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Abstract: The paper introduces a novel methodology for solving  
multi-attribute decision-making problems under hesitant fuzzy linguistic 
environment. It includes non-uniform, non-regular, or arbitrarily defined 
linguistic terms in hesitant fuzzy linguistic term set. The proposed methodology 
takes both normal and non-normal fuzzy numbers to represent linguistic terms 
in HFLTS. The combined approach of the concept of existence in ranking of 
fuzzy sets, α-cuts of fuzzy numbers, and ordering relations for hesitant fuzzy 
sets is used to value each alternative numerically. Binary integer programming 
is used to verify the consistency level of pairwise comparison matrix 
conforming to specified linguistic preferences as per the decision maker’s 
expressions. The pairwise comparison matrices are aggregated over attributes 
to obtain the aggregated pairwise comparison matrix. The derived aggregated 
matrix calculates dominance/non-dominance levels of alternatives and selects 
best alternative. The proposed method is demonstrated with a numerical 
example, compared with similar methods and the advantages are highlighted. 

Keywords: non-uniform linguistic term set; hesitant fuzzy linguistic term set; 
fuzzy number comparison; binary integer programming; aggregated pairwise 
comparison matrix; dominance degree. 
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1 Introduction 

The decision-making problems, in general, revolve around the identification and 
determination of the best decision alternative among several candidate alternatives. In 
real-world decisions, the selection of an alternative is difficult, mainly due to the 
impreciseness or vagueness inherited in the valuation of the alternatives. The fuzzy set 
has been successfully applied to handle such types of vague, imprecise, or uncertain 
information (Zimmermann, 1978; Kaufman, 1975; Kosko, 1986; Rao et al., 1988). 
However, the theory of fuzzy sets as a methodology to handle the impreciseness or 
vagueness is unsuccessful when the imprecise data arises from two or more information 
sources simultaneously. This difficulty is multiplied when an alternative need to be 
assessed over the multiple attributes and the attribute values are judged from multiple 
information sources. In real-world decision problems, often the data from these 
information sources are unclear, imprecise, and expressed in linguistic terms. Because of 
lack of necessary information, needed expertise, or adequate knowledge, a decision 
maker (DM) confuses and inclines to rely on multiple information in alternative 
valuations. The theory of hesitant fuzzy set (HFS) is an appropriate tool to undertake 
multiple information and express the uncertainty involved through its many membership 
values in the decision-making process. This is because by definition an element of HFS 
has several possible membership values and one can emulate it to multiple information 
bases. HFS has attracted the increasing attention of researchers and industry practitioners 
as the state of hesitation is very common in real-world decision-making situations (Torra, 
2010; Lan et al., 2017; Li et al., 2015). 

The attributes, in general, in real-world multi-attribute decision making (MADM) are 
more conveniently expressed in day-to-day linguistic terms rather than the exact numeric 
ones. For example, a buyer easily expresses his/her desire for the mileage of a car 
linguistically as ‘good’, ‘average’, or ‘above average’, etc. To model this situation, the 
concept of hesitant fuzzy linguistic term sets (HFLTS) is used in many papers in the 
existing literature (Torra, 2010; Wei et al., 2014; Chen and Hong, 2014). For MADM 
problems with linguistic information in its attribute values, the vital issue is to combine 
the attribute values that are defined in different dimensions. Several aggregation 
operators are available to aggregate the linguistically defined attribute values in MADM 
as long as the attribute valuations are in a single linguistic term (Yager, 1995, 2003, 
2004; Wei et al., 2014; Rodriguez et al., 2013; Liao et al., 2020; Rodriguez et al., 2012; 
Samanta and Basu, 2020). The aggregation process becomes difficult when the DM 
hesitates and provides attribute valuations in multiple linguistic terms. The problem lies 
with the effective aggregation of HFLTS containing non-uniform linguistic terms across 
the attributes in MADM. 
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In the literature, in almost all MADM problems with attribute values as HFLTS, the 
linguistic terms are regular or uniform from a pre-defined linguistic term sets and the 
semantics of the linguistic terms are also pre-specified. Existing procedures of fuzzy 
linguistic approach require to subjectively choose the linguistic descriptors from the  
pre-defined linguistic term set and their semantics (Herrera and Martinez, 2000) to 
represent DM’s opinion. In the case of HFLTS, it is a prerequisite that the attribute values 
as hesitant fuzzy element (HFE) are an ordered finite set of consecutive linguistic terms 
from the pre-defined linguistic term set. When a DM obtains the information from 
multiple sources, it is unreasonable to expect that the information will follow the above 
restrictions. Moreover, with the rapid development of the economy and the digitisation of 
society, uncertainty and fuzziness are paramount in decision-making situations, and the 
techniques based on hesitant fuzzy linguistic terms with uniform pre-defined linguistic 
terms is not competent enough for handling the varieties of uncertainties and confusing 
characteristics of the DM that persist in real-life problems. Further, restriction of 
linguistic terms to a pre-defined set with specified semantics may not concur to the true 
opinion of the DM in alternative evaluation. For instance, a buyer may desire to purchase 
a car with a price somewhat low. The linguistic expression somewhat low may not match 
any of the linguistic terms given in S1. Approximating a linguistic term from S1 to a 
specific linguistic expression may not reflect the true opinion of the buyer and may lead 
to loss of information. Figure 1 shows the uniform pre-defined linguistic term set with 
pre-specified semantics. 

Figure 1 Linguistic term set (see online version for colours) 

 

The linguistic term set in Figure 1 corresponds to the terms: 

{
}

1 0 1 2 3 4

5 6

( ), ( ), ( ), ( ), ( ),
( ), ( )

S S Not S Very low S Low S Medium S High
S Very high S Perfect

=
 

The semantics of the linguistic terms in S1 are as shown below: 
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S0 (not) (0, 0, 0.17) 
S1 (very low) (0, 0.17, 0.33) 
S2 (low) (0.17, 0.33, 0.5) 
S3 (medium) (0.33, 0.5, 0.67) 
S4 (high) (0.5, 0.67, 0.83) 
S5 (very high) (0.67, 0.83, 1) 
S6 (perfect) (0.83, 1, 1) 

In the above, the linguistic terms are uniformly defined and represented as fuzzy 
numbers. For example, the fuzzy number representation of semantics of the linguistic 
term ‘medium’ is (0.33, 0.5, 0.67). From Figure 1, the interpretation of the linguistic term 
‘medium’ as: full satisfaction level at point 0.5 and the satisfaction level gradually 
decreases when it deviates from 0.5 and becomes zero at points 0.33 and 0.67. The 
membership value of the fuzzy numbers is same as the satisfaction level. 

Our work addresses the issue mentioned above by realising the expert’s feelings, for 
instance, somewhat low and constructs a fitting linguistic term with matching semantics, 
say s1 ε S2, as shown in Figure 2. The construction of linguistic terms using an expert’s 
thoughts may result in a non-uniform linguistic term set. In the non-uniform set, the 
linguistic terms are generated from experts’ statements and are not restricted to choose 
from a pre-defined linguistic term set as prevalent in the existing literature. Even,  
non-normal fuzzy numbers can be counted as a linguistic term in the non-uniform 
linguistic term set. The linguistic terms s2 and s6 as non-normal fuzzy numbers with 
heights of 0.8 are shown in Figure 2. The main advantage of using HFLTS with  
non-uniform linguistic terms is to build an appropriate linguistic term set representing the 
alternative valuations in real terms. 

Figure 2 Non-uniform linguistic term set (see online version for colours) 
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The non-uniform linguistic term set S2 is shown in Figure 2. 

{ }2 0 1 2 3 4 5 6, , , , , ,S s s s s s s s=  

The semantics of the linguistic terms in S2 are as follows: 

s0 (0.0, 0.0, 0.67) 
s1 (0.0, 0.17, 0.5) 
s2 (0.8, (0.1, 0.4, 0.8)) 
s3 (0.5, 0.6, 0.8) 
s4 (0.5, 0.8, 1.0) 
s5 (0.6, 0.9, 1.0) 
s6 (0.8, (0.4, 1.0 , 1.0)) 

One of the prime motives of the non-uniform linguistic term set is to get rid of 
unjustifiably large or unduly small deviations from the genuine assessment of the 
alternatives. This desirable characteristic of HFLTS with non-uniform linguistic terms 
generalises the decision-making process, making it fit to be used in many real fields of 
decision-making environments. 

To rank the alternatives in MADM, our paper compares the alternatives pairwise, as 
the decision-making methods based on this principle are a popular tool in MADM 
problems (Chen and Hong, 2014; Farhadinia, 2016; Lan et al., 2017; Li et al., 2015; 
Sellak et al., 2018; Rodriguez et al., 2013). As the alternatives are assessed in HFLTS, 
the comparison requires every distinct linguistic term of an alternative to being 
individually compared with the linguistic terms of the other alternatives in each attribute. 
As the linguistic terms are in the form of fuzzy numbers, we have used the concept of 
existence (Chang and Lee, 1994) to evaluate the linguistic terms numerically. The 
numerical evaluation of fuzzy number (s(x), μs(x)), is derived in two parts; the left part 
‘sL’ and the right part ‘sR’. For α ∈ [0, 1], the minimum value of sα is made equivalent to 
‘sL’ and the maximum of sα to ‘R’, where sα is the α-cut of the fuzzy number  
(s(x), μs(x)). Thus we have, 

( ) ( )Min ( ) and ( ) [0, 1]L s R xs x μ x s Max x μ x= ≥ = ≥ ∈α α α  

Following the procedure (Lee and Li, 1993), we can derive the preference degree of the 
linguistic term si over sj by taking the difference of evaluation of 

1 1Max(0, ( ( ) ( )))
iR jLij s sd μ w μ w− −= −  (si ∈ A1, sj ∈ A2, μsIR and μsjL) are the right part 

membership values of si and left part of sj). Motivated by the work given in Lan et al. 
(2017), the ordering relation amongst HFS is used to obtain the complete pairwise 
comparison matrix of the alternatives in numeric terms in each attribute. 

To validate the preference levels amongst the alternatives in the pairwise comparison 
matrix, it is essential to verify its level of consistency. In most cases, it is too difficult to 
obtain a comparison matrix without any inconsistency. As the pairwise comparisons are 
in the form of additive preferences, our focus is on additive consistency measurement. As 
the original preference values are in linguistic terms, it is essential to match the derived 
numerical preferences of the pairwise comparison matrix to their linguistic counterparts. 
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The matching procedure of numerical comparison values to their respective linguistic 
equivalents is defined as follows: 

Let the alternative Ai is preferred over Aj with degree of preference P(Ai >> Aj) =  
αij ∈ [0, 1]. If αij falls in the domain of the linguistic terms, say sp (spL, spM, spR),  
sq (sqL, sqM, sqR), and sk (skL, skM, skR), i.e., αij ∈ [spL, spR], αij ∈ [sqL, sqR], and αij ∈ [skL, skR], 
then it is necessary to select a single linguistic term and a specific preference value 
(equivalent to αij) from its domain depending upon its impact to the maximum 
consistency. Additionally, if for some other alternative pairs As and At (s, t ≠ i, j), the 
pairwise preference level is the same as that of Ai and Aj, i.e., P(As >> At) = αij, this may 
not necessarily match to the same linguistic term and the domain interval therein as in the 
case of P (Ai >> Aj). This is because the preference level αij lies in a range of values in 
intervals corresponding to the domains of the linguistic terms of sp, sq, and sk. The 
linguistic term and the specific value in the domain interval of the said linguistic term 
that contributes to maximum consistency is chosen as the equivalent value of αij. 

To our knowledge, we did not find any methodology which verifies the level of 
consistency of the pairwise preference of the alternatives assessed through HFLTS with 
non-uniform linguistic terms. In the light of the work given in Li et al. (2019), our paper 
introduces a binary integer programming (BIP) model that not only measures the level of 
consistency of the pairwise comparison matrix but also conforms each comparison 
indices to the linguistic terms and the preference values in the domain interval that are 
consistent to the behaviour of the DM. 

The MCDM problems, in general, determine the ranking of the alternatives and select 
the best amongst the candidate alternatives. The priority vector representing the 
preference of alternatives and its determination are available in Xia and Xu (2014) and 
Wang and Parkan (2005). The fuzzy priority weights of pairwise comparison matrices 
based on logarithmic calculus are given in Hecke (2021). The majority of these methods 
generate the weights in crisp numerical terms. Because of uncertainty in real-world 
decision problems and the involvement of human judgements, incorporating the exact 
numerical weights may lead to unreliable and inconsistent results in preference relations. 
Following the procedure in Xia and Xu (2014), our work generates interval weights as 
priority vectors of the alternatives from the given pairwise comparison matrix to make it 
more parallel to the real-world decision-making problems. 

To select the best alternative or rank them in MADM, it is necessary to combine the 
priority vectors of alternatives over the attributes. We put forward a distance-based 
aggregation approach to combine the priority vectors of alternatives that are in interval 
weights in the line of the procedure given in Xu et al. (2014). This aggregation results in 
determining the attribute weights. The weights of the attributes are further used in the 
pairwise comparison matrices to determine the aggregated comparison matrix. The 
aggregated pairwise comparison matrix aids in identifying the non-dominance degree of 
each alternative in MADM. The alternative with the least dominance is selected as the 
best alternative. The other alternatives are ranked accordingly. 

There are several methods available in the literature that deals with MADM under a 
hesitant fuzzy linguistic environment (Yavuz et al., 2015; Tang et al., 2019; Zhang et al., 
2018; Rodriguez et al., 2012). In Farhadinia (2016), the concept of entropy is used in 
HFLTS to determine the weights of the attributes. Here, the necessary operations on 
HFLTS are based on an index of the linguistic terms, and the semantics of the terms are 
not taken into consideration. In Yavuz et al. (2015), hierarchical hesitant fuzzy linguistic 
values are used for vehicle selection problem. This paper uses a pre-defined set of 
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linguistic terms for alternative vehicle evaluation. Fuzzy linguistic modelling based on 
discrete fuzzy numbers is used to manage HFLTS in Riera et al. (2015). Here, the 
semantics of the fuzzy numbers representing the linguistic terms are taken subjectively. 
In the work given in Liao et al. (2020), the hesitant degree-based correlation measures for 
HFLTS are used for solving MCDM. The concept of HFS and HFLTS are both used for 
the solution of MCDM in Chen and Hong (2014). An outranking approach of MCDM 
based on HFLTS is given in Wang et al. (2015). The envelope of HFS to define the 
distance measure amongst the HFLTS and to outrank the alternatives subsequently is 
investigated in Wang et al. (2014). Multi-criteria relational clustering along with HFLTS 
to outrank the alternatives in MCDM is given in Sellak et al. (2018). In Rodriguez et al. 
(2013), a group decision making problem is handled considering HFLTS as attribute 
values. The model uses comparative linguistic expressions (CLE) to solve group decision 
making problem. In Durand and Trucl (2018), the linguistic expressions are assigned with 
weights and the set of linguistic terms are from a pre-defined linguistic term set. In Liu  
et al. (2019), a very interesting and useful methodology to deal with the uncertainties and 
fuzziness in hesitant fuzzy linguistic terms using type-2 fuzzy sets is introduced. The 
limitation of the work is the use of pre-specified linguistic terms. An MCDM based on 
the hesitant fuzzy linguistic ORESTE method is given in Liao et al. (2018) for the 
supplier selection problem. This method has taken the factors as a preference, 
indifference, and incomparability to solve the MCDM problem. The concept of TODIM, 
PROMETHE, and HFN are also used in Liao et al. (2018). The work given in Halouani 
(2021) deals with multi criteria group decision-making methodology based on hesitant 
fuzzy linguistic terms. This methodology uses mentality parameter for interval-valued 
hesitant fuzzy linguistic term sets before prescribing the preference level of the 
alternatives. 

In almost all the works mentioned above, the linguistic terms are either pre-specified 
or their indices are used for comparison of linguistic terms. The restrictions imposed on 
HFLTS with the pre-specified linguistic term set may not indicate the true opinion of the 
DM in alternative assessments especially when the DM receives information from 
multiple sources and hesitates to concentrate on a single-pointed decision. Our paper 
addresses these issues by gathering non-uniform set of linguistic terms from different 
information sources and ranking them by using the concepts of existence methodology of 
ranking fuzzy numbers (Chang and Lee, 1994). 

1.1 Research challenges and gaps 

It has been reasonably cited in many research papers that the assessment of alternatives or 
objects in linguistic terms is quite acceptable and more preferred in real-world decisions. 
Linguistic way of expressions is more parallel to human thinking and closely related to 
the human thought processes and reasoning. Several research works are available that 
deals with fuzzy linguistic terms (Chen and Hong, 2014; Durand and Trucl, 2018; 
Farhadinia, 2016; Liao et al., 2020). However, some issues are still unanswered in this 
context. 

a In almost all existing research works, the linguistic terms are uniform, pre-defined 
with pre-specified semantics in each linguistic term. Further, the HFLTS are 
restricted to an ordered finite subset of consecutive linguistic terms. In majority of 
the procedures, it is required to choose such pre-defined linguistic terms subjectively 
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to represent the decision-maker’s preferences. Limiting the linguistic terms in 
HFLTS in this manner may not represent the decision maker’s judgements in a true 
sense. The restrictions on pre-defined linguistic term set with pre-specified semantics 
does not support the opinions when the opined information is from multiple sources. 
Therefore, the real challenge lies in not only identifying the linguistic terms but also 
evaluating them numerically to represent the genuine cognitive thinking of the 
human judgements. 

b The majority of the existing literature takes the index values of linguistic terms for 
the pairwise comparison of alternatives. The semantics of the linguistic terms is not 
taken into consideration. Ignoring the semantics especially when the HFLTS 
contains non-uniform and unbalanced linguistic terms may cause information loss 
and may not represent the accurate facts. For example, considering the linguistic 
terms ‘S3 (medium)’ and ‘S5 (very high)’ in Figure 1, majority of the procedures do 
take the linguistic term indices ‘3’ and ‘5’ instead of the semantics corresponding to 
‘S3’ and ‘S5’. Consideration of semantics especially when the linguistic terms are 
non-uniform is a challenging task. 

c Generally, the validity of the pairwise comparison matrices of the alternatives is 
measured through its consistency level. Existing methodologies measure the 
consistency level when the alternatives are assessed in uniformly defined linguistic 
terms. The measurement of consistency level when the alternatives are assessed in 
non-uniform linguistic terms taking into consideration the personalised individual 
semantics, if any, is still a research gap. 

d The alternatives are compared pairwise in each attribute representing the local 
comparison. However, the need is to obtain the alternative comparisons globally 
representing all the attributes in MADM using an appropriate aggregation operator is 
still a research gap. 

1.2 Motivation and contributions of this study 

The proposed methodology attempts to eliminate the above-mentioned shortcomings. The 
contributions of this work are summarised below: 

1 The proposed work includes the non-uniform, non-regular, or arbitrarily defined 
linguistic terms in HFLTS contrary to prevalent uniform, pre-defined linguistic terms 
in the literature. This will widen the scope of the HFLTS-MADM applications. 
Additionally, the use of irregular or non-uniform linguistic terms is more towards the 
DM’s cognitive thinking, thus overcoming the flaws mentioned in (a). 

2 The semantics of the linguistic terms are identified and used to derive the degree of 
preference of an alternative over the other using a combined approach of Concept of 
Existence in the ranking of fuzzy sets, α-cuts of fuzzy numbers, and specific 
ordering relations on HFS. This results in minimum information loss. 

3 We propose binary integer programming (BIP) model for the consistency 
measurement to overcome the flaw mentioned in (c). Our work not only measures 
the level of consistency of the pairwise comparison matrix within the threshold but 
also conform each comparison indices to the linguistic terms specified by the DM. 
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4 A weighted aggregation approach is proposed to aggregate the pairwise comparison 
matrices across the attributes to arrive at an aggregated pairwise comparison matrix. 
The aggregated matrix determines the non-dominance degree of each alternative and 
accordingly ranks them for the MADM problem. 

1.3 Structure of the paper 

The preliminaries needed for our work is given in Section 2. Section 3 is devoted to the 
methodology for deriving the pairwise comparison of the alternatives. In Section 4, we 
have verified the consistency measure of the pairwise comparison matrices of the 
alternatives. In Section 5, we have formulated the proposed problem. This includes the 
derivation of priority vectors of the alternatives as interval numbers in each attribute. The 
calculation of the degree of non-dominance of the alternatives is also done in this section. 
In Section 6, we have given a numerical example to highlight the proposed procedure. 
Finally, in Section 7, we have compared our methodology with similar works. In  
Section 8, we concluded the result. 

2 Preliminaries 

2.1 Hesitant fuzzy set 

A set E ⊆ X is said to be a HFS in X when E is defined as: 

( ){ }, , 1, 2, ,E i iE x h x x X i k= ∈ =   

where hE(xi) denotes the set of possible membership values of element xi ∈ X in E. Let 
card(hE(xi)) = li, li being the number of membership values of the element xi. 

2.2 Hesitant fuzzy linguistic term set 

Let X be a set and xi ∈ X (i = 1, 2, …, n). Let S be a set of linguistic terms with odd 
cardinality, 

{ }1, 2, , 2 1 .S s k= = +α α  

The HFLTS is defined as follows: 

( ){ },i s i iHs x h x x X= ∈  

where hs(xi) is an ordered finite subset of the consecutive linguistic terms from S. 

2.3 Fuzzy number evaluation 

Let us take a fuzzy number (a, b, c), represented graphically below: 
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                  A 

  a              b              c  

The numerical measure of the fuzzy number A is (Chang and Lee, 1994): 
1

1 1
1 2

0
( ) ( ) ( ) ( ) ( ) ( )

L RA AOM A ω w χ w μ w χ w μ w dw− −= +    

1 2( ) ( ) 1χ w χ w+ =  

The evaluation of fuzzy number A contains two parts: left part AL and right part AR, where 
1 1

1 1
1 2

0 0
( ) ( ) and ( ) ( ) ( ) .

L RL RA AA ω w χ w μ dw A ω w χ w μ w dw− −= =   

Note that, the membership function μA(x) can be normal or non-normal. 

3 Pairwise comparison of alternatives 

In this section, we have explained the comparison of alternatives pairwise when the 
alternatives are assessed as HFLTS. The linguistic terms in HFLTS are arbitrarily 
considered as opined by the DM. They are neither from a pre-defined linguistic term set 
nor in consecutive linguistic terms as prevailing in the literature. As the alternatives are 
assessed as HFLTS in each attribute, it is necessary to compare their attribute values to 
get the complete pairwise comparison amongst the alternatives. This is explained as 
follows: 

Let there are m number of alternatives and n number of attributes and their valuations 
over the attributes are in HFLTS as shown in the matrix H below. 

11 1

1

1

1 n

m mn

n

s s

m s s

C C
A h h

H

A h h

 
=  

 
  




   


 (3.1) 

The HFLTS hsij (i, j = 1, 2, …, m) are subsets consisting of linguistic terms in the form of 
fuzzy numbers where hsij = (si1, si2, …, )ijls  (i = 1, 2, …, m; j = 1, 2, …, n) represents the 
value of ith alternative in jth attribute in HFLTS containing lij number of linguistic terms. 

Take two alternatives Ai and Ak (i, k = 1, 2, …, m). In the jth attribute, they are hsij = 
(si1, si2, …, )ijls  and hskj = (sk1, sk2, …, ).kjls  To compare Ai and Ak in the jth attribute, it 
needs to compare the HFLTS hsij and hskj. In other words, it is necessary to compare every 
distinct pair of linguistic terms sij ∈ hsij with skj ∈ hskj (si ≠ sk). 
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Before the comparison of linguistic terms that are in the form of fuzzy numbers, 
initially, we need to evaluate the linguistic terms sij ∈ hsij and skj ∈ hskj numerically. As 
per the procedure (Chang and Lee, 1994), we have the evaluation of sij as: 

( )
1

1 1
1 2

0
( ) ( ) ( ) ( ) ( )

ijL ijRij s sOM s ω w χ w μ w χ w μ w dw− −= +    (3.2) 

where OM(sij) in equation (3.2) represents the evaluation of the linguistic term (fuzzy 
number) sij depending on its semantics. 

The left part 
1

1
1

0
( ) ( )[ ( ) ( )]

ijLijL sOM s ω w χ w μ w dw−=   and the right part OM (sijR) = 

1
1

2
0

( )[ ( ) ( )]
ijRsω w χ w μ w dw−  respectively represent the left and right evaluation of 

linguistic term sij (fuzzy number). 
χ1(w) and χ2(w) are the weights of the left and right part of evaluation respectively 

with χ1(w) + χ2(w) = 1. 

2
( ) ,

0.5( )hgt

wω w
w∗

=  hgtw∗  is the height of the fuzzy number. 

Similarly, we can have an evaluation of the linguistic term skj. 
The degree of superiority of sij over skj to the maximum extent possible is derived in 

equation (3.3) by comparing the right part of sij with left part of skj. The comparison of 
fuzzy numbers using the left and right part is found in detail in Lee and Li (1993). Thus 
∀si ≠ sk we have: 

( ) ( ) ( )( ) ( ) ( ), if

0, otherwise
ijR kjL ijR kjL

ij kj
OM s OM s OM s OM s

P s s
 − >= 


  (3.3) 

Taking all the linguistic terms, in hsij and hskj, and using the ordering relation procedure in 
HFS (Lan et al., 2017), we have the preference relation of Ai over Ak in jth attribute as: 

( ) ( )
, ,

1 ,
ij sij kj skj i k

j
i k ij kjik s h s h s s

P A A a P s s i k
mn ∈ ∈ ≠

> = = ∀   (3.4) 

Using equation (3.4), we have the additive preference of the pairwise comparison of 
alternatives in jth attribute as: 

1

1 11 1

1

m

j j
m

j

j jm mmm

A A

A a a
PC

A a a

 
=  

 
 
 




   



 (3.5) 

The procedure for obtaining pairwise comparison matrix of alternatives is shown in 
Figure 3. 
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Figure 3 Procedure for computing pairwise comparison matrices of alternatives (see online 
version for colours) 

Linguistic term set 
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4 Consistency level measurement 

The pairwise comparison of alternatives consisting of hesitant linguistic elements is very 
common and widely used in MADM problems. The pairwise comparison matrix becomes 
consistent when the transitivity and reciprocity in the additive/multiplicative sense are not 
violated. In the majority of the real-world decision situations, it is too difficult to present 
a comparison matrix with zero inconsistency. Therefore, an important aspect of pairwise 
comparison is to fix a threshold value for measuring the level of consistency. In some 
sense, the level of consistency above 90% guarantees the consistency of the preferences 
(comparisons) amongst the alternatives. Further, the need for a pre-fixed consistency 
threshold is to better manage any unnecessary and unavoidable human judgements that 
are very common in the comparison process. 

The pairwise comparison indices derived in Section 3 are in crisp numerical numbers. 
However, as the original preferences of the DM are given in linguistic terms, the DM 
may not necessarily accept the derived crisp numerical preferences as his/her genuine 
preferences. The actual preference may lie in the interval domain of the linguistic term 
corresponding to the preference indices in the pairwise preference matrix. Therefore, it is 
essential and ideal to associate the pairwise preference indices to right linguistic terms 
and the associated preference value in its domain. This is explained through the following 
example: 

Let the preference level of ith alternative over kth alternative in jth attribute is 
0.56.j

ika =  The single numeric term 0.56 may not necessarily lead to full consistency 
according to the choice of the DM. However, it may so happen that another preference 
index other than 0.56 in the domain of the linguistic term that contains the number 0.56 
may provide the desired consistency level in the pairwise preference matrix. This justifies 
and necessitates an identification of an appropriate linguistic term from the linguistic 
term set S2 associating the number 0.56. This process may alter the preference index 
value 0.56 to 0.56j

ika
s s∗ ∗=  as the real preference interpretation of the DM. 

From the above explanation, our work searches the linguistic term s(0.56) ∈ S2 and a 
specific value in the domain of s(0.56) as the right match for 0.56. However, if there are 
two or more such linguistic terms containing the number 0.56 in their domains, this 
becomes difficult to select a suitable linguistic term and the domain value to match the 
number 0.56. Our work takes this aspect and selects a linguistic term and the 



   

 

   

   
 

   

   

 

   

    Hesitant fuzzy sets with non-uniform linguistic terms 13    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

corresponding domain value depending on its role in providing maximum consistency in 
the pairwise preference matrix. For instance, in Figure 2, the domains of the linguistic 
terms s2, s3, s4 and s6 contain the number 0.56, i.e., 0.56 ∈ [s2L, s2R], 0.56 ∈ [s3L, s3R],  
0.56 ∈ [s4L, s4R], 0.56 ∈ [s6L, s6R]. Out of the above four linguistic domains, only one is 
suitable to represent the pairwise preference 0.56.j

ika =  Our work introduces a new 
methodology based on binary integer programming (BIP) to select a fitting linguistic 
term and the corresponding domain specific value that gives maximum consistency in the 
preference matrix. 

Several methods are available to minimise the inconsistency in the pairwise 
comparison of alternatives (Zhang et al., 2016; Ishizaka and Lusti, 2004). Though the 
existing approaches suitably maintain the consistency level within the threshold, these 
methods are unsuitable to examine the level of consistency when the pairwise 
comparisons are in HFLTS with non-uniform linguistic terms. We have introduced a 
methodology to derive the consistency level of the pairwise preference matrix using BIP 
as shown below: 

The pairwise comparison matrix shown in equation (3.4) is reproduced below: 

1

1 11 1

1

m

j j
m

j

j jm mmm

A A

A a a
PC

A a a

 
=  

 
 
 




   



 (4.1) 

In equation (4.1), the matrix entries are in numerical terms. We need to confirm each 
term j

ika  to an originally defined linguistic term ( )j
iks a  from the non-uniform linguistic 

term set S2 = {s0, s1, s2, s3, s4, s5, s6} shown in Figure 2. 
Let j

ika  falls in the domains of 1 2 2{ , , , } ,ki i is s s S∈  i.e., [ , ]p p
j

i L i Rika s s∈  (p = 1, 2, 

…, k). Assume j
ikas  as the variable corresponding to the preference index .j

ika  Thus, we 

have jp pik
i L i Ras s s≤ ≤  (p = 1, 2, …, k). We need to select a single domain interval from 

the k number of domain intervals [ , ]p pi L i Rs s  for consistency verification. The proposed 
BIP model not only verifies the level of consistency within the threshold but also 
identifies the correct linguistic term and a specific value in its domain for the right 
interpretation of .j

ika  The BIP model in our work is an extended version of the work 
given in Li et al. (2019). Thus we have, 

( )Max jCI PC  

where 

( ) , , 1;
4 0.5

1
( 1)( 2)

j j j
izik kz

m
a a ai k z i k z

j

s s s
CI PC

m m m
= < <

+ − −
= −

− −


 (4.2) 

Subject to 

( )
1

1 11j j
ika i Rs s y M y≤ + −  
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1
1j j

ika i Ls s y≥  

( )
2

2 21j j
ika i Rs s y M y≤ + −  

2
2j j

ika i Ls s y≥  

  

( )1j j kik k
ik ia i Rs s y M y≥ + −  

j j
ik k

ika i Ls s y≥  

( )1 2 1, {0, 1} 1, 2, ,ik r ky y y y r i+ + + = ∈ =   

0.5 forj
ikas i k= =  

( , , 1, 2, , ) .i k z m j= ∀  

The solution j
ika

s∗  not only shows the transformed preference index of the ith alternative 

over kth alternative in jth attribute in the domain of a linguistic term as interpreted by the 
DM but also verifies the desired consistency of the preference index in Figure 4. 

Figure 4 Transformed pairwise comparison matrix after consistency verification 
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Matrix 
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Pairwise Comparison 
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pairwise comparison index and 
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5 Problem formulation 

In this section, we have formulated a MADM model under HFLTS containing  
non-uniform linguistic terms. The problem formulation in essence consists of the 
following four steps: 

1 derivation of priority vectors of the alternatives in intervals in each attribute 

2 aggregation of priority vectors over the attributes and identification of attribute 
weights 

3 weighted aggregation of pairwise comparison matrices over the attributes to obtain 
the aggregated pairwise comparison matrix for the MADM problem 

4 to find the non-dominance degree of each alternative and finally to rank the 
alternatives. 
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5.1 Priority vector of the alternatives 

Fuzzy set is a tool to determine the preference relations pairwise amongst the alternatives 
in each attribute when a decision-maker is unsure about the preference of one alternative 
over another. The pairwise comparison matrix, thus formed, contains fuzzy elements that 
capture the uncertainty due to subjectivity and incompleteness in human thinking. The 
pairwise preference relations (additive or multiplicative) amongst the alternatives, 
considering the above facts, provide the preference ranking of alternatives as priority 
vectors. Several methods are available to derive the priority vectors of the alternatives 
from pairwise comparison matrices (Lan et al., 2017; Xia and Xu, 2014). Following the 
procedure given in Xia and Xu (2014), we have derived the priority vectors of the 
alternatives as interval weights. 

The reason to derive the interval weights of the alternatives is to manage the 
uncertainties in real-world decision-making problems that are often expressed as human 
judgements. The exact numerical numbers representing the preferences of the alternatives 
may not be consistent with the cognitive judgement of human beings. The procedure for 
deriving the priority vectors is shown below: 

The pairwise comparison matrix in equation (3.4) is reproduced below: 

1

1 11 1

1

( 1, 2, )

m

j j
m

j

j jm mmm

A A

A a a
PC j n

A a a

 
= ∀ = 

 
 
 






   



 (5.1.1) 

According to the work in Xia and Xu (2014), if the priority vectors of the alternatives are 
1 21 2([ , ], [ , ], , [ , ]),m mw w w w w w w− + − + − +=   based on additive consistency, we have 

( ) ( )0.5 1 , 0.5 1j
i iik k ka w w w w− + + − ∈ − + − +   

The solution to following mathematical programming model provides the priority vectors 
of the alternatives in jth attribute (j = 1, 2, …, n): 

( )( ) ( )( )( )Min 0.5 1 0.5 1
p pj

i k ikiik ki k
a w w w w a− + + −

≠
− − + + − + −  

Such that 

( )0.5 1 0, , 1, 2, ,j
iik ka w w i k m− +− − + ≥ =   

( )0.5 1 0, , 1, 2, ,j
ki ikw w a i k m+ −− + − ≥ =   (5.1.2) 

1, , 1, 2, ,kii k
w w i k m+ −

≠
+ ≥ =   

1 , 1, 2, ,i ki k
w w i k m− +

≠
+ ≤ =   

1, 2, ,iiw w i m+ −≥ =   
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5.2 Aggregation of the alternative priority vectors across the attributes 

From equation (5.1.2), the priority vectors of the alternatives in jth attribute are obtained 
as: 

, 1, 2, , ; 1, 2, , )ij ij ijw w w i m j n− += = =      

To select the best alternative, it is required to aggregate [ , ]ij ijw w− +  over the attributes. This 
necessitates identifying an aggregation operator ‘Agg’ such that 

Agg ,ij ij
j

w w− +    (5.2.1) 

The aggregation value in (5.2.1) represents the valuation of Ai for the whole MADM 
problem. 

There are many aggregation tools (Wei et al., 2014; Rodriguez et al., 2013; Liao  
et al., 2020; Rodriguez et al., 2012; Yager, 1995, 2003, 2004) available in the literature 
that aggregate the alternative assessments over the attributes and are mostly defined as 
crisp numbers. In our case, these values are in the form of closed intervals. In general, the 
priority vectors of the alternatives differ from one attribute to another, i.e., 
[ , ] [ , ]ij ilij ilw w w w− + − +≠  (∀j, l). However, an alternative’s final ranking cannot be different 
for different attributes and should congregate to one value. This requires some sort of 
compromise or give and take amongst the attributes to reach out at a single valuation of 
the alternatives in the entire MADM problem. In other words, it is necessary to arrive at 
some sort of consensus amongst the attributes to rank the alternatives in MADM. 

The work is given in Xu et al. (2014) aggregates the opinions of the experts when the 
experts opine their preferences of the alternatives in interval values. Motivated by the 
work given in Xu et al. (2014), we have minimised the distance between the priority 
vectors of the alternatives to arrive at a consensus amongst the attributes. A particular set 
of weights whose attachment to the attributes will help to minimise the distance amongst 
the priority vectors corresponding to each attribute. Quadratic programming is used in 
our work to minimise the distance and to identify the relevant attribute weights. The 
following steps explain the procedure: 
Step 1 Take (A1, A2, …, Am) and (C1, C2, …, Cn) be the set of m alternatives and n 

attributes, respectively. Let (α1, α2, …, αn) as the weights of the attributes. 

Step 2 Let [ , ]ij ijw w− +  (i = 1, 2, …, m) be the interval-valued preferences of the ith 
alternative (priority vector) in jth attribute. For an alternative Ai, the preference 
values in jth and lth attributes are respectively [ , ]ij ijw w− +  and [ , ].il ilw w− +  The 
aggregated value of Ai in jth and lth attributes is the minimum of the squared 
weighted distance between the valuations of Ai in jth and lth attributes as shown 
below: 

( ){ }2
1Min , ,j ij ijij ild w w w w− + − +−     α α  (5.2.2) 

Step 3 Generalising equation (5.2.2) over all the alternatives and the attributes, we can 
obtain the minimum value of the squared weighted distance of the priority 
vectors across the attributes by solving the following quadratic programming 
problem 
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( ) ( )2 2

1 1, 1
Min

n n m
j ij l il j lij ilj l j l i

a w a w w a w− − + +
= = ≠ =

 − + −    α  

Subject to 

1
1

n
ll=

∝ =  (5.2.3) 

Step 4 The solution of the quadratic programming problem in equation (5.2.3) derives 
the weights of the attributes ∝l (l = 1, 2, …, n). The weights thus derived in 
equation (5.2.3) minimise the distance amongst the attributes and acts as an aid 
to assess the alternatives at a congregated value across the attributes. 

5.3 Degree of non-dominance of the alternatives 

In this subsection, we have derived the non-dominance degrees of the alternatives. The 
alternative with a minimum non-dominance degree is selected as the best alternative. In 
continuation of the steps in the previous section, the procedure is as follows: 

Step 5 Take the pairwise comparison matrices of the alternatives corresponding to each 
attribute. The weighted value of the comparison matrices across the attributes 
are derived as follows: 

For jth attribute, we have ( ) ( ), , 1, 2, ,j
j j j ikikA a i k n∝ = = = β α  

Thus we have 

1

1 11 1

1

n

j j
n

j j

j jn nnn

A A

A
A

A

 
∝ =  

 
 
 




   



β β

β β

 (5.3.1) 

Where the entry j
ikβ  represents the weighted preference value of the ith 

alternative over the kth alternative in jth attribute. 

The preference level of the ith alternative over the kth alternative over all the 
attributes in MADM (i, k = 1, 2, …, n) is as shown below. 

( )

1

11 11 11

1

11 1

n

m mj j
nm j j

ik j jn n j

m mj jn
nnnj j

A A

A
A

A

= =
× =

= =

 
 = ∝ =  
 
 
  

 


 





   



β β
β

β β

 (5.3.2) 

The non-dominance degree of Ai is obtained as: 

( )

( )1 21 1 1

Non-Dom

1 Max , , , ( 1, 2, , )

i

m m mj j j
nii ij j j

A

i n
= = =

= − =   β β β
 (5.3.3) 
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Figure 5 Process to compute the non-dominance degree of alternatives 
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Figure 6 Stepwise procedure of the proposed work 
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In the matrix given in equation (5.3.2), more the entries corresponding to an 
alternative in a column are towards zero, less it is dominated by the other 

alternatives. The value Max 1 21 1 1
( , , , )

m m mj j j
nii ij j j

S
= = =

=  β β β  in 

equation (5.3.3) derives the maximum value at which the alternative Ai is being 
dominated by another alternative. Thus, we have the non-dominance degree of 
Ai as shown in equation (5.3.3). In other words, we can say that an alternative is 
less dominated if the matrix entries corresponding to it have smaller values with 
zeroes indicating complete non-dominance. 

The alternative having the highest value of the non-dominance degree is selected 
as the best alternative and so on. 

The process for obtaining the non-dominance degrees of the alternatives after 
verifying the consistency level is shown in Figure 5. 

The comprehensive procedure of our work is shown in Figure 6. 

6 Numerical example 

Let us take a car purchasing example in which a buyer prefers the attributes: 

1 price 

2 maintenance cost 

3 mileage 

4 comfort. 

Consider four alternative models of cars that are available in the market. Based on the 
available information from multiple sources, let the buyer assesses the cars as hesitant 
fuzzy linguistic terms in each attribute as shown in Table 1. We need to select the best car 
or to rank the available cars according to the buyer’s preferences. 

The linguistic term set formed after assessing the buyer’s choices is: 

S { , , , , , , }None Very low Low Medium High Very high Definitely high=  

Table 1 Buyer’s linguistic rating of the attributes in HFS 

Car models C1 C2 C3 C4 
A1 {s1, s4, s5} {s2, s4} {s1, s2} {s4} 
A2 {s2, s3} {s0, s1} {s4} {s5, s6} 
A3 {s6} {s3, s5} {s2, s4, s5} {s1, s2, s3} 
A4 {s5, s6} {s4, s5, s6} {s3, s6} {s1, s2, s4} 

As per the buyer’s opinion, take the semantics of the linguistic terms as fuzzy numbers in 
column 2 of Table 2. 
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Table 2 Semantics of linguistic terms 

Linguistic terms Semantics Left part Right part 
Valuation 

of left 
part 

Valuation 
of right 

part 
s0 (none) (0.0, 0.05, 0.1) y = 20x y = -20x + 2 0.037 0.066 
s1 (very low) (0.0, 0.2, 0.4) y = 5x y = -5x + 2 0.134 0.266 
s2 (low) (0.1, 0.4, 0.7) y = 3.33x – 0.33 y = –3.33x + 2.33 0.3 0.5 
s3 (medium) (0.8,(0.2, 0.6, 0.8)) y = 2x – 0.4 y = –4x + 3.2 0.465 0.665 
s4 (high) (0.3, 0.7, 0.9) y = 2.5x – 7.5 y = –5x + 4.5 0.566 0.766 
s5 (very high) (0.5, 0.8, 1.0) y = 3.33x – 1.67 y = –5x + 5 0.702 0.866 
s6 (definitely 
high) 

(0.8,(0.4, 0.9, 1.0)) y = 1.6x – 0.64 y = –8x + 8 0.731 0.931 

Graphically, the linguistic terms s5 (very high) and s6 (definitely high) are shown in 
Figure 7. 

Figure 7 Normal (very high) and non-normal (definitely high) linguistic terms (see online 
version for colours) 

 

The straight-line equation joining the points (0.5, 0) and (0.8, 1) is ‘y = 3.33x – 1.67’ and 
is called as the left part of the fuzzy number very high. Similarly, the equation of the 
straight-line ‘y = –5x + 5’ joining (0.8, 1) and (1, 0) is the right part of the fuzzy number 
very high. The left and right parts of other linguistic terms are given in columns 3 and 4 
of Table 2. 

Using equation (3.3), we have compared the alternatives pairwise. For example, the 
comparison of the alternatives A3 and A4 in attribute C1 is done in the following steps: 

Step 1 The degree to which the alternative A3 is greater than A4 is calculated by 
subtracting the sum of the left part of each linguistic term in A4 {s5, s6} from that 
of the right part of the linguistic terms in A3 {s6}. This is explained below: 

The equation of the right part of s6 is y = –8x + 8. Thus, we have the valuation of 
the right part o(s6R) as: 
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( )
0.8

6 2 0

1 ( 8) 0.931
80.8

2

R
yo s y dy−= − =

 
 
 

  

The equation of the left part of s5 is y = 3.33x – 1.67. Thus, we have the 
valuation of the left part as 

( )
1

5 2 0

1 ( 1.67) 0.702
3.331

2

L
yo s y dy= + =

 
 
 

  

The right and left valuations of other linguistic terms are shown in columns 5 
and 6 in Table 2. 

Using equation (3.4), we have the pairwise comparisons of the alternatives. For example, 
the comparison index between the alternatives A3 and A4 is shown below: 

( )3 4
(0.931 0.702)P A A 0.114

2
−> = =  

Similarly, we can have pairwise comparison values for other alternatives, and they are 
shown in Table 3 for the attributes C1, C2, C3 and C4. 

Let the variable corresponding to the comparison index 0.114 is s0.114. As said in 
Section 4, the need is to find an associated linguistic term s(0.114) ∈ S conforming to the 
variable s0.114 and a linked value in the domain of s(0.114). 
Table 3 Pairwise comparisons of alternatives 

C1 A1 A2 A3 A4 C2 A1 A2 A3 A4 
A1  0.289 0.057 0.039 A1  0.548 0.1 0.016 
A2 0.166  0 0 A2 0  0 0 
A3 0.463 0.548  0.114 A3 0.322 0.68  0.089 
A4 0.404 0.516 0.068  A4 0.388 0.768 0.243  
C3 A1 A2 A3 A4 C4 A1 A2 A3 A4 
A1  0 0 0.017 A1  0.05 0.466 0.366 
A2 0.549  0.177 0.168 A2 0.332  0.6 0.565 
A3 0.46 0.1  0.154 A3 0 0  0.151 
A4 0.573 0.232 0.28  A4 0.067 0.016 0.2  

Assume P(Ai > Ak) = 1 .ika  Let 1
ikas  is the variable corresponding to the comparison index 

1 .ika  The BIP model shown below not only identifies the linguistic term 1( )iks a S∈  
conforming to 1

ika  but also associates 1
ika  to a value in the domain interval of 1( ).iks a  For 

example, P(A1 > A2) = 1
12a  = 0.289. Let the variable corresponding to 0.289 is s0.289. From 

Table 3, we have s0.289 ∈ [s1L, s1R], s0.289 ∈ [s2L, s2R], and s0.289 ∈ [s3L, s3R]. As explained in 
Section 4, we need to select only one linguistic term out of s1, s2 and s3 and a value for 
s0.289 in the domain of the selected linguistic term. This is shown in first three constraints 
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of the BIP model. Similarly, other constraints are articulated for other comparison 
indices. 
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The solution of BIP that verifies the consistency of the pairwise comparisons of 
alternatives in attribute C1 (as given in Table 3) is shown in Table 4 with consistency 
index CI (PC1) as 100%. The solutions for other attributes including their consistency 
level can be obtained similarly and are shown in Table 4. It may be noted that the 
inconsistency level in all the comparison matrices is found to be zero indicating full 
consistency in the buyer’s preferences of the alternatives. Note that in Table 4, we have 
the transformed version of the pairwise comparison indices after verifying the 
consistency measure in the pairwise comparison matrices. 

Using equation (5.1.2), the priority vectors of the alternatives in each attribute are 
derived as intervals and are shown in Table 5. 
Table 4 Pairwise comparisons of alternatives with consistency 

C1 A1 A2 A3 A4 C2 A1 A2 A3 A4 
A1  0.60 0.36 0.4 A1  0.60 0.4 0.4 
A2 0.4  0.26 0.29 A2 0.4  0.29 0.29 
A3 0.64 0.74  0.53 A3 0.6 0.71  0.5 
A4 0.6 0.71 0.47  A4 0.6 0.71 0.5  
C3 A1 A2 A3 A4 C4 A1 A2 A3 A4 
A1  0.3 0.4 0.2 A1  0.4 0.71 0.8 
A2 0.7  0.6 0.4 A2 0.6  0.81 0.9 
A3 0.6 0.4  0.3 A3 0.29 0.19  0.59 
A4 0.8 0.6 0.7  A4 0.2 0.1 0.41  

Table 5 Priority vectors of alternatives 

 C1 C2 C3 C4 
A1 [0.15, 0.2] [0.18, 0.2] [0, 0] [0.2, 0.6] 
A2 [0, 0] [0, 0] [0.3, 0.4] [0.4, 0.8] 
A3 [0.43, 0.48] [0.39, 0.42] [0.1, 0.2] [0, 0.18] 
A4 [0.37, 0.42] [0.39, 0.42] [0.5, 0.6] [0, 0] 

Using equation (5.2.3) and quadratic programming, we have calculated the following 
attribute weights. 

1 2 3 40.291, 0.309, 0.254, 0.146w w w w= = = =  

By equations (5.3.1) and (5.3.2), and the attribute weights, we have aggregated pairwise 
comparison matrices and the aggregated matrix obtained is shown below: 

1 2 3 4

1

2

3

4

0 0.596 0.400 0.356
0.403 0 0.374 0.294
0.6 0.625 0 0.448

0.644 0.705 0.552 0

A A A A
A
A
A
A

 
 
 
 
 
 

 

Using equation (5.3.3), the non-dominance degree of each alternative is derived and is 
shown below: 
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( )1Non-Dom A 1 Max(0, 0.403, 0.6, 0.644) 0.356= − =  

Similarly, we have Non-Dom (A2) = 0.295, Non-Dom (A3) = 0.448, Non-Dom (A4) = 
0.552. 

Thus, we have the alternative ranking as: 

4 3 1 2A A A A> > >  

From the above example, we found that the car A4 is most preferred and A2 is the least 
preferred car. 

7 Comparison with existing similar papers 

In this section, our focus is to highlight the advantages of our work in comparison with 
similar works that are defined under the HFLTS environment. Our procedure is compared 
mainly on the works given in Liao et al. (2020) and Sellak et al. (2018). Certain 
shortcomings in these works are identified and required improvements are made in our 
method. 

7.1 Comparison with Liao et al. (2020) 

Using the methodology of Liao et al. (2020) and taking the data from Table 1, we have 
the ranking of the alternatives (A4 > A3 > A1 > A2) that is same as of the proposed method 
shown in Table 6. Graphically, the ranking is shown in Figure 8. 
Table 6 Comparison of ranking of proposed method with Liao et al. method 

 
Proposed method  Liao et al. method 

Ranking Correlation 
coefficient 

Hesitation 
degree  Ranking Correlation 

coefficient 
Hesitation 

degree 
A1 3 NA NA  3 0.939 1.288 
A2 4 4 0.628 1.089 
A3 2 2 0.954 0.457 
A4 1 1 0.964 0.448 

Figure 8 Comparison of proposed method with Liao et al. method (see online version  
for colours) 
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From the computational results and Figure 8, the alternative ranking obtained in the 
proposed work matches to that of the ranking given in Liao et al. (2020). The superiority 
of the proposed methodology is verified as the low degrees of hesitation (in the sense of 
lower and upper value of the correlation coefficient) correspond to the most preferred 
alternatives (A4 and A3). Though the degrees of hesitation are not in right match with the 
ranking of alternatives A1 and A2, their difference is insignificant. 

In the above method, the mean and hesitance degree are derived to determine the 
correlation between HFLTS. Further, the correlation coefficient between the alternatives 
and the ideal solution is derived and the alternative with the highest coefficient is taken as 
the best alternative. Other alternatives are ranked accordingly. This is a novel 
methodology for ranking of the alternatives in MCDM depending on the closeness of the 
alternatives to the ideal solution. However, the drawback is that the derivation of mean, 
variance, and correlation coefficients is calculated using the indices of the linguistic 
terms only and the semantics of the linguistic terms are completely left out. This may, to 
some extent, work if the linguistic terms are pre-specified and are uniformly defined. In 
the case of non-uniform or arbitrarily defined linguistic terms, the sole use of linguistic 
term indices, and their use in the ranking of alternatives may lead to wrong results. 
Therefore, the incorporation of semantics of linguistic terms to interpret the real views of 
decision-maker is essential in the ranking of the alternatives. The proposed model 
considers the semantics and removes the above deficiencies. 

7.2 Comparison with Sellak et al. (2018) 

We have compared our work with the work given in Sellak et al. (2018). 
Computationally, the proposed work cannot be compared with this work as in our work, 
the alternative assessment in HFLTS consists of non-uniform, non-regular, unbalanced, 
and not from any pre-specified linguistic term set whereas in Sellak et al. (2018), the 
linguistic terms are from a regular, uniform, and pre-specified linguistic term set. 
Moreover, our work considers both normal and non-normal fuzzy numbers. Secondly, the 
work in Sellak et al. (2018) uses clustering methodology of MCDM that is mostly based 
on distance/similarity measures, which is beyond the scope of the proposed work. 
However, based on the theoretical concepts, we have compared our work with Sellak  
et al. (2018) and the shortcomings therein are shown below: 

a The linguistic terms are predefined from a given linguistic term set and the HFLEs 
are always an ordered set of consecutive terms. 

b The degree of uncertainty, central value, and later the scores of HFE are derived 
using either cardinality or the indices of the linguistic terms only. The semantics of 
the linguistic terms are completely ignored while deriving the above values. 

c The work compares the alternatives pairwise and the preference relations between a 
pair of alternatives are based on the score values and the certainty factor of the 
HFEs. The shortcoming is the use of linguistic term indices (not semantics) to 
determine the above factors. 

d In the work, the weights to the criteria are taken subjectively for calculating the 
scores of the alternatives in each attribute. 
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Our work has taken all the above-mentioned factors into account and obtained a viable 
solution to MADM problems under the HFLTS environment. Point a is resolved by 
taking the non-uniform linguistic terms of experts. Points b and c are taken care of by 
considering the semantics of the linguistic terms in our work. The issue in point d is 
addressed by deriving the attribute weights by the aggregation of priority vectors of the 
alternatives with respect to the attributes. 

Thus, our paper addresses all the above issues and removes the deficiencies 
mentioned above. 

8 Conclusions 

In this paper, we have introduced a new procedure for solving MADM problems under 
HFLTS where the attribute values are in the form of HFLTS with non-uniform and 
arbitrarily defined linguistic terms. The most important characteristic of the proposed 
work is that it is capable of handling any type of linguistic term set, not necessarily only 
with the pre-defined linguistic terms with their prefixed semantics. Compared with the 
existing procedures of MADM with HFLTS, to our knowledge, this specific aspect of 
non-uniform linguistic terms is not taken into account in any of the existing 
methodologies. Further, our methodology has introduced a pairwise comparison 
procedure that takes the comparison of HFLTS using the methods of the ranking of L-R 
fuzzy numbers based on the concept of existence and the specific ordering procedure of 
HFS. While comparing a pair of linguistic terms, the extent to which a linguistic term is 
maximally higher or minimally lower is calculated and incorporated as entries in the 
pairwise comparison matrix. We also provide the weighted value of the pairwise 
comparison matrix in each attribute after deriving the weights of the attributes. The 
weights of the attributes are derived using quadratic programming by aggregating the 
priority vectors of the alternatives that are in interval numbers. We applied the concept of 
dominance/non-dominance in the aggregated pairwise comparison matrix to derive the 
degrees of non-dominance of the alternatives and the alternative with the highest  
non-dominance degree is ranked as the most preferred alternative. 

8.1 Scope for future research 

In many practical situations, interdependence amongst the attributes in MADM cannot be 
ruled out. Therefore, it is worth to verify the association amongst the attributes when the 
attributes values are in HFLTS with appropriate semantic measures in linguistic terms. 
This can be taken as a future research. The other direction of future research could be to 
employ intuitionistic fuzzy sets with non-uniform linguistic terms instead of HFLTS. Our 
procedure derives the dominance of one alternative over the other. However, the partial 
dominance when they are assessed in intuitionistic fuzzy linguistic terms is a scope for 
future research. The quadratic programming is used in our work to aggregate the priority 
vectors corresponding to each attribute to arrive at a preference structure amongst the 
alternatives. The priority vector with entries as HFLTS and its aggregation over the 
attributes may be a further aid to the decision maker to arrive at a realistic decision. This 
may be considered as a scope for future research. 
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