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Abstract: In this research, a novel model for a Markov repairable system has 
been proposed wherein there is an uncertainty in the inspection period, i.e., the 
inspection period is taken in such a way that whenever a fault is identified 
throughout the inspection, the inspection period is shortened for the next 
inspection. Further, if the time taken to repair the system failure is less than the 
pre-determined critical value, the failed elements of the system are repaired. 
And, if the system takes longer than the critical time to fully recover, it is 
considered completely failed and then the failed system is replaced with a new 
one. The system is repaired under the (M/M/s):(∞/FCFS) queue model, 
including working vacations. We have evaluated the proposed model’s 
availability as a measure of reliability. For clarification, the results are 
supported by a numerical example. 
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1 Introduction 

Reliability and availability are two major concerns for most complex repairable systems. 
As it is not possible to throw away all the failures that have happened previously or will 
occur in the future, the principle of reliability simply promotes the avoidance of failures 
and their consequences. Since the 1970s, there has been a surge of interest in system 
maintenance modelling, and several kinds of research have been done to address many 
system attributes, including reliability measures like mean time to failure, availability and 
average long-run average cost. Markov repairable systems occupy a prominent place 
among numerous repairable systems (Bao and Cui, 2010; Wang et al., 2013; Rao and 
Naikan, 2015; Wang et al., 2016; Du et al., 2017). Considering the intervals between two 
consecutive inspections, the inspections are categorised into two main types: periodic and 
non-periodic (Taghipour and Banjevic, 2012; Berrade et al., 2013; He et al., 2015; Qiu et 
al., 2017; Hajipour and Taghipour, 2016; Yang et al., 2018; Pant et al., 2020; Pant and 
Singh, 2021; Agarwal and Singh, 2021). Pant and Singh (2021) examined the 
availability of a system exposed to various failure modes experiencing periodic 
inspections using a calendar-based inspection approach. Qiu and Cui (2019b) studied the 
availability of repairable systems with a pre-defined repair time threshold limit. Cui and 
Xie (2005) presented the formulae of steady-state availability for periodically inspected 
systems under random repair or replacement times along with their properties. Klutke 
and Yang (2002) derived an expression for the limiting average availability of a system 
that has been exposed to disruptions and gradual deterioration. 

When a working component fails, it is often assumed that a repair will begin 
immediately. However, the system can be considered operational if a short repair period 
does not affect the system’s operation. This may be the case if the customers do not place 
too many demands on the system, which can cause them to skip a short repair period or 
they can hardly experience a minor delay in receiving service. To be specific, if the 
performance of the system is unaffected by a short maintenance time, we can consider 
the system operational throughout the repair period. This is quite analogous to the 
scenario in an Ion-Channel theory, where a channel alternates between open and closed 
states; however, numerous spans are so small that they are undetectable at the recording 
system’s resolution. In ion-channel modelling, the open and closed states are respectively 
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equivalent to the up and down states in reliability. This motivates us to construct a 
repairable system with the exclusion of repair time. In general, this kind of system is 
called fault-tolerant, and it is an idea that is broadly put into play for the safety  
and reliability of software-based systems (Jain and Meena, 2020; Mani and  
Mahendran, 2017). 

The vast majority of delay time-based maintenance models assume that once a 
defective state is recognised, the replacement will be executed immediately. 
Alternatively, we can loosen this belief and allow the replacement to be delayed for cost-
cutting reasons. In this study, the duration of the system’s repair time determines whether 
or not to replace the faulty system. Specifically, the replacement is postponed when the 
time between the onset of the failure and the end of the repair is below a given threshold. 
When the time required to restore the system to full functionality exceeds the threshold 
limit, the system is deemed operational, and the replacement is instant. Unlike an 
immediate replacement, a deferred replacement allows for the pre-arrangement of service 
equipment, like repairers and replacement parts. Furthermore, it can reduce the life-cycle 
cost by preventing unnecessary maintenance and extending the average system 
lifespan (Yang et al., 2013, 2019). To investigate the circumstances under which 
maintenance may not always be performed right away after a fault is revealed, Berrade  
et al. (2017) created a delay time model for a system with delayed replacement. Some 
studies have also been conducted to investigate the availability and optimal maintenance 
policy for systems incorporating a downtime threshold (Zheng et al., 2006; Bao and  
Cui, 2010; Qiu et al., 2019; Pant and Singh, 2022). 

Whenever a failed system is brought in for repair, the very first question is: Can it be 
fixed right away? If that’s not the case, the system will have to wait for its turn. This will 
result in the formation of a queue, which is a common scenario in daily life. A further 
practical concern is the availability of a repair person. Since the repairman may not 
always be available during the repair period, it is not always possible to quickly fix the 
collapsed system. During the repair, the repairman can either be in a busy period or on 
vacation, and both circumstances result in a queue. Assume that if the system collapses, 
the customer can wait for at most ten minutes. If within ten minutes or less, the default is 
fixed, the customer can consider the system operational and remain in it during the repair 
period. But if within ten minutes, the system failure cannot be repaired completely, then 
after waiting for ten minutes, the customer departs the system, concluding that the service 
system has failed. In general, once a customer enters the queue, he waits for a certain 
amount of time for the system to be repaired, and then he gets impatient and leaves the 
queue without receiving service. Queuing theory plays a significant role in reliability 
engineering; particularly while analysing systems waiting for repairs and replacements 
(Shanmugasundaram and Banumathi, 2017). By repairing the failed components under 
the (M/M/s):(∞/FCFS) queue model, the availability of the system can be increased due 
to the fact that it contains multiple servers. In addition, by using (M/M/s):(∞/FCFS) 
queue, the system can be made more efficient because it helps in reducing the waiting 
time of failed systems and improving their repair time. Queuing models are very useful in 
determining how to use a queuing system most effectively. It is also worth noting that 
delivering additional services to keep the system running incurs immoderate costs. 
However, inadequate service results in unnecessary delays and their subsequent 
consequences. Queuing systems make it possible to establish a suitable equilibrium 
between the maintenance cost and the waiting time. 
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In most of the literature on the above-mentioned subject, the system’s parameters are 
taken to be constant. However, in some real-world scenarios, the parameters  
(like inspection time or failure/repair rate) may not have constant values and hence are 
uncertain, particularly during the assessment of the reliability characteristics of modern 
designed complex systems. For example, for each device and each failure, the repair time 
is different and thus the service rate continues to change. In response to the constantly 
changing service rate, the conditions of waiting in the queue, which may be significant to 
customers when deciding whether to join the queue or not, may vary. Thus, the system is 
always subject to uncertainty. A method for assessing the reliability of some replaceable 
networks has been given. The networks under consideration have some uncertainties 
associated with them, and their reliability has been evaluated employing three indices, 
viz., terminal reliability, broadcast reliability and network reliability (Khati and Singh, 
2021, 2022). In order to address the aforementioned issues, there is a need to integrate 
the above facts into the reliability modelling and estimation. 

In the field of reliability engineering, availability has consistently remained a subject 
of growing interest because it is a key characteristic of the construction and operation of 
all modern-engineered complex systems. This research work aims to plan a maintenance 
model for a competing-risk system. We derive the expressions for the instantaneous 
availability and the upper and lower bounds of the long-run availability under critical 
repair time conditions, incorporating the    M / M / : / FCFSs   queue model with a 

semi-vacation policy under uncertainty. Then, we clarify the validity of the derived 
results with a numerical example of a ventilator system.  

We now turn to the continuation of this paper. Section 2 discusses the notations used 
in the research. Section 3 explains how the planned model will be constructed. A 
discussion of the system’s availability follows in Section 4. Section 5 provides a 
numerical example to demonstrate the findings. Finally, Section 6 compiles the results 
and discussions. 

2 Nomenclature 

t Time scale 

ε System’s life-span 

Fε(x) Probability distribution function of ε 

τi Inspection period 

 System’s repair time 

F(y) Probability distribution function of  (waiting + service time) 

T Critical repair time 

I Number of inspections conducted when a failure is discovered in the system 

A(t)  System’s instantaneous availability at time t 

A System’s steady-state availability 

λ System’s failure rate 

μ System’s repair rate 

Ws Waiting time in the system 
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3 System description  

In the proposed model, to trace the system failures, the inspections will be carried out 

after each time-interval   , where , i j      . Also, a critical repair time, T, will be pre-

established, depending on the real-life experiences. If any downtime is shorter than T, 
i.e., the system is repaired completely within the pre-specified period T, the system can 
be regarded as working throughout the downtime and if the downtime surpasses T, the 
system is deemed to be functional from the commencement of the failure up to the 
downtime surpassing T. The failed components will be repaired under the 

   M / M / : / FCFSs   queue model with a semi-vacation policy. 

We can define a renewal cycle as the time frame between the setup of a fresh system 
and the completion of the first repair, or it can be defined as the period between two 
subsequent completions of repairs. 

The fundamental postulates governing the availability analysis are as: 

a) At first, a new system is introduced.  

b) If a fault is observed, a quick repair action is taken, which requires a random time 
 with distribution function  F x . Each repair can transform a defective 

component into a working component. 

c) The failed components are repaired using the    M / M / : / FCFSs   queue model 

with working vacations. 

d) A critical repair time, T, is predefined. If the time required to repair the system is less 
than T, the system will be regarded as operational throughout the downtime; 
otherwise, if the system is taking a time longer than T to get back completely into 
action, the system will be considered as completely failed and, in that case, we will 
replace the system with a new one. 

e) The inspection period,  , is reduced whenever a failure is detected while inspecting 
the system. 

Figure 1  A feasible model of the proposed competing-risk system 
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Let τ1 be the initial inspection period. Figure 1 illustrates that no failure is detected during 
the first inspection, whereas a fault is revealed in the system during the second 
inspection, resulting in an instant repair. Because the system’s downtime is less than the 
critical time T, the system is deemed functional. Since a failure is detected, we reduce the 
inspection time from τ1 to τ2. Now during the third inspection, no failure is found, but 
during the fourth inspection a fault is identified, and thus a repair is executed instantly. 
Here, also the system’s downtime is less than T, thus the system is deliberated as 
functional. Then again, the inspection period is reduced from τ1 to τ2. 

4 Availability analysis 

Theorem 1: The proposed system’s instantaneous availability A(t) at instant t 
incorporating    M / M / : / FCFS  s  queue  is expressed as 

            
/

1 0

1
t t i

i

A t R t R i R i A t i y dF y
 

  
  



         . 

where   is the respective inspection period and a    symbolises the last integer which is 

not more than a. 

Proof: For determining the system’s instantaneous availability, let us define a stochastic 
process given as follows: 

 
 thesystem is working at instant 1

0 otherwise
t

t



 


 

The system’s instantaneous availability at instant t is given as: 

   (the system is in an operating condition at time A t P t ሻ	

  
   

1  

( 1, ) ( 1, )

P t

P t t P t t



   

 

     
  (1) 

The system’s failure time,   , is linked with the amount of inspections performed when a 

defect is observed throughout a renewal cycle, I,  as  1I t It   . 

The probability mass function of I can be calculated as follows: 

 
  
   

1

  = 1

iP P I i

P i i

R i R i

  

 

 

   

   

 (2) 

The first and the second terms of equation (1), correspondingly symbolise the cases that 
the first failure takes place before time t and no system failure takes place before time t. 
Thus, we can express the first term as: 

   ( 1, )P t t R t     
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When we take into account the inspection interval during which the system fails for the 
first time, we obtain: 

          
/

1

1, 1, 1, /
t

i

P t t P t I i P t t t


      
  



           (3) 

where a    represents the greatest integer that is not greater than a . 

Now according to the second part of equation (3), the system comes up short in the 

time interval   , ,t t t    . Because of this, the system breakdown can be noticed only 

at  / 1t      and thus at that time the instantaneous availability is 0.   

We can write the first term of equation (3) as: 

          
/ /

1 1

1, 1, . 1
t t

i i

P t I i P t I i R i R i
 

   
      

 

           (4) 

Whenever the system collapses, the respective corrective repair takes an arbitrary 
time    , so we have: 

         

    

0

0

1, 1, , ,

1

t i

t i

P t I i P t I i y y y dF y

P t i y dF y









  

 





       

   




 

   
0

=
t i

A t i y dF y





   (5) 

Equation (4) is attained by using equation (5) as: 

           
/ /

1 1 0

1, 1
t t t i

i i

P t I i R i R i A t i y dF y
  

   
      

 

             (6) 

The system’s instantaneous availability is determined by using equations (3), (4) and (6) 
as follows: 

            
/

1 0

1
t t i

i

A t R t R i R i A t i y dF y
 

  
  



          (7) 

Theorem 2: The long-run availability ‘A’ of the proposed competing-risk system 
employing    M / M / : / FCFS  s  queue model is given as: 

 
    

0

1
1 si

G x dx
A

i R i R i W




  







    




 

where         
10

1
x

x

i

G x R i R i x y dF y e 
 






        , sW  is the waiting plus 

service time of the system in the queue. 
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Proof: The long-run availability ‘A’ of the proposed system can be accessed via the key 
renewal theorem which is stated as: 

 
   

E U
A

E U E D



 (8) 

where E(U) equates to the system’s expected uptime and E(D) to the expected downtime 
of the system in a renewal cycle. 

The system’s expected uptime is given as: 

      

      

0

10 0

{ 1 }

T

T x
x

i

E U E P I x dx

R i R i x y dF y e dx


   

  






    

        



 
 (9) 

Also, the expected length of a renewal cycle, E(R), is given by: 

          
1

 1 s
i

E R E I E i R i R i W    




          (10) 

Thus, the steady state availability of the proposed system can be obtained from  
equation (8) as: 

 
 

      

    
10 0

1

{ 1 }

 
1  

T x
x

i

s
i

R i R i x y dF y e dx
E U

A
E R

i R i R i W


  

  









       
 

    

 


 (11) 

It can be observed from equation (11) that A is an increasing function of  as a larger 
value of  reciprocates a larger steady-state availability. 

Corollary: The lower and upper bounds of the long-run availability A are respectively as 
follows: 

     1

 

1  si

A
i R i R i W



  





  

  (12) 

       

     
10 0

1

{ 1 }

1  

T x
x

i

s
i

R i R i x y dF y e dx

A
i R i R i W


  

  









     




 

 


 (13) 

5 Numerical example 

Numerous practical areas, such as coal mine industries and manufacturing plants, rely 
heavily on ventilators. In order to ensure normal yield, ventilator systems must 
continuously deliver sufficient fresh air to specific locations while anticipating gas 
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aggregation. Whenever a ventilation system collapses, as per security standards in the 
coal industry, a time lag should be permitted to manage the system. While this delay 
continues, solid underground security should also be ensured. As long as the ventilator is 
fixed inside the threshold limit, it remains in the up-state, implying that the consequences 
of the failure are abandoned or deferred. Let the system be inspected on a regular basis, 
i.e., periodically. Ventilator breakdowns will, without a doubt, result in massive damage. 
Hence, the analysis of the ventilato’s availability is of critical importance in several 
practical fields. To get a better understanding of the concept of delayed or unconsidered 
downtime in the ventilator system, a practical situation is examined to demonstrate the 
results that were derived in the preceding section. Now, for a pre-specified non-negative 
threshold value   , if the ventilator system is down for a time that is not more than   , 
the system remains operable during that downtime. Or else, if the system’s downtime 
surpasses T, the system continues to operate within the time-span  . The consequences 
of generator failures are, thus, ignored or delayed. To demonstrate the obtained results, a 
realistic scenario depicting how the downtime can be ignored or postponed in the coal 
mine ventilation system is depicted in this section. 

5.1 Instantaneous and long-run availability analysis 

Let us assume that the system’s lifetime follows an exponential distribution. Repairs are 
initiated as soon as a failure is noticed in the system. The repair time is distributed 
exponentially with a repair rate of 1, and let 0.1 be the failure rate of the system. Also, let 
us take the critical time, T, to be 0.1. The first inspection interval is 1  = 3, and the 

second inspection interval is 2 = 2.5. Figure 2 displays the instantaneous availability of 

the considered system, which can be evaluated from equation (7). Using equations (12) 
and (13), the lower and upper limits of the steady-state availability are obtained and are 
presented in Figure 3. It can be seen from Figure 3 that the upper and lower limits of the 
steady-state availability for the considered system are 0.5879 and 0.4394, respectively. 

Figure 2 Instantaneous availability of the system 
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Figure 3 Long run availability of the system 

 

5.2 Comparison of this model with Qiu and Cui’s (2019a) model 

Qiu and Cui (2019a) examined the availability of a competing-risk system undergoing 
periodic inspections. They analysed the system by assuming that it experiences multiple 
FMs and gave some theorems governing the point and steady-state availability of the 
system. From the perspective of the system’s steady-state availability, we compare the 
two maintenance models. One main difference between our model and the model given 
by Qiu and Cui (2019a) is that their system undergoes inspections at regular intervals, 
while in our model the inspection time is not certain. Moreover, we incorporated the 
concept of critical repair time into our model. In spite of the fact that Qiu and Cui’s 
(2019a) model is inspected more frequently than our model, the availability of their 
system is lower than that of our system, which can be observed from Figures 2 and 4. 

Figure 4 Instantaneous availability of the system in Qiu and Cui’s (2019a) model 
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6 Conclusion and discussion 

This paper examines the instantaneous availability as well as the lower and upper  
bounds of steady-state availability for a Markov repairable system incorporating 

   M / M / : / FCFSs   queue and critical repair time. An inspection-based maintenance 

strategy has been implemented. The inspection period has been deemed uncertain, i.e., 
every time a fault is discovered in the system, the inspection period is decreased. The 
system has been examined under the assumption that as long as the system is rectified 
within the critical time frame, the system will be considered operational across the 
downtime; or else, if it takes longer than the critical time for the system to be fully 
functional, then the system will be considered completely broken and will be replaced. 
The analytical results for the system’s instantaneous availability and the lower and upper 
bounds of the system’s steady-state availability have been derived and validated by 
means of a numerical illustration of a ventilator system. Also we have compared the 
results of our paper with the results of Qiu and Cui’s (2019a) model, and the availability 
of our model is found higher than that of Qiu and Cui’s (2019a) model. 

One limitation of this paper is that the system is subjected to a single failure mode. In 
a more practical scenario, when failure modes are dependent, it could be useful to 
describe the characteristics of failure modes. In addition, our results have been restricted 
to cases in which inspections are perfect. Investigating various reliability indices for 
systems experiencing multiple failure modes with imperfect inspections would be 
interesting. 

As a preliminary analysis, obviously, there are numerous other extensions which are 
worth exploring. Research on additional reliability measures, like the mean time to 
failure and reliability function, could be conducted in the future. The techniques 
employed in this work can be modified and applied to additional repairable systems, 
namely, series, parallel, k-out-of-n or standby systems. The Markov system is examined 
in this research, and in future research, the semi-Markov system could be used, allowing 
us to create a novel system relying upon the semi-Markov system that ignores or delays 
the consequences of system breakdown. The findings of this research can be applied to a 
study aimed at increasing system reliability. The derived outcomes on the system’s 
availability are useful in many real-world applications, such as operations research and 
other engineering areas. 
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