ5, θ6, θ7]T
which minimises equations (17), subject to equations (18)
and (19), with matrices A(θ) and B(θ) defined in
equation (12) and C(ρ(k)) = C2 with:

C2 =

[
1 0 0
0 1 1

]
(22)

6.4 Identification of the transition function parameters

Concerning the identification of the parameters of the
transition function ρ(z(k)), given by equation (15), a data
sequence including moderate and high intensity exercise has
to be used.

The parameter identification problem can be formulated
as follows: find the vector of parameters [zt, h] which
minimise equation (17), subject to equations (18), (19) and
(20), with matrices A(θ) and B(θ) defined in equation (12)
and using the previously obtained parameters, i.e., [θ, w]T .
The matrix C(ρ(k)) defined in equation (13) with ρ(k)
defined by equation (15).

The different parameter identification problems,
presented in Subsections 6.2, 6.3 and 6.4, can be solved
as nonlinear unconstrained optimisation problems, by using
for instance the quasi-newton method.

Once parameters of the model are obtained, a validation
process is performed using a new set of data independent
from the identification datasets.

7 Numerical results

This section presents numerical results obtained from the
parametric identification process described in Section 6. For
comparison, in this paper is shown one model identified
using data from an untrained individual and another one
using data from a trained individual.

Two healthy young men performed the previously
described cycling tests to identify their personal
gas exchange dynamical models using the proposed
methodology.

In order to calibrate the exercise intensity associated
with the constant power tests, a ICT is performed at a
freely chosen cadence (40 rpm and 50 rpm for individuals
1 and 2, respectively). Using data from the ICT, the AT can
be identified using the criterion RER > 1 (Solberg et al.,
2005). Here, individual 1 has to perform more than 150 W
to reach the mode 2, and individual 2 has to perform more
than 200 W to reach it.

Moderate exercises are performed at 60% of the
estimated AT and high intensity exercises at 120% of the
estimated AT.

Figure 7 Scenario for parameter identification of mode 2: high
εCO2, by fixing ρ(k) = 1, for comparison, the
expected aerobic dynamics is also depicted in this
figure, (a) individual 1 (untrained) (b) individual 2
(trained) (see online version for colours)
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The identification of the aerobic dynamics or mode 1
is performed by using the CPAT. The results are shown
in Figure 6. For both individuals, the model output fits
the experimental data of oxygen consumption and carbon
dioxide production.

Then, the anaerobic dynamics or mode 2 is identified
using data from the CPAnT, for an intense exercise dataset
as described in Section 6.3. The results of the identification
are shown in Figure 7. Remark that the aerobic dynamics,
by considering ρ = 0, is not enough to reproduce the carbon
dioxide production dynamics. However, in this scenario,
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for ρ = 1, the obtained model reproduces well the excess
of carbon dioxide production. Then, the transition function
parameters zt and h are identified using data from both the
CPAT and the CPAnT.

Figure 8 Model validation for individual 2, by using
experimental data from ICT, (a) individual 1
(untrained) (b) individual 2 (trained)
(see online version for colours)
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Figure 9 Residuals calculated for ICT data, bounds are two
standard deviations, (a) individual 1 (untrained)
(b) individual 2 (trained) (see online version
for colours)
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The identified model for the individual 1 (untrained) is:

A =

0.943 0.029 0
0 0.981 0
0 0.009 0.994

 B =

0.3630.363
0.029

× 10−3 (23)

and the parameters w = 18.288, zt = –0.692 and h = 0.487.
The identified model for the individual 2 (trained) is:

A =

0.986−0.015 0
0 0.973 0
0 0.012 0.981

 B =

 0.523
0.523
−0.139

× 10−3 (24)

and the parameters w = 32.03, zt = –1.218 and h = 0.532.

7.1 Model validation

The dataset used for the validation process should include
aerobic and anaerobic sequences of exercises. Here, we use
the sequence of data from the ICT, which is not used for
identification and meet the requirements of having aerobic
and anaerobic exercise. For this work, the model validation
is done by using the following validation tests:
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Figure 10 Autocorrelation of residuals, (a) individual 1
(untrained) (b) individual 2 (trained)
(see online version for colours)
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7.1.1 Residual analysis

The residuals are formed by simulation error described in
equation (7), for N uniform-sampled data.

Table 1 Prediction-error variance of gas exchange models for
both individuals for different experimental scenarios

Scenario Predicted Individual 1 Individual 2
output variance variance

CPAT y1 0.012 0.060
y2 0.020 0.089

CPAnT y1 0.041 0.123
y2 0.052 0.096

CAAT y1 0.021 0.074
y2 0.031 0.084

ICT y1 0.039 0.051
y2 0.068 0.066

Notes: y1 and y2 are the mass per unit time of
O2 and CO2, respectively.

Figure 11 Partial autocorrelation function (PAF) of residuals
calculated from validation dataset to assess the
order of the model (see online version for colours)
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The plots of the residuals are analysed to verify that their
behaviour is random and their variance sufficiently small
compared to the range of the variable. For the numerical
example, the values of variances for each test are shown in
Table 1.

The residual plot is shown in Figure 9. For the two
cases of individuals the behaviour of the residuals appears
to be random and is characterised by an average very
close to zero and a low variance compared to the range
of the variable. For the case of the oxygen mass residuals
for individual 1, the average is near to –0.2 and a slight
negative trend is shown, it is also evident in O2 plot of
Figure 8(a). It could suggest a variation in the model from
identification scenarios and validation one.

7.1.2 Goodness of fit

The goodness of fit or fit-criterion is used for evaluating
the accuracy of the model according the normalised root
mean square error (NRMSE). The percentage of fit for each
sequence of data is determined as:
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FIT = 100

(
1− ∥ym − y∥

∥ym − ȳ∥

)
(25)

where ym represents the measured data, y the model output
and ȳ the mean value of ym.

For the numerical examples the values of goodness of
fit are shown in Table 2.

Table 2 Fit calculated for each stage of identification process

Individual 1 Individual 2

Aerobic dynamics 75% 80%
Anaerobic identification 83% 82%
Validation 74% 81%

The model output and the used experimental data are
shown in Figure 8. Remark that the obtained model fitting
deviation is small and that the presented curves allow an
easy estimation of the ATs (see for instance, the developed
power and/or the HR at ρ(k) = 0.5).

Table 1 presents the obtained variance for the residuals
concerning the system outputs for different scenarios.
Remark that these variances are relatively small compared
to the minimum and maximum values of such system
outputs.

Figure 12 The output space divided by the line z(k) = zt
(dashed line), which indicates the transition between
mode 1 (low εCO2) and mode 2 (high εCO2),
(a) individual 1 (b) individual 2 (see online version
for colours)

(a)

(b)

Note: Solid lines corresponds to the measured data.

7.1.3 Autocorrelation analysis

The analysis of autocorrelation measures the strength of
association between a signal and a delayed copy of itself.
Figure 10 shows the autocorrelation of O2 and CO2

residuals for both individuals.
The values of the bounds in Figure 10 are calculated

as ±2/
√
N , where N is the data-length. These bounds

correspond to the 95% confidence interval of a white-noise
signal: any data point outside of this interval has a low
probability (5%) to have been caused by a white noise. The
fact that the values are outside the limits for several lags
may be due to the existence of a relationship between lags
and may suggest the convenience of a higher order model,
for this reason the partial autocorrelation is analysed and
the principle of parsimony is taken into account to conclude
about the appropriate order of the model.

7.1.4 Partial autocorrelation analysis

In this case, we are assuming a linear dependence of the
variables at each time instant on the previous time, as can
be seen in equation (10), then, we use the PACF to analyse
the order of the model.

The partial PACF at lag k is the correlation that results
after removing the effect of any correlations due to the
terms at shorter lags (Box et al., 2015).

On the hypothesis that the process is autoregressive
of order 1, for evaluating a model, the estimated
partial autocorrelations of order 2 and higher, must be
approximately independently and normally distributed with
zero mean.

The partial autocorrelations of the residuals are shown
in Figure 11. The values obtained for lags higher than
1 are very low, thus, we conclude that first order
models are enough to describe the behaviour of the gas
exchange dynamics despite the residual correlations shown
in Figure 10.

The proposed low order model seems suitable for
simulation and prediction of the output behaviour for
different kind of scenarios with enough precision.

7.2 Analysis of the output space mapping

The output space mapping concerning the ICT scenario is
depicted in Figure 12. The space is divided by a dashed
line defined by z(k) = zt. Such line determines whether the
data belong to mode 1 (low production of εCO2) or mode
2 (high production of εCO2). During the ICT, the pedal
power increases linearly with the time, thus, the crossing
between the two modes only occurs once. The crossing
point, provided by the model, could be considered as an
estimation of the AT. The identification of this threshold
seems easy for the individual 2, where the transition
between two modes is evident. The case is less simple for
individual 1, because the crossover between the two modes
is smooth. This mode identification method could be used
in addition of the the RER based method in order to identify
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the crossing of the AT from experimental data. However,
in the case of random cycling scenarios, identifying the AT
using this method could be more complex since the line
z(k) = zt could be crossed several times.

From Figure 12, it is possible to confirm that individuals
have different levels of training. See for instance, the
maximum level of O2 and the point where the curves cross
the dashed line z(k) = zt. The higher the training level of
the cyclist, the higher the crossing point.

8 Conclusions

In this paper a model for gas exchange dynamics during
cycling has been proposed. A methodology for parameter
identification and validation of this model has also been
presented. The identification process is based on several
scenarios that include moderate exercises, high-intensity
exercises and ICTs.

A time-varying parameter, in the output matrix, models
the transition between two possible modes. A mode is
related to low levels of produced excess of carbon dioxide,
while a second mode is related to high ones.

In addition, this time-varying parameter has been written
in terms of a novel physiological index by using a transition
function, which significantly helps the classification of
those modes.

The experimental results presented in this paper,
demonstrate the model validation according to the fit with
the data and therefore the model can be used in simulation,
prediction and analysis of consumed oxygen and produced
carbon dioxide by using pedal power data. Furthermore,
the proposed model can be useful for designing new
model-based observers and control laws for future electrical
assistance systems.
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Péronnet, F. and Aguilaniu, B. (2006) ‘Lactic acid buffering,
nonmetabolic CO2 and exercise hyperventilation: a critical
reappraisal’, Respiratory Physiology & Neurobiology, Vol. 150,
No. 1, pp.4–18.



30 N. Rosero et al.

Pal, T., Dutta, P.K. and Maka, S. (2020) ‘Oxygen therapy in
chronic obstructive pulmonary disease: insight from convex
optimisation’, International Journal of Modelling, Identification
and Control, Vol. 34, No. 2, pp.137–146.

Rosero, N., Martinez, J.J. and Corno, M. (2018) ‘Modeling of gas
exchange dynamics using cycle-ergometer tests’, in 9th Vienna
International Conference on Mathematical Modelling, Vol. 51,
pp.349–354.

Rosero, N., Martinez, J.J., Chorin, M. and Vergès, S. (2021)
‘Estimation of carbon-dioxide production during cycling by
using a set-membership observer’, in 2021 European Control
Conference (ECC), IEEE, pp.2323–2328.

Savkin, A.V., Celler, B.G. et al. (2012) ‘Estimation of oxygen
consumption during cycling and rowing’, in 2012 Annual
International Conference of the IEEE Engineering in Medicine
and Biology Society, IEEE, pp.711–714.

Sename, O., Gaspar, P. and Bokor, J. (2013) Robust Control and
Linear Parameter Varying Approaches: Application to Vehicle
Dynamics, LNCIS, Spinger, No. 437.

Shandhi, M.M.H., Bartlett, W.H., Heller, J., Etemadi, M., Young, A.,
Ploetz, T. and Inan, O. (2020) ‘Estimation of instantaneous
oxygen uptake during exercise and daily activities using a
wearable cardio-electromechanical and environmental sensor’,
IEEE Journal of Biomedical and Health Informatics, Vol. 25,
No. 3, pp.634–646.

Solberg, G., Robstad, B., Skjønsberg, O.H. and Borchsenius, F.
(2005) ‘Respiratory gas exchange indices for estimating the
anaerobic threshold’, Journal of Sports Science & Medicine,
Vol. 4, No. 1, p.29, Department of Sports Medicine, Medical
Faculty of Uludag University.

Su, S.W., Wang, L., Celler, B.G. and Savkin, A.V. (2007)
‘Oxygen uptake estimation in humans during exercise using
a hammerstein model’, Annals of Biomedical Engineering,
Vol. 35, No. 11, pp.1898–1906.

Wasserman, K., Whipp, B.J., Koyl, S. and Beaver, W. (1973)
‘Anaerobic threshold and respiratory gas exchange during
exercise’, Journal of Applied Physiology, Vol. 35, No. 2,
pp.236–243.

Wasserman, K., Hansen, J.E., Sue, D.Y., Stringer, W.W. and Whipp,
B.J. (2005) ‘Principles of exercise testing and interpretation:
including pathophysiology and clinical applications’, Medicine
& Science in Sports & Exercise, Vol. 37, No. 7, p.1249.


