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Abstract: Data analysis can be done by expert system decisions on system 
status according to system input and output data. For the purpose of data 
analysis, there is often a need to classify data or to find regularities therein. The 
results of the regularity search can be expressed by the IF-THEN production 
rules. The use of different approaches – with clustering algorithms, neural 
networks – makes it possible to obtain rules that characterise data. Knowledge 
acquisition in this paper is the process of extracting knowledge from numerical 
data in form of rules. Rules acquisition in this context is based on clustering 
methods. With the help of the K-means clustering algorithm, rules are derived 
from trained neural networks. The rule-making methodology is demonstrated 
on a sample basis of IRIS data. The effectiveness of the obtained rules is 
evaluated. 
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1 Introduction 

The purpose of intelligent data analysis (IDA) is to find hidden regularities in the data 
and express them by rules. The field of IDA is considered very important due to the  
definition of data as knowledge. IDA can also be described as a process that “looks for 
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previously unknown, non-trivial, interpretable regularities in decision-making in various 
applications of human activity” (Tan et al., 2019; Fayyad et al., 1996). 

Different models of knowledge representation are known. They can be divided into 
the following classes: logical models, semantic networks, frames, production rules model. 
In the following, only production rules model will be observed, as it is based on the 
notional rules that allow you to assign knowledge in the form of IF-THEN, that is to say 
the general form of production rules: 

( ) ( ) ( ){ } 1   2  ...  IF Event AND Event AND Event N THEN …  

The advantage of production rules systems lies in the fact that their conclusions are 
essentially similar to those of experts. The motivation is following: 

• finding previously unknown regularities in the data 

• ability to express the found regularities in a user-friendly and understandable way. 

The author’s scientific interests are related to artificial neural networks and clustering, 
and the choice of rule-making method based on the radial-basic function network (RBF) 
is justified, because this neural network uses clustering in the training phase. 

With the growing interest in the IDA field, studies on the possibilities of processing 
IF-THEN rules by various methods have become noteworthy. This can provide the 
knowledge base model that underpins further data analysis and risk management. 

The aim of this work is to investigate task classes that implement regularisation and 
rule making methods from numerical data through clustering for risk analysis. 

2 Clustering in the neural networks 

2.1 The suitability of neural networks for rule acquisition 
The use of neural network technologies can extend the capabilities of neural networks in 
data analysis (Fausett, 1993). There are many studies that allow reading linguistic 
information from artificial neural networks (Craven and Shavlik, 1995; Andrews et al., 
1995; Dutch et al., 2004). In general, neural networks have a very good ability to impart 
‘empirical knowledge’ in the form of input data, but information on network performance 
is predominantly expressed by a trained neural network structure and weights, which 
makes it difficult for the user to interpret the results obtained. It can be said that the 
operation of a neural network is similar to that of a “black box”, with no explanation of 
its operation. This partially limits the use of neural networks in many applications where 
knowledge acquisition through subsequent decision making is essential. 

Rule extraction process in a common case is shown in Figure 1 (Andrews and Gewa, 
1995; McGarry et al., 2001; Zhou et al., 2003; Hush and Horne, 1993). 

This type of network representation is difficult to understand due to the fact that a 
typical neural network contains a large number of characteristic value parameters. These 
parameters determine the relationship between the data input vectors and the output  
value y. Although the nature of parameter mapping for different training algorithms is 
understandable, a large number of typical network parameters make the task of 
understanding the nature of the network very difficult. Moreover, in multilayer networks,  
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such parameters characterise the various relationships between the data input vectors and 
the desired output values. In such cases, it is impossible to determine the effect of a given 
input vector on the output value because its effect is expressed in context with the values 
of other input vectors. 

Figure 1 Rule extraction process from neural networks 

 

This type of network representation is difficult to understand due to the fact that a typical 
neural network contains a large number of characteristic value parameters. 

Such relationships are assigned to the hidden layer elements of the network, which in 
a certain way combines many input vectors to obtain their characteristic values. It was 
hypothesised that exactly the elements of the hidden layer could characterise the 
relationship between the input data through the hidden layer to the output value of the 
network. What might this relationship be like? The hypothesis states that these could be 
expressions in a symbolic form that would describe such relationships, i.e., obtain the 
rules that characterise the network input and output relationships. Many researchers 
propose a variety of methods that address this hypothesis in the context of rule-making. 

Figure 2 illustrates the task of obtaining rules from a simple network (Craven and 
Shavlik, 1995). It is a single layer network with 5 discrete input elements and one output 
element. The obtained symbolic rules characterise the state of the input elements, which 
when executed guarantee the correctness of the output state. 

Figure 2 Simple network rule extraction example 
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For the input element, the activation value is assumed to be 0 if there is a false value and 
accordingly the activation value is 1 if there is a true value. The threshold function is 
used to calculate the output value: 

1,  if  0
0,     if else                

i ix w
y

θ⎧ + >
= ⎨
⎩

∑  (1) 

where y – output element activation, ix  – activation of input element i , wi – weight 
value between input element i and output element, θ – output element threshold value. 

In this case, the network of Figure 2 gives three rules that describe the general state of 
the network: 

1 2 3

1 2 5

1 3 5

     
       
       .

x x x y
x x x y
x x x y

∧ ∧ →
∧ ∧ →
∧ ∧ →

 

Let’s take rule 2 as an example – 1 2 5      x x x y∧ ∧ → . This rule states that in case 1  ,x true=  
2   x true=  and 5   x false=  and the output element y  with an activation value of 1, the 

network predicts y true= . To make sure this is the correct rule, review the cases covered 
by this rule: 

1 1 2 2 5 5 1x w x w x w θ+ + + =  (2) 

The expression of weighted value is 0sum > . It is also seen that 3 3 4 40 4x w x w≤ + ≤ . It 
does not matter what values the input elements 3x  and 4x  will accept – the output 
element will have an activation value of 1. So the rule found is correct and part of the rule 
condition is obtained. To make sure that the rule is as general as possible, we can remove 
one of the expressions in the rule conditional section. In this case, the rule will no longer 
accurately describe network behaviour. For example, if 5x  has been removed from the 
rule, the rule-compliant examples overlap the rule 3 5i ix w θ− ≤ + ≤∑  and so the 
network does not allow output y true=  to be predicted in all cases. 

This example illustrates the nature of rule enforcement in a very simple network.  
A question may arise – what does the rule mean for a network with a continuous 
activation function, hidden elements and lots of input elements? Although neural 
networks are mainly used to solve classification problems, they always have an implicit 
decision-making procedure that distinguishes each case to a particular class. In the 
example above, the decision procedure determines that y true=  if the output element 
activation is 1, and if y false=  the activation is 0. If the logistic activation function is 
used instead of the threshold function, then the decision procedure determines the case 
y true= , if the activation value exceeds a certain value. 

Similarly, if a single output element is used to describe the separate class in multi-
class assignments, the decision procedure associates the class with the output element 
that has the highest activation value. Generally, the resulting rule characterises the state 
of a set of network by a decision procedure and thus defines a particular class. 
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2.2 RBF and rule acquisition 

The nature of the RBF neural network (see Figure 3) makes it an appropriate tool in the 
rule-making process. It is possible to get a number of IF-THEN rules that correctly 
describe the knowledge gained during the learning process. 

The most frequently used radial function in networks is Gaussian: 

( )
2

2expj
j

x
Z x

μ
δ

⎛ ⎞−
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

 (3) 

The response of the output unit: 

1

( )
J

ij j
j

y W Z x
=

=∑  (4) 

where W – weight matrix, Z – hidden units activations, x – input vectors, μ – parameter 
vector (centers), σ – width of receptive field. 

Figure 3 Radial basic function network (see online version for colours) 

 

The training of RBFs takes place in two stages – clustering (K-means) and supervised 
learning (LMS). 

In the first step, the RBF centres are positioned using the K-means algorithm – hidden 
layer elements – and the radial function size. 

As a result of algorithm operation, the final cluster centres jw  are determined, 
provided that the sum of the squares of the distances between all the points belonging to 
the group j and the cluster centre must be minimal. 

In the second step of the learning, the weights from the hidden elements to the output 
and respectively the output response are calculated. 

The rule-making process utilises the feature of hidden elements, namely, each hidden 
element, after training, actually represents one class of elements. The local nature of the 
RBF hidden element makes it possible to transform into a simple rule: 
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1     IF Feature is TRUE AND  

2     IF Feature is TRUE AND… 

  nIF Feature is TRUE  

  xTHEN Class  

where the complex element Feature consists of calculate the upper and lower limits of 
the RBF centres μn, RBF width or radius σ , steepness parameter S . 

The value S  is determined empirically and depends on the width parameter 
(Andrews and Gewa, 1995). The upper and lower limits are calculated using the formula: 

   and lower i i upper i iX S X Sμ σ μ σ= − + = + −  (5) 

3 The process of obtaining rules as a result of clustering 

3.1 Illustrative example of rule acquisition using K-means clustering algorithm 
A two dimensional experimental dataset is given in Table 1. 

Table 1 Experimental data 

N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
X1 1 3 6 10 2 2 5 6 4 8 8 4 9 1 
X1 3 4 1 6 3 8 5 5 3 6 3 9 1 6 

By using the RBF training algorithm, we derive two classes or clusters and their centres 
in three iterations after normalisation (see Figure 4). As a result, the following weight 
vectors were obtained: μ1 = (2.75; 5.13) and μ2 = (7.67; 3.67). There were also derived 
radius values 2

1σ  = 6.8 and 2
2σ = 7.4 corresponding to the clusters. At the second stage of 

learning, radial functions and network output were calculated by formula (5). In this case 
RBF network is considered trained. 

Figure 4 Two clusters with points (2.75; 5.13) and (7.67; 3.67)  (see online version for colours) 
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The results obtained with SPSS program are also similar (see Table 2). 

Table 2 SPSS results 

Case number Cluster Distance 
1 1 2.753 
2 1 1.152 
3 2 3.236 
4 2 3.184 
5 1 2.253 
6 1 2.971 
7 1 2.253 
8 2 2.267 
9 1 2.465 
10 2 2.339 
11 2 0.687 
12 1 4.072 
13 2 2.911 
14 1 1.957 

 
Number of cases in each cluster 

1 8.000 Cluster 
2 6.000 

Valid 14.000 
Missing 0 

Steepness = 0.6: 

Cluster 1. 1 lowerX = 2.75 – 2.6 + 0.6 = 0.75; 2 lowerX =5.13 – 2.6 +0.6= 3.13; 

1 upperX = 2.75 + 2.6 – 0.6 = 4.95; 2 upperX = 5.13 + 2.6 – 0.6 = 7.13. 

Cluster 2. 1 lowerX  = 7.67 – 2.7 + 0.6 = 5.57; 2 lowerX = 3.67 – 2.7 +0.6= 1.57; 

1 upperX = 7.67+ 2.7 – 0.6 = 9.77; 2 upperX = 3.67 +2.7 – 0.6= 5.77. 

We have derived the following rules: 

1 2 1 (   0.75   4.95)   (   3.13   7.13)  IF x AND AND IF x AND THEN CLUSTER≥ ≤ ≥ ≤  

1 2 2 ( 5.57   9.77)   (  1.57   5.77)  IF x AND AND IF x AND THEN CLUSTER≥ ≤ ≥ ≤  

Steepness = 0: 

Cluster 1. 1 lowerX  = 2.75 – 2.6 + 0 = 0.15; 2 lowerX  = 5.13 – 2.6 +0 = 2.53; 

1 upperX  = 2.75 + 2.6 – 0 = 5.35; 2 upperX  = 5.13 + 2.6 – 0 = 7.73. 
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Cluster 2. 1 lowerX  = 7.67 – 2.7 + 0 = 4.97; 2 lowerX  = 3.67 – 2.7 +0 = 0.97; 

1 upperX  = 7.67 + 2.7 – 0 = 10.37; 2 upperX  = 3.67 +2.7 – 0 = 5.67. 

Thus, for each hidden unit that represents the clusters we have derived the following 
rules: 

1 2 1 (   0.15   5.35)   (    2.53   7.73)  IF x AND AND IF x AND THEN CLUSTER≤≥≤≥  

1 2 2 (    4.97   10.37)   (    0.97   5.67)  IF x AND AND IF x AND THEN CLUSTER≥ ≤ ≥ ≤  

Regions of rules for Steepness value S = 0.6 are represented in Figure 5. 

Figure 5 Regions of rules – steepness = 0.6 (see online version for colours) 

 

Regions of rules for Steepness value S = 0 are represented in Figure 6. 

Figure 6 Regions of rules – steepness = 0 (see online version for colours) 
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3.2 RULEX algorithm implementation with IRIS data 

The experiment aimed at extracting the rules and testing their quality. During the 
experiment the well-known Fisher’s IRIS dataset was employed (Iris Data set). 

In the experimental part, all 50 elements of each cluster were taken as the training set. 
The values of parameter S  were experimentally selected. In each training phase, cluster 
centers and radius values were calculated according to the RULEX algorithm. Based on 
these values, lowerX  and upperX  and conditional parts of rules were calculated. Then a full 
IRIS data test was performed to see to what extent the rules found correctly describe the 
elements of each cluster. For each cluster, the number of validation elements as well as 
the percentage of the total number of correctly describing elements were found. 

Table 3 demonstrates the results of the experiment. 

Table 3 Results of training set 

Parameter S Cluster I Cluster II Cluster III Percentage (%) 
–0.8 49 50 49 98.7 
–0.7 49 50 49 98.7 
–0.6 48 49 49 97.3 
–0.5 48 49 49 97.3 
–0.4 45 47 47 92.7 
–0.3 40 44 47 87.3 
–0.2 40 42 44 84.0 
–0.1 27 37 42 70.7 
0 15 32 41 58.7 
0.1 10 25 36 47.3 
0.2 4 16 32 34.7 
0.3 0 9 26 23.3 

Analysing the obtained results, it can be concluded that parameter S  play an important 
role – the higher the negative value of S , the more the lower limit Xlower of the rule’s 
operating range is reduced while increasing the upper limit of the range Xupper. This effect 
is illustrated in Figure 7. 

Figure 7 The effect of parameter S increase/decrease 
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4 Conclusions 

In the experimental part implementation of the task with IRIS database was given. Using 
a rule-based design method at various initial parameters, data-specific rules were 
obtained. 

As a result of the experiments, it was concluded that the resulting rules correctly 
describe the initial data and thus provide a basis for the evaluation of the methodology 
proposed in the paper. We were convinced that the different methods of extracting rules 
are able to find rules in the data and that the obtained rules are of good quality. Further 
the extracted rules can help discover and analyse the hidden knowledge in datasets. This 
will allow a decision to be made on the applicability of the resulting rules to different 
areas of decision making and analysis. 
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