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Abstract: More study has been performed on the steady state analysis of
fluid models. However, the transient analysis of fluid models has not been
extensively carried due to complexity of the problem. This is because the
system of conservation laws for which no closed form solution is available.
The motivation behind this paper is to provide a new methodology to find
transient distribution of buffer content for fluid models. In this paper, the
time-dependent solution of a fluid model driven by an M/M/1 queue is
derived using a simple probability approach. Finally, numerical results are
illustration for the proposed approach.
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1 Introduction

A fluid model is a probabilistic model used to describe the amount of fluid in a reservoir
or dam, of infinite or finite capacity. The rate at which the fluid flows into the system
can be analysed as being controlled by an operator which is a Markov process and is
called the background process. For instance, fluid models have been widely accepted
as appropriate models for recent telecommunication and manufacturing systems. This
modelling approach ignores the discrete nature of the real information flow and treats
it as a continuous stream. Fluid queue means that, the queue obtained from the fluid
model.

Steady state analysis of the buffer content distribution has been extensively
performed by various authors and different methodologies have been used to obtain the
exact solution in many cases. Van Doorn and Scheinhardt (1997) gave the methodology
for finding the buffer content distribution using orthogonal polynomials. Parthasarathy
et al. (2002) analysed the steady state behaviour of a fluid model driven by an
M/M/1 queue using continued fraction approach. Tardelli (2017) used recursive
backward scheme for the solution. Ramaswami (1999) described the fluid models using
matrix-analytic methods and provided efficient algorithm for calculating the stationary
distribution. Malhotra et al. (2009) studied congestion control mechanism using fluid
models and obtained the stationary distribution of the buffer occupancy, the distribution
of buffer delay, and the throughput.

Steady state behaviour gives us important information of a system in long run,
although to study the dynamical nature of a system, transient analysis is of critical value.
Various methodologies have been studied in literature to obtain the transient buffer
content distribution of fluid queues. Sericola (1998) found the transient solution of fluid
queues driven by a Markov process using recurrence relations.

Further, fluid queues driven by an M/M/1 has already been studied in literature.
Sericola et al. (2005) gave the transient solution of fluid queues driven by an M/M/1
is obtained via continued fractions. Fluid models driven by an M/M/1/N queue was
analysed by Parthasarathy and Lenin (2000), and closed form solution was obtained.
Recently, Shruti et al. (2005) obtained the transient solution of fluid queue driven by
a birth death process with specific rational rates and absorption. de Souza e Silva
(1995) gave a methodology to find the transient distribution of cumulative reward
based on probability. In this paper, the transient solution is presented based on
probability concepts and obtained the solution in the form of an infinite series, where
individual terms are defined using recurrence relations. This methodology of finding the
transient solution is similar to finding the transient distribution of cumulative reward by
de Souza e Silva (1995).

The rest of the paper is organised as follows. In the next section, the fluid model and
the notation used are presented. In Section 3, the time-dependent solution of the buffer
content of the fluid queue is obtained. In Section 4, numerical illustrations of these
results is presented. Pointers to further research and conclusions are given in Section 5.

2 Model description

Consider a fluid model driven by an M/M/1 queue. In this model, the background
process is a continuous time Markov chain. Let {X(t), t ≥ 0} be the underlying
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stochastic process of an M/M/1 queue, where X(t) is the state of the system at time
t and takes values in S = {0, 1, 2, ...}. Let λ and µ denote the mean arrival and
service rates respectively. When the background process is in state i ∈ S \ {0}, a fluid
commodity gets accumulated in an infinite capacity buffer with a constant rate r > 0.
Whenever the background process is in state 0, the fluid flows out of the buffer with a
constant rate r0 < 0. Let C(t) denote the buffer content at time t. The stochastic process
{(X(t), C(t)), t ≥ 0} becomes a two-dimensional Markov process. Let

Fj(t, x) = P [X(t) = j, C(t) ≤ x], t, x ≥ 0; j ∈ S

denote the two-dimensional distribution function of the Markov process {(X(t), C(t)),
t ≥ 0}. The Kolmogorov forward equations governing this process are given by
Van Doorn et al. (1988):

∂F0(t, x)

∂t
+ r0

∂F0(t, x)

∂x
= −λF0(t, x) + µF1(t, x) (1)

∂Fj(t, x)

∂t
+ r

∂Fj(t, x)

∂x
= λFj−1(t, x)− (λ+ µ)Fj(t, x)

+ µFj+1(t, x), j = 1, 2, .... (2)

The initial conditions are given by

F0(0, x) = 1, Fj(0, x) = 0 for j = 1, 2, 3, . . .

and boundary conditions are given by

F0(t, 0) = q0(t) and Fj(t, 0) = 0 for j = 1, 2, 3, . . . .

Note that, whenever the net input rate of fluid flow into the buffer is positive, the buffer
cannot stay empty.

3 Time-dependent solution using probabilistic approach

The motivation behind this paper is to provide a new methodology to find transient
distribution of buffer content for fluid models. Though this model has been well studied
by various researchers in the literature, the methodology proposed in this paper is unique
and simple in nature.

The interest lies to obtain P [C(t) > x]. Let Q be the infinitesimal generator matrix
of continuous time Markov chain {X(t), t ≥ 0}. Let

Z = {Zn : n = 0, 1, . . .}

be a discrete time Markov chain with state space S and transition probability matrix
P = I + Q

λ+µ and {N(t), t ≥ 0} be a Poisson process with rate λ+ µ, that is
independent of Z. Then X(t) = ZN(t) for t ≥ 0. Assume that the background process
has been uniformised and thus have n transitions during the period (0, t), i.e., N(t) = n,
at times

0 < τ1 < τ2 < ... < τn < t.
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These events split (0, t) into n + 1 intervals with lengths

Y1 = τ1, Y2 = τ2 − τ1, ..., Yn+1 = t− τn.

Thus, each interval is associated with a net rate whose value is based on the state of
the process during the interval.

The state space S is partitioned into two subsets B0 and B1 such that B0 = {0} and
B1 = {1, 2, ...}. Define V 0

n =
∑i=n

i=0 1Zi∈B0 and V 1
n =

∑i=n
i=0 1Zi∈B1 where 1A is the

indicator function.
Define

Vn = (V 0
n , V

1
n ).

Let k1 and k2 = n+ 1− k1 denote the number of intervals associated with rate r0 and
r respectively. Note that, k1 ≥ 1 since the system starts in state 0 at time 0. Refer
(k1, k2) as a partition of n + 1. Thus, conditioning on the number of transitions n and
Vn = (V 0

n , V
1
n ) = (k1, k2) = k, obtain P [C(t) > x]

=
∞∑

n=0

∑
k1+k2=n+1

P [N(t) = n, Vn = k]P [C(t) > x | N(t) = n, Vn = k]

=

∞∑
n=0

∑
k1+k2=n+1

P [N(t) = n]P [Vn = k | N(t) = n]

× P [C(t) > x | N(t) = n, Vn = k]

=

∞∑
n=0

e−(λ+µ)t ((λ+ µ)t)
n

n!

n∑
k2=0

G[n, (k1, k2)]M(t, x, n, k2) (3)

where

M(t, x, n, k2) = P [C(t) > x | N(t) = n, V 1
n = k2] (4)

and

G[n, (k1, k2)] = P [Vn = k | N(t) = n].

Further,

G[n, (k1, k2)] =
∑
i∈S

Gi[n, (k1, k2)]. (5)

Here Gi[n, (k1, k2)] is the probability of partition k given that the number of transitions
are n and the state visited after the last transition is i. If i and j are the states visited
after the last (n− 1)th and nth transitions, then (k1, k2) is equal to the previous partition
+1 at the entry corresponding to the net rate associated with state j. Let p = λ

λ+µ and
q = 1− p. Since, for i ≥ 1, the only possibilities for j are i− 1 and i+ 1, conditioning
on the state visited after the (n− 1)th transition,

G0[n, (k1, k2)] = G1[n− 1, (k1 − 1, k2)]q (6)
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and for i ∈ S \ {0}

Gi[n, (k1, k2)] = Gi−1[n− 1, (k1, k2 − 1)]p+Gi+1[n− 1, (k1, k2 − 1)]q. (7)

The recursive function Gi[n, (k1, k2)] satisfies the initial conditions

G0[0, (1, 0)] = π
(0)
0 = 1

Gi[0, (0, 1)] = π
(0)
i = 0 for i ∈ S \ {0}.

Now, compute M(t, x, n, k2). Let U1, U2, ..., Un be uniformly distributed iid random
variables in (0, 1) and U(1), U(2), ..., U(n) be their order statistics with U(0) = 0 and
U(n+1) = 1. Then, τi, the time of the ith transition has the same distribution as tU(i).
Thus

Y1 ≡ tU(1), Y2 ≡ t(U(2) − U(1)), ..., Yn+1 ≡ t(1− U(n)).

Since Yi’s are exchangeable random variables, and also the background process is an
M/M/1, the time spent in any state follows exponential property. Thus, rearranging the
intervals, letting the first k1 intervals to be associated with the net rate r0 and the next
k2 intervals associated with the net rate r. Now, the event {C(t) > x} given {N(t) = n,
V 1
n = k2} can be written as {C(t) > x | N(t) = n, V 1

n = k2}

= {C(t) > x | N(t) = n, V 1
n = k2}

= {C(t) > x | N(t) = n, V 0
n = k1}

= {r0(Y1 + ...+ Yk1) + r(Yk1+1 + ...+ Yn+1) > x}
= {r0(tU(1) + t(U(2) − U(1)) + ...+ t(U(k1) − U(k1−1)))

+ r(t(U(k1+1) − Uk1) + ...+ t(U(n+1) − U(n))) > x}
= {t(r0 − r)U(k1) + rt > x}.

Thus, for x ∈ [0, rt)

P [C(t) > x | N(t) = n, V 1
n = k2] = P

[
(t(r0 − r)U(k1) + rt) > x

]
= P

[
U(k1) <

x− rt

t(r0 − r)

]
. (8)

It is known that if X1, X2, ..., Xn are U (0, 1) iid random variables, then the sth order
statistics X(s) follows Beta(s, n+ 1− s). Therefore, the RHS of equation (8) is the
cumulative distribution function of Beta(k1, n+ 1− k1) evaluated at x−rt

t(r0−r) . Thus,

M [t, x, n, k2] =

k1∑
j=0

(
n

j

)(
x− rt

t(r0 − r)

)j (
1− x− rt

t(r0 − r)

)n−j

. (9)

Thus, the solution is obtained as, for t ≥ 0 and x ∈ [0, rt),

P [C(t) > x] =
∞∑

n=0

e−(λ+µ)t [(λ+ µ)t]n

n!

n∑
k2=0

G[n, (k1, k2)]M [t, x, n, k2] (10)
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where M(t, x, n, k2) is given in equation (9) and G[n, (k1, k2)] is given in equations (5),
(6) and (7).

Further, the value of q0(t) can be obtained from equation (8) by letting x = 0 and
state of the background process as i = 0 and using the recursive relation described in
equation (6) as follows:

q0(t) = P (C(t) > 0) =

∞∑
n=0

[
e−(λ+µ)t−[(λ+ µ)t]n

n!

n∑
k2=0

G[n, (k1, k2)]

× M [t, 0, n, k2]] . (11)

Figure 1 Buffer content distribution (see online version for colours)

Figure 2 Buffer content distribution for various values of N (see online version for colours)
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4 Numerical illustration

Analysis of fluid models driven by an M/M/1 queues is executed by various authors.
But the result proven in this paper follows basic probabilistic approach and hence can
be implemented numerically in a simple manner. In Figure 1, the distribution of buffer
content for a fixed value of t and varying x is shown taking λ = 1 and µ = 2.

Figure 2 shows the buffer content distribution of a fluid model driven by an
M/M/1/N , for different values of N . The parameter values are taken to be same as
for the infinite scenario. From the graph, it can be seen that as N increases the above
model converges to the graph shown by fluid model driven by an M/M/1 queue.

5 Conclusions and future work

In this paper, a new methodology of finding the time-dependent probabilities is
preseneted for a fluid model driven by an M/M/1 queue using basic probability.
The objective of this paper is to present the solution in a simplified manner. The
solution obtained is in terms of recurrence relations, and is further presented as a closed
form expression. The above described methodology can be used to obtain the buffer
content distribution function of other fluid models with different background other than
M/M/1.
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