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Abstract: This work proposes a methodology to estimate parameters for linear and nonlinear
dynamical systems, with partial state measurement, that satisfy the property of parameter
linearity. This methodology is experimental, offline, and recursive. It uses discontinuous state
observers to estimate all state variables and the disturbance terms needed in the estimation
processes. Because the equivalent output injection corresponds to the disturbances produced by
the parameter uncertainties, the methodology allows us to obtain the best parameter estimation
by minimising an index related to the power of the equivalent output injection; a smaller
value represents a better estimation. With this parameter estimation, we can establish a model
that facilitates the design and implementation of many control algorithms, including robust
controllers. We validate the methodology through numerical simulations and experiments with
linear, nonlinear, and discontinuous systems. Based on the experimental results, we conclude
that the proposed algorithm’s performance is better than other methodologies.
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1 Introduction

In the design and implementation of many control
algorithms, it is necessary to know the plant’s mathematical
model. This model must represent, as well as possible,

the dynamics of the actual system. However, there are
differences between the model and the actual system due to,
mainly, parameter uncertainties and unmodelled dynamics,
which in many cases produce terms that have the role of
disturbances in the plant.

Copyright c⃝ 2023 Inderscience Enterprises Ltd.
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There are several control algorithms to achieve control
objectives in plants with many types of disturbances: some
examples are sliding modes control (Utkin et al., 2009),
adaptive control (Najim and Saad, 1991), H∞ control
(Burl, 1998), and the active disturbance rejection control
structure (Huang and Xue, 2014). However, if we have
a mathematical model that represents the dynamics of
interest in the actual system, as well as its parameters,
more precisely, the processes of design and experimental
implementation of these robust control algorithms are more
efficient. See for example, Tudoroiu et al. (2020), where
the authors propose an ARMAX model to capture the
complex dynamics of a centrifugal chiller plant. This model
has simulation purposes of proving the efficiency of the
closed-loop control strategy.

There are two stages to obtain a mathematical model
of an actual system. The first stage defines the equations
which describe its dynamics, and the second one is to
estimate the parameters included in these equations. Both
stages are essential, but this work addresses the second
one, also known as system identification. Zhang and Zhao
(2019) is a survey of the methodologies in modelling and
identification more significant and recent applied to control
systems.

Xu and Hashimoto (1993, 1996) propose two
methodologies, called VSS-based direct and indirect
methods, to solve the parameter identification problem for
linear and nonlinear systems. These methods are applicable
to systems with a normal form and linear in parametric
space. They use the equivalent control phenomenon, which
appears in discontinuous control systems, to estimate
the plant’s parameters. These methods have two main
advantages: they are applicable to systems in which a linear
algebraic relationship cannot be obtained by conventional
identification methods, as well as to those systems that
may not be stable in open-loop. However, the main
disadvantages are that these methods assume a full state
measurement, and the incorporation of a state observer
degrades their performance. Only numerical examples
are presented in the papers mentioned. Also, there is no
procedure to validate the results experimentally.

A practical method to identify the stick-slip friction
model applied to hydraulic actuators is in Márton et al.
(2011). This method can estimate friction model parameters
based on velocity and pressure measurements with a
piecewise linear approximation method. Its performance
was evaluated experimentally using the velocity signals of
the model and the actual plant. The main advantage of
that proposal is its low computational cost, and the main
disadvantage is that it cannot estimate the rest of the plant’s
parameters.

Liu and Wu (2015) proposes an identification method
for the structure and friction parameters of a feed servo
system. They use a direct graphical method to identify
the friction parameters and the nonlinear least squares
algorithm to identify the structural parameters. The method
yields good results, but it is applied to a particular system,
and the authors only present a numerical simulation to show
its performance. Also, for an experimental implementation,

there is no a procedure to validate the identified parameters.
Imine et al. (2015) present the estimation of the vertical
forces and dynamic parameters of a vehicle using the
sliding mode observers approach. In particular, they identify
the suspension stiffness and unsprung masses parameters
by the least squares algorithm. This is an important
paper because it shows the efficiency of the equivalent
output injection, in discontinuous observers, to estimate
disturbances and parameters in an experimental context.
However, it presents only a particular case and, to validate
the results, the authors install many sensors to compare the
estimated signals with the actual ones.

From the experimental point of view, the identification
of hydraulic servo-systems is an important research topic.
The least squares algorithm and the derivation free particle
swarm optimisation method are used in Maier et al. (2019)
and Feng et al. (2019) to estimate the parameters for an
automated clutch actuation system and a robotic excavator,
respectively. They obtain significant results. However, in
both cases, there is no criterion to evaluate the quality of
the parameter estimation in an experimental context.

Another relevant work is Aggoun et al. (2020), which
proposes an adaptive linear neuron to estimate the state
of charge of lithium-ion batteries based on parameter
estimation. The neuron provides a linear combination
of the inputs based on an online identification of the
open-circuit voltage. The main contribution of this approach
is its adaptable capability and the execution speed of the
algorithm. However, the authors only present simulation
results.

Xu (2017) mentions that for the linear problem, the least
squares method is effective, but for the nonlinear problem,
we must use nonlinear optimisation methods.

Discontinuous state observers and extended observers
have been used extensively to estimate the disturbances
of a plant. Some important works on this topic are
Bu et al. (2015), Almeida et al. (2007), Davila et al.
(2006), Chen (2004), Wang et al. (2015), Ren et al.
(2018), and the references mentioned there. Some of them
guarantee finite-time convergence; others have asymptotic
convergence; some need a low pass filter to recover the
equivalent output injection; and others do not need it.
Some of these proposals are given only with a numerical
illustration of their performance or with well-controlled
experiments. However, all of them have restrictions on their
design and operation, and their experimental performance
depends on the hardware platform and on the sampling
time used to execute the experiments (Rosas et al., 2017).
Therefore, if we want to estimate disturbances in a plant,
we need to select the best state observer according to the
characteristics of the plant and the disturbances in it, and
the hardware available.

The present paper proposes a methodology to estimate
the parameters for linear and nonlinear dynamical systems,
with partial state measurement, that satisfy the property
of parameter linearity. This methodology is experimental,
offline, and recursive. It uses discontinuous state observers
to estimate all state variables and the disturbance terms
needed in the estimation processes. The methodology
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consists of a recursive process with four steps in each
iteration. First, we estimate the non-measured states and
the disturbance terms using the equivalent output injection
concept. In the next step, we obtain an index related
to the power of the equivalent output injection. In the
third step, we estimate the parameters of the plant
using a least squares algorithm. Then we update the
parameters of the plant in the observer. Because the
equivalent output injection corresponds to the disturbances
produced by the parameter uncertainties, the methodology
allows us to obtain the best parameter estimation by
minimising an index (for which a smaller value represents
a better estimation). With this parameter estimation, we
can establish a model that facilitates the design and
implementation of many control algorithms, including
robust controllers. We validate the methodology through
numerical simulations and experiments involving linear,
nonlinear, and discontinuous systems.

The main contribution of this paper is the integration
of several well-known results on robust discontinuous
state observers, equivalent output injection theory, and
the least-squares method to produce an experimental
methodology to identify the parameters for a broad class
of dynamical systems, including linear, nonlinear, and
discontinuous systems. This proposal is more general than
other previously published methodologies because it is not
limited to the observers developed at this time; in the future,
we can incorporate new observers for new kinds of systems
or improve their performance.

The organisation of this paper is as follows. Section 2
presents preliminary definitions and the problem statement.
Section 3 presents the process for estimating the
disturbances using discontinuous state observers based
on the concept of equivalent output injection. Also, in
this section, we present two observer structures for first-
and second-order systems. Section 4 presents the strategy
proposed in Davila et al. (2006) and Almeida et al.
(2007), based on the least squares algorithm, to identify the
parameters using the equivalent output injection.

Section 5 presents the proposed methodology of
parameter identification, and several numerical and
experimental examples of its performance are in Section 6.
Section 7 presents a performance comparison of our
proposed strategy with two strategies proposed previously:
that of Xu and Hashimoto (1996) and that provided by
the system identification toolbox in MATLAB. Section 8
presents the overall conclusions of this work as well as
some final comments.

2 Problem statement and preliminary definitions

Consider the class of dynamical systems described by

ẋ = f(x, θ, u),

y = h(x), (1)

where x ∈ ℜn is the state vector, θ ∈ ℜk is a parameter
vector, u ∈ ℜm is the input vector, y ∈ ℜl is the output

vector, f(·) : ℜn ×ℜk ×ℜm → ℜn is a vector field, linear
or nonlinear, and h(·) : ℜn ×ℜk ×ℜm → ℜl is a vector
function which defines the system output. It is important to
note that system (1), and systems defined later, may satisfy
the Lipschitz condition, which guarantees the existence and
uniqueness of solutions in the usual form. However, it also
may have a discontinuous right-hand side; in this case, its
solutions are defined in the Filippov sense.

Now, consider the class of systems, with the form (1),
which are linear or affine to parameters θ. Therefore,
system (1) may be rewritten as

ẋ = φ (x, u) θ,

y = h (x) , (2)

where φ (x, u) is called a regressor. Then, if the parameter
vector θ is the sum of a nominal parameter vector θ0 and an
uncertain parameter vector ∆θ, system (2) may be rewritten
as

ẋ = f (x, θ0, u) + φ (x, u)∆θ,

y = h (x) . (3)

Now, the disturbance term φ (x, u)∆θ must satisfy
certain conditions, for example ∥φ (x, u)∆θ∥ < δ1 and/or
∥d (φ (x, u)∆θ) /dt∥ < δ2, for a bounded input u, where
δ1 and δ2 are known constants.

The least squares algorithm is a very simple and
useful tool to estimate the vector of parameter uncertainties
∆θ based on the knowledge of φ (x, u) and φ (x, u)∆θ.
However, in many practical situations, some of the
signals included in φ (x, u) and the term φ (x, u)∆θ are
not measured, which prevents the implementation of the
method. Also, in an experimental context, there is no
strategy to validate the results.

Therefore, the problem addressed in this paper is to
propose a methodology to estimate the uncertain parameter
vector ∆θ in the class of dynamical systems defined by
equation (1), using the least squares algorithm, taking into
account the case that some variables in φ (x, u) and the
term φ (x, u)∆θ are not measured.

3 Disturbance estimation using discontinuous state
observers

We can use state observers and differentiators to estimate
all non-measured signals included in φ (x, u) and the
disturbance term φ (x, u)∆θ. Several state observers can
solve these problems, see for example Bu et al. (2015),
Chen (2004) and Ren et al. (2018). However, in this work,
we use high-order sliding mode observers because they
present the phenomenon of equivalent output injection,
which will be useful for evaluating the quality of the
parameter estimation. The concept of equivalent output
injection in discontinuous state observers exhibiting the
sliding mode phenomenon is similar to equivalent control
in sliding mode control systems. The difference is that,



Experimental parameter estimation methodology based on equivalent output injection 7

in general, the discontinuity surface in control systems is
defined as a function of the state variables. On the other
hand, in state observers, the discontinuity surface is defined
as a function of the error between the plant output and the
observer output; an output injection is made.

At this point we make the following assumption: There
is a robust discontinuous state observer for system (3)
which estimates the disturbance term φ (x, u)∆θ,
through the equivalent output injection principle, and
all non-measured signals needed to implement the term
φ (x, u).

In this work, the main objective is not the proposal
of new state observers for systems with the form (3), but
to use the observers that have already been developed.
Therefore, in this section, we present two previously
published state observers for the estimation of disturbances.
In later sections, we use them for the parameter
identification.

3.1 A nonlinear disturbance observer for a class of
first-order systems

This observer is based on Bu et al. (2015) and Wang et al.
(2015). Consider a first-order nonlinear system

ẋ = f (x) + g (x)u+ γ (x, t) ,

y = x, (4)

where x ∈ ℜ is the state, f (x) and g (x) are well known
linear or nonlinear functions, and γ (x, t) is a disturbance
term which satisfies |γ̇ (x, t)| < δ, where δ is a known
constant. In this case the problem is the estimation of the
disturbance term γ (x, t). The observer is given by

.

x̂ = f (x) + g (x)u+ ω1 |y − ŷ|
1
2 sign (y − ŷ) + ω2p,

ṗ = −Tsp+ sign (y − ŷ) ,

ŷ = x̂. (5)

The dynamics of the error variable e = y − ŷ are given by

ė = γ (x, t)− ω1 |e|
1
2 sign (e)− ω2p,

ṗ = −Tsp+ sign (e) . (6)

If ω1 = 1.5
√
δ, ω2 = 1.1δ and Ts > 0, where |γ̇ (x, t)| < δ,

e and ė converge to zero in finite time (Bu et al., 2015;
Wang et al., 2015).

Therefore, the equivalent output injection ueq(·) is given
by

ueq(·) = ω1 |e|
1
2 sign (e) + ω2p = γ (x, t) . (7)

In conclusion, the observer (5) estimates the disturbance
γ (x, t) in equation (4) in finite time and it does not need a
low-pass filter.

3.2 A nonlinear disturbance observer for a class of
second-order systems

Consider the second-order system

ẋ1 = x2,

ẋ2 = f (x1, x2) + g (x1)u+ γ (x1, x2, t) ,

y = x1, (8)

where f(·) and g(·) are well known functions and γ(·)
is a bounded disturbance |γ(·)| ≤ δ, where δ is a known
constant.

The state observer for system (8) is given by Almeida
et al. (2007)

.

x̂1 = x̂2 + c1 (y − ŷ) ,
.

x̂2 = f (x1, x̂2) + g (x1)u+ c2 (y − ŷ)

+c3sign (y − ŷ) ,

ŷ = x̂1. (9)

To prove the convergence of the observer state to the plant
state we define the error variables e1 = x1 − x̂1, e2 = x2 −
x̂2, whose dynamics are given by

ė1 = e2 − c1e1

ė2 = −c2e1 − c3sign (e1) + ρ(·)

where ρ(·) = f (x1, x2)− f (x1, x̂2) + γ (x1, x2, t). Now,
making a change of variables z1 = e1 and z2 = e2 − c1e1,
whose dynamics are

ż1 = z2,

ż2 = −c2z1 − c1z2 − c3sign (z1) + ρ(·). (10)

With a suitable selection of c1, c2 and c3 the state variables
converge asymptotically to zero, see Almeida et al. (2007).
Then, x̂1 and x̂2 converge to x1 and x2, respectively.

System (10) has a discontinuity surface in z1 = 0 and
the term c3sign (z1) produces a second-order sliding mode,
because the discontinuous output injection ueq(·) appears
until the second time derivative of the function defining the
discontinuity surface

z̈1 = −c2z1 − c1z2 − ueq(·) + ρ(·) = 0.

Then, the equivalent output injection is present at z1 =
z2 = 0, and so

ueq(·) = ρ(·) = f (x1, x2)− f (x1, x̂2) + γ (x1, x2, t) .

Because x̂2 converges to x2 we have

ueq(·) = γ (x1, x2, t) .
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We can see that the equivalent output injection produces a
disturbance term and, as we know, it is the average of the
term c3sign (z1) when the trajectories stay at the origin.
Therefore, we have to use a low-pass filter to recover the
equivalent output injection (Almeida et al., 2007).

3.3 Parameter estimation through the equivalent output
injection

The disturbance term φ (x, u)∆θ = ueq(·), where ueq(·) is
the equivalent output injection, has the form of a regressor,
so we can apply the least squares algorithm proposed in
Almeida et al. (2007) and Davila et al. (2006), and used
in Imine et al. (2015) to estimate the uncertain parameter
vector ∆θ.

We want to find a vector ∆̂θ that minimises

J =
1

t

∫ t

0

(ueq(·)− φ(·)∆̂θ)
T (ueq(·)− φ(·)∆̂θ)dτ, (11)

The optimal solution is

∆θ =

[∫ t

0

φT (·)φ(·)dτ
]−1 ∫ t

0

φT (·)ueq(·)dτ,

where the matrix∫ t

0

φT (·)φ(·)dτ,

must be non-singular. Define a new variable

Γt =

[∫ t

0

φT (·)φ(·)dτ
]−1

,

using the following identities

Γ−1
t Γt = I

Γ−1
t Γ̇t + Γ̇−1

t Γt = 0.

Then we have

Γ̇t = −Γtφ
T (·)φ(·)Γt. (12)

Now, a parameter identification algorithm, based on the
equivalent output injection, is given by

.

∆̂θ = Γtφ
T (·)

(
ueq(·)− φT (·)∆̂θ

)
. (13)

Considering that the matrix Γtφ
T (·)φ(·) is Hurwitz, we can

conclude that equations (12) and (13) provide the actual
values of the uncertain parameter vector ∆θ; ∆̂θ = ∆θ.

4 Parameter estimation methodology

In an ideal context, where we have all necessary signal
measurements to implement the regressor φ(·), as well
as the equivalent output injection ueq(·), and assuming
that these signals are noise-free, equations (12) and
(13) estimate in a precise form the vector of parameter
uncertainties ∆θ. However, in a practical context, some
state variables are not measured and must be estimated.
In general, the estimated signals have errors with respect
to the real ones and also contain noise and small delays,
which produces an imprecise estimation of the parameter
uncertainties ∆θ.

To resolve these problems in an experimental context
we propose in this section a recursive methodology, offline,
that uses discontinuous state observers to estimate the
non-measured signals to implement the term φ(·), and
equivalent output injection ueq(·) and, at the same time,
implements a signal processing step to reduce the noise in
the estimated signals.

The methodology to identify ∆θ begins with the
definition of the mathematical model of the plant, and we
have to write it in the form (3). Also, we must guarantee
a bounded behaviour of the state variables, outputs, and
disturbances if we apply a bounded input signal u, which
satisfies the persistence condition when the plant is in
open-loop. Then, using some methodology or by empirical
knowledge, we propose a vector of nominal parameters of
the plant to define the nominal part of the system (3). Now,
using the nominal part of the model, design and implement
a discontinuous state observer to estimate the non-measured
signals needed to implement the regressor φ(·), as well as
the equivalent output injection ueq(·), which corresponds to
an estimation of the term φ (x, u)∆θ. Here it is assumed
that the observer already exists in the literature; otherwise,
we have to design one.

Now, implement an offline process to obtain an
estimation of the actual values of the parameters. It is
essential to mention that if the signals have noise, it
is necessary to filter them to reduce the high-frequency
components but, at the same time, avoiding introducing
long time delays.

To have a measure of the magnitude of the equivalent
output injection, we define the index P (ueq), which is the
power of ueq(·) in the discrete domain. It is given by

P (ueq) =
1

N + 1

N∑
n=1

|ueq(·)n|2 , (14)

where N is the number of samples of ueq(·). It is important
to notice that

P (ueq) =
1

N + 1

N∑
n=1

|φ(·)n∆θ|2 .

Hence, for the same sequence φ(·), the magnitude of the
index P (ueq) is directly proportional to the magnitude of
the vector of parameter uncertainties ∆θ. Now, we carry out
the following iterations.
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1 Connect the plant and the state observer as shown in
Figure 1. The parameters of the observer, related to
the plant, are equal to θ0. Apply the input signal u
and store all signals, both measured and estimated, to
implement the regressor φ(·), and the equivalent
output injection ueq(·). If these signals have noise,
filter them In an offline process to reduce
high-frequency components, while avoiding the
introduction of large time delays. Obtain the index
P1 (ueq), where the subscript 1 indicates that it
corresponds to the first iteration. Finally, implement
equations (12) and (13) to obtain the first estimation
of ∆θ, which we call ∆̂θ(1).

2 Upgrade the parameter vector in the state observer
which corresponds to the plant to θ0 + ∆̂θ(1). Apply
the input signal u and store all signals, both measured
and estimated, to implement the regressor φ(·), and
the equivalent output injection ueq(·). If these signals
have noise, filter them to reduce high-frequency
components, but avoid introducing large time delays.
Obtain the index P2 (ueq). Finally, implement
equations (12) and (13) to obtain the second
estimation of ∆̂θ(2).

3 Upgrade the parameter vector in the state observer,
which corresponds to the plant, to
θ0 + ∆̂θ(1) + · · ·+ ∆̂θ(i−1). Apply the input signal u
and store all signals, both measured and estimated, to
implement the regressor φ(·), and the equivalent
output injection ueq(·). If these signals have noise,
filter them to reduce high-frequency components, but
avoid introducing large time delays. Obtain the index
Pi (ueq). Finally, implement equations (12) and (13)
to obtain the i estimation of ∆̂θ(i).

Make as many iterations as necessary until one sees only
small variations in the index P (ueq).

Figure 1 A block diagram of the plant and the state observer
to estimate the terms needed for the estimation of
the parameter uncertainties

Among all the iterations made, find the kth iteration where
the index Pk (ueq) has the minimum value. Then, the
estimation of the vector of parameter uncertainties ∆̂θ is
given by

∆̂θ =
k−1∑
j=1

∆̂θ(j),

and the value of the actual parameter vector is

θ = θ0 +

k−1∑
j=1

∆̂θ(j).

It is important to note that the values of P (ueq), for all
the iterations performed, form a sequence. In this case,
this sequence doesn’t need to converge: we only require a
minimum.

5 Performance of parameter estimation strategy

5.1 Parameter estimation of a level system

Consider the level system shown in Figure 2. A simplified
model of this system is given by

ẋ =
1

A
(fin (t)− fout (t)) ,

where x is the level of the liquid, A is the cross-sectional
area of the tank, fin (t) is the inflow rate, and fout (t) is
the outflow rate. The inflow rate is given by

fin (t) = kV (t) ,

where k is the pump constant and V (t) is the voltage
applied to the pump. Now, using Bernoulli’s law for flows
through small orifices, the outflow velocity is

vout (t) =
√
2gx,

where g is the gravitational acceleration constant. Then, the
outflow is

fout (t) = a
√

2gx,

where a is the cross-sectional area of the outflow orifice.
Therefore, the model is given by

ẋ = − a

A

√
2gx+

k

A
V (t) , (15)

System (15) has three not exactly known parameters: A, a
and k. Therefore, it takes the form

ẋ = − (α+∆α)
√
2gx+ (β +∆β)V (t) , (16)

where α and β are the nominal values of a/A and k/A,
respectively, while ∆α and ∆β are the uncertainties of
those parameters.

Because g is a known constant, system (16) satisfies
the property of linearity with respect to the parameters,
therefore

ẋ = −α
√

2gx+ βV (t) + φT (x, V ) θ,

where
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φT (x, V ) =
[
−
√
2gx V (t)

]
,

and

θT =
[
∆α ∆β

]
.

In this case, the state variable x is available. Then we
need a state observer to estimate only the disturbance term
φT (x, V ) θ. Based on the observer (5) we propose the state
observer given by

.

x̂ = −α
√
2gx+ βV (t) + ω1 |x− x̂|

1
2 sign (x− x̂)

+ω2p,

ṗ = −Tsp+ sign (x− x̂) . (17)

To prove the stability of the observer, define the error e =
x− x̂, whose dynamics are given by

ė = −ω1 |e|
1
2 sign (e)− ω2p+ φT (x, V ) θ,

ṗ = −Tsp+ sign (e) ,

where∣∣∣∣dφT (x, V ) θ

dt

∣∣∣∣ ≤ δ.

If ω1 = 1.5
√
δ and ω2 = 1.1δ, we can guarantee that the

error e and its derivative converge to zero in finite time.
Hence

v = ω1 |e|
1
2 sign (e) + ω2p = φT (x, V ) θ

in finite time (Bu et al., 2015; Wang et al., 2015).

Figure 2 Scheme of the level system (see online version
for colours)

5.1.1 Numerical results of the parameter estimation of a
level system

To illustrate the performance of the methodology, as a first
stage, we made a numerical experiment. For system (16),
we propose the nominal values for the parameters to be
α = 0.6047 and β = 3.0075 × 10−3, and the parameter
uncertainties as ∆α = –1 and ∆β = 0.5. The parameters for
observer (17) are δ = 5 and Ts = 1.

The performance of the state observer is shown in
Figure 3. We can see that the convergence of x̂ to x and
the estimation of the disturbances γ̂(·) are in finite time. It
is important to note that signals x, γ̂(·) and V (t) do not
have noise, therefore a filtering process is not necessary.

Figure 3 Performance of the state observer in estimating the
disturbance (see online version for colours)

Notes: Black lines correspond to actual signals and
red lines to estimated signals.

The results of the methodology for parameter estimation are
in Table 1. Because the signals are noise-free, we have a
good estimation in the first iteration.

Table 1 Numerical results for parameter estimation of a level
system

It. i Pi (ueqi) ∆̃αi ∆̃βi

1 0.0013 0.9999 0.5
2 4.0293e-07 - -

5.1.2 Experimental results of the parameter estimation
of a level system

The experiment was made with a level system,
manufactured by FESTO, shown in Figure 4, which is
composed of a basin, tank, pump, and a level sensor.
The experiments were made in the real-time platform
MicrolabBox 1102 from dSPACE, using a sample time of
0.0001 seconds.

For the experiments, the nominal values for the plant are
α = 0.0060469 and β = 0.0030075, and the parameters for
the state observer are Ts = 1 and δ = 10.

Figure 5 shows the performance of the observer. Here
we can see that x̂ converges to x, but all signals, x, γ̂(·)
and v, have noise. Therefore, we apply a filtering processes
to reduce it. Figure 6 shows the equivalent output injection
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for the first iteration, which corresponds to the black line
and the red line’s second iteration. Because the nominal
parameters were close to the real ones, the decrease in
amplitude was small.

Figure 4 Level system used in the experiments
(see online version for colours)

Figure 5 Experimental results (see online version for colours)

Notes: Performance of the state observer in estimating
the disturbance. Black lines correspond to actual
signals and red lines to estimated signals.

Table 2 Experimental results for parameter estimation of a level
system

It. i Pi (ueqi) ∆̃αi ∆̃βi

1 3.2863e-04 –0.004271 –0.00273
2 8.1318e-05 –6.795 × 10−5 –7.592 × 10−6

3 1.7447e-04 3.946 × 10−5 –7.691 × 10−7

4 1.1578e-04 - -

Table 2 shows the results of the parameter estimations for
four iterations. As we can see, the minimum value of the

index P (ueq) is obtained after the first iteration. Therefore,
the final values of the parameters are α = 0.0017759 and
β = 0.0047834.

Figure 6 Comparison of the equivalent output injection of the
first and second iterations, black line y red line
respectively (see online version for colours)

5.2 Parameter estimation for a three-DOF mass spring
damper

In this section we apply the proposed methodology to
a linear system with order six, with one input and
three outputs. Consider the mass-spring-damper mechanical
system shown in Figure 7, where fvi (t), for i = 1, 2, 3, are
the viscous friction forces in each mass.

Figure 7 Diagram of a mass-spring-damper mechanical system
with three DOFs

+ + +

The model of this mechanical system is given by

ẋ11 = x21,

ẋ12 = x22,

ẋ13 = x23,

ẋ21 = −a2x11 + a3x12 − a4x21 + a1u+ γ1 (·) ,
ẋ22 = b1x11 − b2x12 + b3x13 − b4x22 + γ2(·),
ẋ23 = c1x12 − c2x13 − c3x23 + γ3 (·) ,
y1 = x11,

y2 = x12,

y3 = x13 (18)

where for i = 1, 2, 3, x1i are the positions, x2i are the
velocities, ai, bi and ci are the nominal parameters, and the
terms γi(·) are given by

γ1(·) =


u

−x11

x12

−x21


T 

∆a1

∆a2

∆a3

∆a4
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γ2(·) =


x11

−x12

x13

−x22


T 

∆b1

∆b2

∆b3

∆b4


γ3(·) =

 x12

−x13

−x23

T ∆c1

∆c2

∆c3


For system (18) we propose a state observer based on the
observer (9), which is given by

.

x̂11 = x̂21 + c11 (y1 − ŷ1) ,
.

x̂12 = x22 + c12 (y2 − ŷ2) ,
.

x̂13 = x23 + c13 (y3 − ŷ3) ,
.

x̂21 = −a2x11 + a3x12 − a4x̂21 − a5sign (x̂21) + a1u

+c21 (y1 − ŷ1) + c31sign (y1 − ŷ1)
.

x̂22 = b1x11 − b2x12 + b3x13 − b4x̂22 − b5sign (x̂22)

+c22 (y2 − ŷ2) + c32sign (y2 − ŷ2)
.

x̂23 = c1x12 − c2x13 − c3x̂23 − c4sign (x̂23)

+c23 (y3 − ŷ3) + c33sign (y3 − ŷ3)

ŷ1 = x̂11

ŷ2 = x̂12

ŷ3 = x̂13

For this observer it is necessary to use low-pass filters to
recover the equivalent control ueq . We use the second-order
low-pass filters given by

ÿf + 1.414ωcẏf + ω2
cyf = ω2

cuf , (19)

where ωc is the cut-off frequency, yf is the output and uf

is the input. We use a filter for each discontinuous term in
the observer and to estimate each disturbance term.

5.2.1 Numerical results of the parameter estimation for
a three-DOF mass spring damper

In the numerical simulation, we take the nominal
parameters to be a1 = 5, a2 = 1,100, a3 = 600, a4 = 1.5,
b1 = 400, b2 = 666.67, b3 = 266.67, b4 = 1, c1 = 533.33,
c2 = 533.33, and c3 = 3.0. The parameter uncertainties are
∆a1 = 0.05, ∆a2 = 10, ∆a3 = –3, ∆a4 = 1, ∆b1 = –5, ∆b2

= 12, ∆b3 = 1, ∆b4 = 0.4, ∆c1 = –5, ∆c2 = 5, and ∆c3 =
1.

The parameters of the state observer are c11 = c12 = c13
= 19, c21 = c22 = c23 = 94, c31 = 2, c32 = 1.3 and c33
= 2. The cut-off frequency of the low-pass filters is ωc =
90 rad/seg.

It is important to note that the signals generated by the
observer have noise. Therefore, it was necessary apply a
filter.

The results for four iterations are given in Tables 3, 4
and 5, where the minimun values for P1 (ueq) and P3 (ueq)
are found in iteration four, and for P2 (ueq), in iteration
three. Therefore, the estimated parameter uncertainties are

∆̂a1 = 0.049492, ∆̂a2 = 9.8749, ∆̂a3 = –3.0748, ∆̂a4 =
1.000279, ∆̂b1 = –5.0304, ∆̂b2 = 11.9155, ∆̂b3 = 0.946800,
∆̂b4 = 0.400305, ∆̂c1 = –5.017468, ∆̂c2 = 4.982555, and
∆̂c3 = 0.999919.

Table 3 Simulation results for the estimation of parameter
uncertainties ∆a1 , ∆a2, ∆a3 and ∆a4

It. i P1i (ueqi) ∆̃a1 ∆̃a2 ∆̃a3 ∆̃a4

1 0.0444 0.04495 8.845 –3.644 1.031
2 0.000069645 0.003827 0.8502 0.4613 –0.03058
3 0.000065718 0.000715 0.1797 0.1079 –0.000141
4 0.000060197 - - - -

Table 4 Simulation results for the estimation of parameter
uncertainties ∆b1 , ∆b2, ∆b3 and ∆b4

It. i P2i (ueqi) ∆̃b1 ∆̃b2 ∆̃b3 ∆̃b4

1 0.1783 –5.613 10.43 0.1254 0.4617
2 0.000050329 0.4739 1.218 0.6655 –0.06018
3 0.000034503 0.1087 0.2675 0.1559 –0.001215
4 0.000038463 - - - -

Table 5 Simulation results for the estimation of parameter
uncertainties ∆c1 , ∆c2, and ∆c3

It. i P3i (ueqi) ∆̃c1 ∆̃c2 ∆̃c3

1 0.0726 –5.199 4.817 1.031
2 0.000038947 0.1817 0.1657 –0.03108
3 0.00005942 –0.000168 –0.000146 –0.0000007832
4 0.000021241 - - -

5.2.2 Experimental results of the parameter estimation
for a three-DOF mass spring damper

For the experiments we used the mechanical system shown
in Figure 8 with the same nominal parameters as were used
in the numerical simulations. The parameters of the state
observer are c11 = c12 = c13 = c21 = c22 = c23 = 94, c31
= 2, c32 = 1.3 and c33 = 2. The cut-off frequency of the
low-pass filters is ωc = 90 rad/seg.

The results for five iterations are given in Tables 6, 7
and 8, where the minimum value for P1 (ueq) and P2 (ueq)
are found in iteration four, and for P3 (ueq), in iteration
three. Then, the final values for the parameters of the
system are a1 + ∆̂a1 = 2.1671, a2 + ∆̂a2 = 653.85, a3 +
∆̂a3 = 517.58, a4 + ∆̂a4 = 6.8732, b1 + ∆̂b1 = 541.43, b2 +
∆̂b2 = 795.4, b3 + ∆̂b3 = 227.63, b4 + ∆̂b4 = 3.2338, c1 +
∆̂c1 = 216.65, c2 + ∆̂c2 = 219.49 and c3 + ∆̂c3 = 2.3237.

Finally, Figure 9 shows a comparison between the
equivalent output injection for the first iteration, black
line, and for the iteration which corresponds to the best
parameter estimation, red line. Here we can notice a
significant attenuation of the equivalent output injection for
each degree of freedom.
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Table 6 Experimental results for the estimation of parameter
uncertainties ∆a1 , ∆a2. ∆a3 and ∆a4

It. i P1i (ueqi) ∆̃a1 ∆̃a2 ∆̃a3 ∆̃a4

1 3.7413 –1.628 –218.6 22.98 –1.257
2 0.548 –1.035 –157.1 –46.34 6.636
3 0.0132 –0.1699 –70.45 –59.06 –0.005794
4 0.0111 –45.46 –45.46 –38.69 –0.2615
5 0.0505 - - - -

Table 7 Experimental results for the estimation of parameter
uncertainties ∆b1 , ∆b2, ∆b3 and ∆b4

It. i P2i (ueqi) ∆̃b1 ∆̃b2 ∆̃b3 ∆̃b4

1 0.0445 26.2 –20.15 –41.02 4.089
2 0.051 68.66 79.89 –20.06 –1.964
3 0.0035 46.57 68.99 22.04 0.1088
4 0.003 27.43 38.88 11.69 0.1193
5 0.0056 - - - -

Table 8 Experimental results for the estimation of parameter
uncertainties ∆c1 , ∆c2, and ∆c3

It. i P3i (ueqi) ∆̃c1 ∆̃c2 ∆̃c3

1 0.1055 –283.9 –281.5 –0.4647
2 0.003 –32.78 –32.34 –0.2116
3 0.0011 –1.03 –0.9549 –0.007009
4 0.0015 –1.698 –1.717 –0.01018
5 0.0045 - - -

Figure 8 Mass-spring-damper mechanical system with three
degrees of freedom used in experiments
(see online version for colours)

Figure 9 Comparison between the equivalent output injection
for the first iteration, black line, and for the iteration
which corresponds to the best parameter estimation,
red line (see online version for colours)

5.3 Parameter estimation of a simple pendulum

In this section we present the parameter estimation of
a simple pendulum, with Coulomb friction, shown in
Figure 10. The model of this system is given by

ẋ1 = x2,

ẋ2 = −a sin (x1)− bx2 − csign (x2) + du+ φT (·)θ,
y = x1, (20)

where x1 is the angular position, x2 is the angular velocity,
a, b, c and d are the nominal parameter values, and

φ(·) =


− sin (x1)

−x2

−sign (x2)
u

 ,

θ =
[
∆a ∆b ∆c ∆d

]T
,

where ∆a, ∆b, ∆c and ∆d are the parameter uncertainties.
If the state variables x1 and x2 are bounded, the term
φT (·)θ is bounded too.

As in the previous subsection, we use the state
observer (9) to estimate the velocity and the disturbance
term in system (20). The state observer is given by

.

x̂1 = x̂2 + c1 (y − ŷ) ,
.

x̂2 = −a sin (x1)− bx̂2 − csign (x̂2) + du

+c2 (y − ŷ) + c3sign (y − ŷ) ,

y = x1,

and we use the low-pass filter given by equation (19) to
recover the equivalent control.

Figure 10 A simple pendulum
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5.3.1 Numerical results of the parameter estimation of a
simple pendulum

For the numerical simulations, the nominal values of the
parameters of the pendulum are a = 76, b = 2.5, c = 0.5
and the parameter uncertainties are ∆a = 5, ∆b = –0.8, ∆c

= –0.2, ∆d = –4. For the state observer the gains are c1 =
17.5, c2 = 57.25 and c3 = 30. The input u is a square wave
with amplitude 0.2 and frequency 0.1 Hz.

In this case, the estimated velocity and disturbance terms
have noise, and so we filter those signals.

The results of the estimation process are shown in
Table 9 where we can see that the fifth iteration corresponds
to the minimum value of the P (ueq), with the estimated
parameter uncertainties ∆̂a = 4.9257, ∆̂b = –0.8009, ∆̂c =
–0.18915 and ∆̂d = –4.1018, which are very near to the
actual parameter uncertainties.

Table 9 Simulation results for the parameter estimation of a
simple pendulum with Coulomb friction

It. i P (ueq) ∆̂a ∆̂b ∆̂c ∆̂d

1 11.3516 1.946 –1.051 –0.2541 –7.64
2 0.3507 3.283 0.1274 0.04252 3.847
3 0.0595 0.2678 0.1334 0.01207 0.3875
4 0.0223 –0.4244 0.008904 0.005385 –0.5084
5 0.0171 –0.1467 –0.0196 0.004979 –0.1879
6 0.0159

5.3.2 Experimental results of the parameter estimation
of a simple pendulum

For the experiments, we used the simple pendulum shown
in Figure 11, and the same nominal parameter values as
well as the same state observer and low-pass filter as were
used in the previous simulation.

Figure 11 Simple pendulum used in experiments

The results of the estimation process are shown in Table 10
where we can see that the fourth iteration corresponds

to the minimum value of the P (ueq), with the estimated
parameter uncertainties ∆̂a = –49.467, ∆̂b = –2.31417, ∆̂c

= –0.029669 and ∆̂d = –96.0454. Therefore, the actual
values of the parameters of the simple pendulum are a+
∆̂a = 24.709, b+ ∆̂b = 0.1657, c+ ∆̂c = 0.479985 and
d+ ∆̂d = 6.657.

Table 10 Experimental results for the parameter estimation of a
simple pendulum with Coulomb friction

It. i P1i (ueqi) ∆̂a ∆̂b ∆̂c ∆̂d

1 608.1348 –23.14 –0.4726 –0.009184 –87.7
2 1.2931 –24.78 –1.319 –0.0129 –7.614
3 0.3781 –3.371 –0.5427 0.002069 –1.029
4 0.3543 1.824 0.02013 –0.009654 0.2976
5 0.4494

Finally, Figure 12 shows a comparison between the
equivalent output injection for the first iteration, black
line, and for the iteration which corresponds to the best
parameter estimation, red line. A significant attenuation of
the equivalent output injection can be seen observed.

Figure 12 Comparison between the equivalent output injection
in the simple pendulum for the first iteration, black
line, and for the iteration which corresponds to the
best parameter estimation, red line
(see online version for colours)

6 Performance comparison with other parameter
identification strategies

In this section, we compare the performance of the
proposed parameter identification methodology with
different approaches published previously, in particular,
with the tools in the system identification toolbox from
MATLAB, and the VSS-based direct identification method
proposed in Xu and Hashimoto (1993). In this comparison,
we use a mass-spring-damper system of one degree of
freedom, shown in Figure 13, whose model is given by

ẋ1 = x2,

ẋ2 = −αx1 − βx2 + ρu,

y = x1, (21)

where x1 and x2 are the position and velocity, respectively,
α, β, and ρ are the parameters to identify.
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Figure 13 Mass-spring-damper system of one degree of
freedom

For all strategies, we applied a square wave with a period
of six seconds, 50% duty cycle, and an amplitude of 1
volt. For the system identification toolbox from MATLAB,
we carried out six experiments: we created the objects
with the function iddata() and merged all objects with
merge(). Finally, we obtained the transfer function of the
system using tfest(), getting the parameters α = 174.2,
β = 12.570, and ρ = 2.567. The index P (ueq) for these
parameters is P (ueq) = 0.0207.

For the VSS-based direct identification method proposed
in Xu and Hashimoto (1993) we assume that the parameters
satisfy the following inequalities

−500 < −α < −100,

−20 < −β < −5,

1 < ρ < 5.

System (21) has the form

ẋ1 = x2,

ẋ2 = ρ (x, p) + λ (x, p)u,

where ρ (x, p) = −αx1 − βx2 and λ (x, p) = ρ. Then, the
identificator has the form

x̂1 = x̂2

x̂2 = α̂0 (t)
T

x1

x2

u

+ υ

where α̂0 (t) =
[
α̂01 (t) α̂02 (t) α̂03 (t)

]T and each element
has the form defined in Xu and Hashimoto (1993).
υ = υc + υv, where υc = h1 (x2 − x̂2) , h1 = 20, υv =

dT |ζ|1 sign (σ) , |ζ|1 =
[
|x1| |x2| |v|

]T
, d =

[
400 15 4

]T
and σ = h1 (x1 − x̂1) + (x2 − x̂2) . The identification
algorithm is

·
α̂ (t) = Γζω, (22)

where Γ = ΓT > 0. The equivalent control is given by
ω = ueq − υc + (α̂0 (t)− α̂ (t))

T
ζ. To obtain it we use a

first-order low-pass filter given by ẏf = −yf/τ + uf/τ
with τ = 0.02. With this method we obtain the parameters
α = 161.2, β = 8.095 and ρ = 2.281, and the index P (ueq)
= 0.0245.

Lastly, we applied the methodology proposed in this
paper. In this case, we took the parameters obtained with
the system identification toolbox functions as the nominal
values of the system and used the observer proposed in
Subsection 3.2 to estimate the velocity and the equivalent
output injection. After five iterations, we obtained the
parameters α = 140.903, β = 10.0086 and ρ = 2.249, and
the index P (ueq) = 0.0028.

As we can see, the methodology proposed in this paper
obtained the best estimation according to the index P (ueq).

7 Conclusions

We have proposed a methodology to estimate the
parameters of a broad class of dynamical systems: linear,
nonlinear, and discontinuous, that satisfy the property
of parameter linearity. The equivalent output injection
phenomenon, present in discontinuous state observers, is
the basis for implementing the terms needed by the
least squares algorithm used in the methodology. The
main advantages of this proposal are the following: the
existence of an index that allows the evaluation of the
parameter estimation in each iteration, its capacity to
estimate parameters in discontinuous systems, like the
coefficient of the signum function in the simple pendulum,
and the facility to incorporate new observers to improve its
performance.

Because the methodology has to process and
analyse signals offline, it takes much time to develop
all experiments. Also, if the signals involved in the
identification process have noise, the noise must be reduced
using some appropriate technique because the least squares
algorithm is sensitive to noise. However, this additional
effort is compensated by obtaining a model that will later
facilitate the design and implementation of controllers.

It is important to note that a factor that affects the
parameter estimation strategy is the exactitude of estimating
disturbance term, which depends on the performance
of the state observer. Therefore, in an experimental
context, we have to use a state observer with adequate
performance. Finally, as future work, we propose the
design of discontinuous observers with better experimental
performance to improve the quality of estimation of
the disturbance terms; in this way, the methodology
performance will improve.
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