Effect of mesh phasing on dynamic response of rotate vector reducer
by Chuan Chen; Wujiu Pan; Hanbing Zhang
International Journal of Industrial and Systems Engineering (IJISE), Vol. 43, No. 2, 2023

Abstract: The effectiveness of mesh phasing to suppress certain orders of harmonic responses of RV reducer is investigated with Fourier series method. The lumped-parameter method is used to develop a transverse-torsional dynamic model, which considers key factors such as mesh stiffnesses of involute and cycloidal gears, bearing stiffnesses and support stiffnesses. The Fourier series method is used to solve dynamic response excited by the mesh stiffness. According to characteristics of the central components, each order of harmonic responses belongs to one of three typical types: rotational, translational and planetary component response modes. The typical response mode is related to mesh phasing factor. The law of mesh phasing is revealed by exploring the relationship between suppression of certain harmonic and mesh phasing factor, which is due to inherent symmetrical structure. Finally, the influence of the stiffness and torque on dynamic response is studied. The research provides some referential value for the reduction of vibration and dynamic design of RV reducer.

Online publication date: Wed, 01-Feb-2023

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Industrial and Systems Engineering (IJISE):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com