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Abstract: In our study, we were interested in the reliability of large discrete 
systems. These studies can be based on Markov models or on Stochastic Petri 
Nets (SPNs) that are generally used for the analysis and synthesis of the models 
used in the different phases of a system’s life. Markov models or SPNs are 
perfect for many cases, still, they suffer from the combinatorial explosion when 
analytically their state numbers increase as the complexity of the dynamic 
systems grows accordingly with their components. Such issue reflects itself in 
the slowness of these models to accomplish convergence. These different 
modelling tools make it possible to deduce the average behaviour and to obtain 
the performance indicators of the system studied, either by calculation or by 
estimation. We will present the Markov analysis of a system whose state space 
is finite as well as its estimator obtained using SPNs. 

Keywords: Petri net; stochastic Petri net; stochastic estimator; Markov model; 
reliability analysis. 
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1 Introduction 

Current industrial systems, in particular petrochemicals, rail transport, 
telecommunications and nuclear power, must implement an assessment policy including 
studies of the reliability of their facilities in order to comply with the standards and 
regulations in force. This assessment also helps to improve the security of these systems 
by complying with Operational Safety (OS) requirements. However, risk and reliability 
assessment quickly become complex for large systems. For this reason, it is important to 
adapt existing methods and tools according to the specificities of the systems. Studies of 
the reliability of complex dynamical systems generally make use of Stochastic Discrete 
Event Models such as Stochastic Petri Nets (SPNs) (Marsan and Chiola, 1987; Zerhouni 
and Alla, 1990; Recalde and Silva, 2004). 

The continuous-time homogeneous Markov chain is a method used to analytically 
determine the steady-state probabilities, in order to compute the usual reliability 
indicators when the system is of reduced dimension. In large systems this method 
becomes unpractical because of the increase in the number of states related to the 
marking graph, this problem is called combinatorial state explosion. 

Despite their shortcomings, Markov chain models have proven over time their 
reliability to solve complex issues and increase system efficiency. Thus, to be a 
foundational element to solve optimisation problems for small-and-large-scale industries. 
Hence, many works have been proposed to improve the sensitivity analysis of Markov 
processes in reliability studies for steady-state to take full advantage of Markov Chain 
(MC) models (Do Van et al., 2012). 

Stochastic Petri nets are a very powerful construct for specifying systems with 
concurrent and asynchronous activities, i.e., the ability to model, synthesise and describe 
discrete event systems (Balbo, 2000). In the case where the Markov process is 
homogeneous to that of the stochastic Petri net, the Petri net can be seen as an estimator 
of the Markov model. The benefit of this estimation lies in the inessential requirement to 
specify a marking graph. However, it suffers from a long time of simulation, which is 
considered as a weakness for this estimation as this leads to slow convergence of the state 
probabilities. 

In this work, we will focus mainly on running some of the SPNs simulations to obtain 
estimates of the asymptotic mean flows and markings. Then, we will investigate the 
limitations and capabilities of our proposed Markovian approach and the stochastic 
estimator based on the results of the usual reliability indicators from the application 
example on a manufacturing system, using the Petri net model. Furthermore, we were 
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interested in the reliability of large discrete systems. These studies can be based on 
Markovian models or on stochastic Petri nets, which are generally used for the analysis 
and synthesis of the models, used during the different life phases of a system. These 
various modelling tools make it possible to deduce the average behaviour and to obtain 
the performance indicators of the system studied, either by calculation or by estimation. 

2 Basic concept of Markov model and Petri nets for reliability 

2.1 Markov model 

A Markov chain is a mathematical structure named after Andrey Markov that transitions 
from one state to another between a finite or countable number of possible states (Das 
and Bhuyan, 1985). It is a memoryless random process in which the next state is 
determined solely by the current state and not by the sequence of events that preceded it. 
The Markov property describes this kind of ‘memorylessness’. As mathematical models 
of real-world systems, Markov chains have a wide range of applications (Vazquez  
et al., 2008). 

The study of the reliability of systems can be carried out using Markovian analysis to 
analytically evaluate and quantify the usual performance indicators of repairable systems. 
Markov processes are often used to quantitatively evaluate the functioning of systems, 
especially when the transition rates are constant, that is, the instants of failure and repair 
of components are distributed according to exponential laws (Vazquez et al., 2008). 

2.2 Petri Nets (PNs) 

A Petri Net (PN) is a mathematical model used to represent various systems operating on 
discrete variables, is a bipartite directed graph, provided with two types of vertices, 
places and transitions (Vazquez et al., 2009). A place is represented by a circle and a 

transition by a line.  1 2, ,...., iP P P P  is the finite set of n places and  1 2, ,...., qT T T T  

is the finite set of q transitions whose occurrences cause a change of state of the system. 
Places and transitions are connected by directed arcs that connect either a place to a 
transition or a transition to a place (David and Alla, 1992) according to the backward and 
forward incidence applications. We denote the forward incidence application 

 PR n q
PR ijW w IN    where PR

ijw  is the weight of the arc directed from iP  to jT , and 

the backward incidence application   PO n q
PO ijW w IN    (Julvez et al., 2005) where 

PO
ijw  is the weight of the arc directed from jT  to iP . The incidence matrix W of the 

network is defined by n q
PO PRW W W Z    . Each transition jT   is activated according 

to its activation degree   jn M t  defined for the marking M(t) by equation (1) 

(Lefebvre et al., 2010): 

   min /  for all PR
j i ij i jn M m w P T    (1) 
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where jT  represents the set of upstream places of jT . The place iP  such that 

  argmin PR
k kji m t w  for all k jP T  is the critical place for the transition jT  at time 

t (Lefebvre et al., 2010). 

2.3 Stochastic Petri Nets (SPNs) 

SPNs are timed PNs with randomly distributed transition firing times based on an 
exponential probability distribution with a parameter that varies round(nj(M)).j 
(Lefebvre et al., 2010). Molloy (1982) was the first to introduce this model  and several 
other expansions have been developed for the analysis of the reliability of repairable 

systems. Fondamentally, a SPN ,  PN µ  , with    q

jµ µ R   is a vector of 

crossing rate. The firing rate jµ  characterises every transition jT   such that  .jµ dt  is 

the estimated probability of triggering the transition jT  in period t and t dt  when the 

transition jT  was triggered, with an activation degree equal to 1 at time t. The 

characteristics of an SPN, such as incidence matrices, firing rates, initial marking, and 
policy compliance (firing, servers and execution), are all used to describe the process of 
marking of an SPN (Lefebvre et al., 2010; Molloy, 1982). The vector of the average  
flow and average marking of an SPN at time t will be named  sX t  and  sM t   

(Bobbio et al., 1998). The SPNs in this work have satisfied the hypotheses (H1) to (H5) 
(Lefebvre et al., 2010): 

(H1) the marked SPNs are bounded. 

(H2) the marked SPNs are reinitialisable. 

(H3) the firing policy is a race policy: the transition whose is assumed to be the one that 
will fire next. 

(H4) the server policy is of type infinite server: influence of the degree of crossing. 

(H5) the execution policy is resampling memory: influence of the transition crossed on 
the next crossings 

3 Application of SPNs to reliability studies 

Stochastic Petri nets are tools for analysing the structure and behaviour of dynamic 
stochastic systems with discrete events (Vazquez et al., 2009). 

 The direct analysis of the markings graph makes it possible to characterise the 
general and specific properties of the model studied (bounded aspect, living, etc.) 
(Vazquez et al., 2008). 

 The exploitation of the stochastic process associated with the Markov model makes 
it possible to evaluate the behaviour in permanent and transient regimes of the model 
(average frequency of crossing transitions, average residence time in persistent 
states, etc.). 
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 The simulation of the SPNs makes it possible to obtain approximations of the 
average flows and markings as well as the usual indicators of reliability. 

In this part, we show how to use the Markov analysis of SPNs for reliability studies.  

3.1 Markovian analysis of a SPNs 

The Markov analysis of an SPNs consists of constructing the graph of reachable 
markings of the SPNs and labelling each arc by a crossing rate which depends on the rate 
of the transition taken and the degree of awareness of this transition (Vazquez et al., 
2008, 2009). The process of labelling the SPNs is then identical to that of the 
homogeneous Markov process thus determined. Consider the SPN of Figure 1, of 
parameters 1 2 3 4, , ,m m m m   and the associated Markov process: 

Figure 1 SPNs and Markov Chain 
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The Markov process makes it possible to evaluate the behaviour in steady and transient 
regimes of the model such as the average marking of each place, the average flow of 
crossing each transition or the average residence time in each state (Do Van et al., 2012; 
Vazquez et al., 2009). If we suppose that the Markov model is ergodic then it has a 
generator which admits a unique stationary solution (Molloy, 1982). It is therefore 
possible to determine the values of the fluxes and of the mean markings. 

3.2 Associated Markov process generator 

In the case where the SPNs is bounded, the marking graph is finite and the Markov 
process has a finite number of states. The generator of the Markov process A is obtained 
from the markings graph. The states are linked in pairs by arcs with which the 
probabilities of passing from one state to another are associated (Bobbio et al., 1998; 
Lefebvre, 2011). 

The generator of the Markov process associated with the SPNs is therefore a square 

matrix  N N
A R

 , where N is the number of states. Process a depends on the 

reachability graph, the vector of the crossing rates of the transitions as well as the degree 
of sensitisation of the transitions (linked to the weights of the arcs of the front incidence 
matrix) (Kara et al., 2008; Mahulea et al., 2006). This matrix A is constructed as follows: 
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 The off-diagonal element  ija i j  is equal to the crossing rate allowing to pass 

from the state iS  to the state jS  by crossing the transition  : .k ij k i kT a n M m , 

where jM  represents the marking associated with the state iS . 

 The diagonal element N
i j ijaii a   represents the complement to zero of the sum 

of the other elements of line i (sum of the exit rates from the state iS ). 

The determination of the Markov process generator associated with the SPNs makes it 
possible to calculate the probabilities of states of the steady state, the steady state of the 
SPNs and to deduce from them other usual performance indicators of reliability. 

3.3 Permanent regime of an SPN 

When the reachability graph of the SPN is isomorphic to the state space of a Markov 
process, the steady state of the SPN can be obtained using the state probabilities of the 
Markov model. 

Let    q

s sjX x Î R  the vector of asymptotic mean flows,    n

s siM m Î R  the 

vector of asymptotic mean markings and    10,  1
N

k Î    the steady-state state 

probability vector of the associated Markov model with N states. Let A be the generator 
of the associated Markov process. The vector of steady-state probabilities is the solution 
of equation (2). 

1

. 0

1
N

i
i

A




 

 


  (2) 

From the vector Π, we deduce the asymptotic mean throughput of the transitions as well 
as the asymptotic mean markings of the places. 

Let  k kiM m  be the marking associated with the state kS ,  j kn M  is the degree 

of activation of the transition KT  and J  is the vector of the crossing rate (Mahulea  

et al., 2006). The asymptotic mean flows of each transition JT  is given by equation (3): 

 
1...

. .sj j j k k
k N

x µ n M 


   
 
   (3) 

The asymptotic mean marking of each place iP  is defined by relation (4): 

1...

.si k i k
k N

m m 


    (4) 

This method makes it possible to obtain an analytical solution of the steady state of an 
SPNs, in the case of an ergodic system and when the state space is of reduced dimension 
(Molloy, 1982). But one of the crucial problems common to all graph-based studies is the 
Combinatorial Explosion associated with the increase in the number of states (Sandmann, 
2004; El Akchioui, 2017). This problem will be illustrated in the next section and a 
workaround will be presented later. 
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3.4 Complexity of the reachability graph 

As an example, we will consider the example – prepared by Silva and Recalde (2004) 
presented in Figure 2. This network models a manufacturing system with five machines  
(T1 to T5), and three tools with limited resources (P1 to P3). In this Petri net model, the 
vector of the parameters of the transitions  and the initial marking JM  are given by: 

    1,1,1,1,1 , 6,6,4,0,3,0,3,0,0
T T

IM K    where k IN . 

Figure 2 Manufacturing system  
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T5 
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T2 

P1 

6 
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P3 

4

P7 3

P9 P8 

P2 
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Table 1 illustrates the evolution of the number of states N and of the computation time as 
a function of the parameter k. the computational time required to compute the 
reachability graph increases exponentially and makes Markov analysis difficult if not 
impossible (Recalde et al., 1999; Molloy, 1982). 

Table 1 Number of states and calculation time of the reachability graph in function of k 

Coefficient k 1 2 3 4 5 

Number of states (N) 205 1885 7796 22187 50801 

Calculation Time (s) 0.113 8.304 164.665 1321.804 6959.009 

To work around this problem, we will use the link between SPNs and Markov chain to 
estimate the state probabilities from the simulation of the SPNs. 

3.5 Stochastic estimator by simulation of SPNs 

In this part, we are interested in the simulation of stochastic systems in order to 
determine estimates of indicators related to dependability, such as reliability, Mean Time 
to Failure (MTTF), Mean Time Between Failures (MTBF) and Mean Up Time (MUT) or 
availability. We have seen that for large-dimensional systems, the Markov analysis is 
often unpractical because of the combinatorial explosion due to the passage through the 
state graph (Recalde and Silva, 2002; Trivedi and Kulkarni, 1993). The simulation of the 
SPNs does not require the computation of the state graph and the SPNs can be considered 
as an estimator of the Markov Model (Lefebvre et al., 2009; Mahulea et al., 2008). 

We next present the algorithm of this stochastic estimator. 



   

 

   

   
 

   

   

 

   

    Reliability analysis by Markov model 117    
 

    
 
 

   

   
 

   

   

 

   

       
 

3.5.1 SPNs simulation algorithm 

The algorithm of the evolution of a SPNs which makes it possible to determine the steady 
state is as follows: 

Figure 3  Steady state by SPNs algorithm 

Else 

Else 

t : Calculate the set of transitions 

Randomly draw a duration dj of rate µj

Transition with the shortest that dm = min (Tj) 

Replace t by t + dm 

Transition with the shortest time and update the marking 

Go to randomly draw a duration dj of rate 

Start t=0: Initialization of markings nj(m)>=1 

End dm=0 

 

3.5.2 Estimation of the OS by simulation 

The simulation of the SPNs makes it possible to obtain estimates of the fluxes and of the 
asymptotic mean markings. Take the example of Figure 2 where the computation time 
and memory space to find all the states are more expensive. 
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Figure 4 Stochastic estimator of throughput of the transition T5 for the system of Figure 2 

SPN: solid line 
Markov: dashed line 

Evolution of the mean flux of the T5 transition as a functon of time 

(s)(s)  

The advantage of this estimator is that the determination of the reachability graph is no 
longer required, but its major disadvantage is that convergence remains slow especially 
when the systems have rare events. These events are characterised by very low 
probabilities of occurrence (Zeng et al., 2019). In these situations, simulation methods 
are inefficient, since the low probability of the considered event makes its observation 
improbable, leading to poor precision of the estimate. Usually, the simulation takes a 
very long time to obtain acceptable results. 

3.5.3 Example 

Take the example, with an initial marking  1,0,0,0
T

IM  , the stochastic estimator 

allows us to determine the average operating reliability indicators obtained analytically 
by Markov analysis. 

Figure 5 SPNs equivalent to the Markov model 
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To estimate the MTTF of the system, we performed 4000 simulations by rendering the 
state four absorbing (stopping the simulation as soon as the state four is reached). The 
algorithm to determine the MTTF is as follows: 

1) Define the network parameters (incidence matrix, initial marking, maximum speed 
of crossing transitions). 

2) Initialise the parameters of the system studied, initial simulation time. 

3) Simulate the SPN according to the algorithm of Figure 3. 

4) Stop the simulation as soon as the system breaks down (failure states are 
materialised by the presence of the token in place P4). 

5) Calculate the time achieved until the first failure. 

6) Relaunch the program several times (4000 simulations in our example). 

7) Calculate the average value obtained during its various simulations (MTTF). 

We have obtained the realisations of the times until obtaining a failure, presented in 
Figure 6 whose average value is MTTF = 122.472 hours. 

Figure 6 MTTF estimated by simulation for the model in Figure 5 

M
TT

F
 (

ho
ur

s)
 

Number of simulations  

On the other hand, the simulation times are relatively long but they are little influenced 
by the nature of the probability laws associated with the failures, which allows many 
technological systems to be taken into account. 

The algorithm used to determine the average time between the return of service to the 
system and its failure state is as follows: 

1) Use the results obtained by the simulation of the SPN. 

2) Identify the signs of failure states throughout the simulation (materialised by the 
presence of the token in place P4). 

3) Calculate the average value of all the restart and the time after the system fails. This 
makes it possible to determine the MUT. 



   

 

   

   
 

   

   

 

   

   120 H. El-Moumen, N. El Akchioui and M.H. Zerrouk    
 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 7 shows the times between a return to service of the system under study from the 
moment it fails. We estimated MUT = 114.786 hours 

Figure 7 MUT estimated by simulation for the model in Figure 5 
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U
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ur
s)

 

Times(s)  

The algorithm for determining the MTBF is as follows: 

1) Use the results obtained by the simulation of the SPN. 

2) Identify the indices of failure states throughout the simulation and the indices of 
good operating states. 

3) Calculate the time between two consecutive failures. 

4) Calculate the mean of the MTBF times. 

Figure 8 represents the times between two consecutive failures obtained by the stochastic 
estimator. We estimated MTBF = 115.49 hours. 

Figure 8 MTBF estimated by simulation for the model in Figure 5 
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Table 2 summarises the results obtained by the Markovian analysis and by the stochastic 
estimator. 

Table 2 Average reliability indicators obtained by the stochastic estimator and Markovian 
analysis 

Reliability indicators MTTF(hours) MUT(hours) MTBF(hours) 

Markovian analysis 122.5 115 115.5 

Stochastic estimator 122.472 114.786 115.378 

Relative error 0.028 0.214 0.122 

The Markov analysis and the stochastic estimator by simulation of the SPNs made it 
possible to evaluate the usual performance indicators of this system (Giua and Silva, 
2018; El Akchioui et al., 2020). If the state space is large (and no approximate model 
reducing the state space is available), the reachablity graph cannot be generated. 
Simulation is then still the only possibility. 

We can show that for state spaces, analytical-numerical methods are efficient. When 
the state space becomes larger, there is always a threshold at which the simulation time 
becomes much longer. Usually, the simulation requires a very long time to obtain good 
results, note that even if the computation time for the analytical-numerical methods is a 
little greater than that of the simulation, it is still relevant to use them because they give a 
precise result instead of a confidence interval. 

4 Conclusions 

In this paper, we have presented the basic concepts of system dependability, as well as 
obtaining various reliability indicators from Markov analysis, the limits of which we 
have highlighted. These performance indicators can be obtained using the state 
probability vector of the Markov process, but this operation requires the preliminary 
computation of the state graph, in order to overcome the problem of the combinatorial 
explosion of the number of states, in the case of complex systems. 

The advantage of this estimator is that the determination of the reachability graph is 
not necessary, but its major disadvantage is its low speed of convergence, especially in 
the presence of rare events. Regarding reliability studies, as soon as a place is identified 
as a default place, an estimate of the different indicators can be obtained. The quality of 
this estimate will be associated to the duration of the simulation. For complex systems, 
the link between fault states and network places must be established to enable estimates 
of these indicators to be obtained. 

The limitations due to the combinatorial explosion and to convergence problems have 
given rise to several works based on the fluidification of discrete behaviours. The 
forthcoming work explores this approach. 
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