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Abstract: Distribution and inventory planning in a multi-echelon system are 
studied under an uncertain demand context. To deal with this problem a mixed 
integer linear programming (MILP) model is proposed. This considers a  
multi-echelon system formed by N-warehouses and M-retailers. The problem 
consists on determining the optimal reordering plan for the operating network, 
which minimises the overall system’s operation cost. The uncertain demand 
faced by retailers is addressed by defining the optimal safety stock that 
guarantees a given service level at each regional warehouse and each retailer. 
Also, the risk pooling effect is taken into account when determining inventory 
levels in each entity. A case study based on a real retailer distribution chain is 
presented and solved. 
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1 Introduction 

The distribution operation within different industries faces uncertainties that cover a wide 
range of factors such as demands, prices and lead times for the supply of products. Triki 
and Al-Hinai (2016) researched the optimisation techniques for multi-period planning 
horizon and Omrani and Ghiasi (2017) studied optimisation problems with data 
uncertainty. Demand uncertainty and bullwhip effect phenomenon are important drivers 
that all managers must to take into account (Vicente et al., 2018). Between these, demand 
uncertainty may well have the dominant impact on profits and service level. This can lead 
to excess inventories or inability to meet service level. Excess inventory results in 
unnecessary holding costs, while the inability to meet the customer needs results in both 
loss of profit with the possibility, on long-term, loss of customers (Jung et al., 2004). 

Inventory optimisation in a multi-echelon supply chain network, characterised by an 
uncertain demand, is a real world problem (Amiri-Aref et al., 2018). In this context, 
optimal inventory planning has become a major goal of the companies in order to 
simultaneously reduce costs and improve service level in today’s increasingly 
competitive business environment (Daskin et al., 2002; Axsater, 2003; Yadollahi et al., 
2017). A high service level can be obtained by maintaining increased inventory levels to 
hedge against demand uncertainties. Although additional inventory improves service 
level, it increases inventory holding cost. It is then necessary a trade-off between service 
level and inventory holding cost. This can be achieved through the solution of stochastic 
optimisation problems where the inventory levels are the key optimisation variables 
(Stephan et al., 2010). One such approach implies the use of the safety stock as a lower 
bound on the inventory level which is chosen such as to absorb some level of the demand 
uncertainty (Graves and Willems, 2000). 

There exists a large number of works on estimating safety stock levels based on 
classical inventory theory. However, they fail to address the key features of realistic 
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supply chain problems, namely, multiple products sharing multiple facilities with 
capacity constraints and demands originating from multiple customers. In addition, in 
real world supply chains, safety stock levels are dependent on factors such as the 
probabilistic distribution of the demands, the demand to capacity ratio, service level on 
meeting the demands for multiple products and transportation lead times among facilities. 
Such factors introduce complexities that classical inventory models simply do not 
accommodate (Porteus, 2002; Chopra and Meindl, 2004). 

The main objective of this paper is to explore this opportunity by adapting the 
concept of safety stock into a network inventory planning model. Within this context, the 
goal of the present research is to develop a model that includes lower bounds on the 
inventory levels of various products and through different entities. Additionally, the 
approach entails the definition of the safety stock as a model variable and a guaranteed 
service level as a model parameter to reduce the shortage in inventory levels. The model 
also considers risk pooling effect, first referred by Eppen (1979), which states that 
significant safety stock cost can be saved by grouping in one central location the demand 
of multiple stocking locations. 

The system studied in this paper and where the proposed approach is tested considers 
several typical real world conditions, such as multi-echelon, multi-warehouse,  
multi-retailer, multi-product, multi-period, limited transportation, limited storage, 
transshipment, lead-time and uncertain demand; so as to find the optimal solution by 
minimising total operation costs under a certain guaranteed service level. 

The remainder of this paper is organised as follows. Section 2 includes a literature 
review on mathematical optimisation approaches to model demand uncertainty and the 
guaranteed service approach to model the multi-echelon distribution and inventory 
planning system. The problem definition is given in Section 3. Section 4 describes the 
distribution and inventory planning mathematical model. The case study is present in 
Section 5. Section 6 presents the results and analysis. Finally the conclusions are drawn 
in Section 7. 

2 Literature review 

Mathematical optimisation approaches applied to the modelling of inventory planning in 
supply chains considering uncertain demand has been researched over the last years, but 
the inventory management is usually considered without detailed inventory planning 
supply chain policies (Inderfurth, 1991; Minner, 2001; Simchi-Levi and Zhao, 2011; Hu 
et al., 2017). O’Driscoll (2017) proposed a two-stage stochastic programming model for a 
competitive oil refinery with stochastic crude and fuel prices. Some research revealed 
that the nature of demand uncertainty was the key differentiator between the various 
supply chain optimisation techniques (Cole and Bradshaw, 2016; Zaman and Saha, 
2018). In the published models, the safety stock is often given as a parameter and it 
usually is treated as a lower bound of the total inventory level (Relvas et al., 2006; Schulz 
et al., 2005; Paterson et al., 2011). This approach cannot optimise the safety stock levels, 
especially when considering demand uncertainty. Thus, it can only provide an 
approximation of the inventory cost and may lead to suboptimal solutions. Jung et al. 
(2004) use a simulation-optimisation framework to determine the optimal safety stocks 
levels of a supply chain with consideration of production capacity. 
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On the other hand, most of the existing literature focuses on single-echelon systems. 
The uncertain demand is addressed by defining the optimal amount of safety stock that 
guarantees certain service level at a given customer. Daskin et al. (2002) introduced a 
model in which supply chains design decisions integrate inventory considerations. It is 
assumed that no limitation in storage capacity is considered and all lead times from 
supplier to distribution centres are the same. Thus, given these assumptions, the inventory 
structure is considered as a single-echelon system. A similar research can be found in 
Shen et al. (2003). Ozsen et al. (2008, 2009) extend the model of Daskin et al. (2002) and 
Shen et al. (2003) to include capacities on the inventory held. Bossert and Willems 
(2007) extend the guaranteed service modelling framework in order to optimise the 
inventory policy in a supply chain. 

You and Grossmann (2010) propose an optimisation model of a multi-echelon supply 
chain design and inventory management under demand uncertainty. The supply chain 
involves only one product, transshipment is not allowed and the model assumes only one 
planning period. 

When dealing with uncertainty in multi-echelon inventory planning two main 
approaches have been explored in the literature: the stochastic service approach and the 
guaranteed service approach (Humair and Willems, 2006). 

The first one uses a stochastic programming model where uncertainty is considered 
directly using a scenario-based approach (Tsiakis et al., 2001; Sahinidis, 2004). Each 
scenario is associated with a certain probability of occurrence and represents one possible 
realisation for the uncertain parameter. In general, two decision stages are considered. In 
the first stage, ‘here and now’ decisions have to be made before the uncertain parameter 
realisation is known. In the second stage, ‘wait and see’ decisions are considered which 
are associated with a recourse action because they can be made after the random 
parameter is known. The main disadvantage of this method is that the model size tends to 
increase rapidly with the number of scenarios considered. In addition, it is not always 
feasible to explicitly enumerate all possible discrete values of the uncertain parameter. 

The second one consists of using the chance constraint approach in which each 
uncertain parameter is treated as a random variable with a given probability distribution, 
which is applied in several cases to model demand uncertainty (Gupta and Maranas, 
2003; You and Grossmann, 2008; Rodriguez and Vecchietti, 2011; Humair and Willems, 
2011). The guaranteed service approach aims at determining the optimal placement and 
amount of safety stocks in a multi-echelon system to ensure the overall target service 
level at the lowest cost (Eruguz et al., 2014). Recently, Hong et al. (2018) study a supply 
chain configuration problem to optimise the service time and option selection decisions to 
minimise the overall cost of the supply chain. Generally, in a supply chain, most of the 
parameters are not deterministic, for this reason is better to consider demand and service 
time as uncertain parameters (Rashid et al., 2018). When applying this approach demand 
uncertainty is considered by specifying a demand level above the mean that must be 
satisfied. One strategy explored by You and Grossmann (2008) is to define the safety 
stock as a decision variable and a guaranteed service level as a parameter in the model to 
reduce the shortage in the inventories. 

In this work, the second approach is chosen as it allows determining a safety stock 
level at supply chain entities in order to guarantee a certain service level and avoids the 
creation of multiple scenarios in a single model, which increases largely the model size. 

The guaranteed service approach has been addressed in several problems in  
multi-echelon stochastic inventory planning and supply chain optimisation (Eruguz et al., 
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2016) but it has not yet been treated on short-term inventory planning problems (Graves 
and Willems, 2000, 2005, 2008; Neale and Willems, 2009). On another hand, integrating 
stochastic inventory planning into the operational planning supply chain is nontrivial, and 
it has not been addressed in the existing literature. 

The concept of guaranteed service approach, which is used in this work is based on 
the works by Graves and Willems (2000) and You and Grossmann (2010, 2011). Such 
concept is here applied to multi-echelon networks where when comparing to  
single-echelon inventory must consider explicitly the presence of lead time, which may 
include material handling time and transportation time. Within single-echelon systems, 
the ones already addressed in the literature, lead time is exogenous and generally can be 
treated as a parameter. However, within multi-echelon systems, lead time of a 
downstream node depends on the upstream node’s inventory level and on the supply 
chain demand uncertainty. Therefore, lead time and internal service level are uncertain 
and simply propagating the single-echelon inventory planning system to multi-echelon 
inventory planning system leads to suboptimal solutions. 

The goal of the present research consists on determining the optimal reordering plan 
for the operating supply chain network, which minimises the overall system’s operation 
cost. The uncertain demand faced by retailers is addressed by defining the optimal safety 
stock that guarantees a given service level at each regional warehouse and each retailer. 
Also, the risk pooling effect is taken into account when determining inventory levels in 
each entity. This research develop an inventory planning policy within a multi-period, 
multi-warehouse, multi-retailer, multi-product distribution supply chain using exact 
optimisation methods. 

It was incorporated in this present paper the uncertainty across the guaranteed service 
model approach. The present mixed integer linear programming (MILP) model considers 
the safety stock level as a variable to be optimised and the service level as a parameter so 
as to reduce shortage occurrence in inventories. A safety stock level at different supply 
chain entities is considered, which guarantees a certain desired service level. This 
approach avoids the creation of multiple scenarios so as to determine optimal expected 
costs, and which contribute to increase drastically the model size. It was solved the  
nonlinearisation of the model. The risk pooling effect is also taken into account in the 
model by relating the probability distribution functions of the demands in the downstream 
nodes to their upstream nodes. 

The research objectives of the paper were presented and an adequate methodology is 
then required. To this end, the guaranteed service approach for multi-period,  
multi-product and multi-echelon supply chain is applied to the problem in next section. 

3 Problem definition 

This section is an extended version that complements a previous one presented in a 
conference by Vicente et al. (2015). A generic supply chain under product demand 
uncertainty is considered in this study, across the guaranteed service model approach. It 
comprises one central warehouse, multiple regional warehouses and multiple retailers as 
depicted in Figure 1, where multiple products are distributed over a given time horizon of 
multiple time periods. 
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Figure 1 Supply chain structure (see online version for colours) 

 

The structure assumes that retailers replenish their inventories from the regional 
warehouses, these replenish their inventories from a central warehouse and customer 
demand is observed at the retailers. Each retailer faces a normally distributed demand 
with mean μ and variance σ2, which is independent of the other retailers’ demands. For 
this supply chain structure, single sourcing is assumed, e.g., each retailer can only be 
served by one regional warehouse as each regional warehouse can only be served by one 
warehouse (central warehouse). Lateral transshipment between regional warehouses and 
between retailers is allowed. The corresponding deterministic order processing times, 
which include the material handling time and transportation time, are given. The 
guaranteed service time of the central warehouse and the guaranteed service time of each 
retailer are known. The safety stock factors for regional warehouses and retailers are also 
given. This corresponds to the standard normal deviate of the maximum amount of 
demand that the node will satisfy from its safety stock. All entities use a variable order 
quantity covering the demand of variable length time periods. All storage and 
transportation capacities are limited and transportation occurs after orders have been 
placed. If the demand in a given time period and at a given retailer is not satisfied, this is 
assumed as a lost sale. Note that this lost sale is basically related with initial inventory 
and the order processing time on the first time periods of planning time horizon, but not 
with the uncertainty related with demand. Lost sales related with uncertainty are not 
considered. In terms of costs, different cost types are included. These are related to the 
ordering process; holding in stock; holding in safety stock (net lead time dependent); 
holding in-transit (for shipping and transshipping operations); transportation (for shipping 
and transshipping operations) and lost sale. Fixed ordering costs occur each time a 
regional warehouse or a retailer places an order and are related to the ordering activity, 
being although independent of the quantity ordered. Holding costs are defined for both 
stock and safety stock and in-transit inventory. The first and second ones (stock and 
safety stock) are defined by unit stored and by time period on each regional warehouse or 
retailer. The third ones are defined by unit of product transported and are dependent of 
the order processing time. Transportation costs are considered by unit of material 
transported between the different stages of the supply chain. Related to these are the 
transshipping costs that represent the lateral transportation costs by unit that occurs 
within each stage between two identical entities. These can occur between regional 
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warehouses or between retailers. Finally, lost sales costs are associated to the demand 
that cannot be satisfied and are defined by unit of product. 

Thus, it is important to effectively represent and optimise the products’ flows through 
the entire supply chain so as to minimise operation costs. These aspects are considered 
into the problem in study and the relevant decision that needs to be modelled is then to 
determine the shipping quantity to be sent from the regional warehouses to each retailer 
in each time period so as to minimise the total system costs while guaranteeing the 
required demand. The problem in study can then be defined as follows: 

3.1 Given 

• The planning time horizon and the defined discrete time scale. 

• The number of regional warehouses and retailers. 

• The number of products. 

• Initial inventory by product in each regional warehouse and retailer. 

• Mean and standard deviation of demand for each product on a time period basis (the 
product demand is normally distributed and occurs in retailers). 

• Storage capacities in each regional warehouse and retailer by time period. 

• Transportation capacities between entities. 

• Order processing time between entities. 

• Ordering costs by order of each product at each regional warehouse and retailer 
(independent of order quantity). 

• Guaranteed service time by product of central warehouse and retailers. 

• Safety stock factor by product and by regional warehouse and retailer. 

• Unitary holding cost by time period by product at each regional warehouse or 
retailer. 

• Unitary holding in transit cost by time period by product (dependent of order 
processing time). 

• Unitary transportation (shipping and transshipping) cost by product. 

• Unitary lost sale cost by product and by each time period. 

3.2 Determine 

• The inventory profiles by product throughout the planning time horizon at each 
regional warehouse and retailer in each time period. 

• Safety stock by product for the planning time horizon in each regional warehouse 
and retailer. 
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• The flows of products across the supply chain for each time period. These involve 
shipping quantities between entities on different supply chain levels and 
transshipment quantities between entities on the same supply chain level. 

• Lost sale quantities by product at each retailer in each time period. 

So as to minimise an objective function that consists on the minimisation of the total 
operational costs for the time horizon considered. Note that the guaranteed service time is 
a variable for the regional warehouses and thus the net lead times are variables to 
determine the safety stock for regional warehouses and retailers. 

This problem is modelled through a mathematical programming model, which will be 
presented in the subsequent section. 

4 Distribution and inventory planning mathematical model 

The supply chain distribution and inventory planning problem presented is formulated as 
a MILP model, as an extended version that complements a previous one presented in a 
conference by Vicente et al. (2015). This model uses a variable order quantity covering 
the demand of variable length time periods. It considers time represented through a 
discretised time scale, where the time periods have equal durations. 

The indices, sets, parameters and variables (non-negative continuous and binary) used 
in the model formulation are defined using the following notation: 

4.1 Indices 

i product 

j, k, l, m entity node 

t time period. 

4.2 Constants 

NP number of products 

NW number of regional warehouses 

NR number of retailers 

NT number of time periods. 

4.3 Sets 

i ∈ P = {1, 2, …, NP} products 

j, k, l, m ∈ I = {0, 1, 2, …, NW, NW + 1, NW + 2, …, NW + NR} supply chain nodes. 

t ∈ T = {1, 2, …, NT} time periods 

W = {1, 2, …, NW}, W ⊂ I warehouses 

R = {1, 2, …, NR}, R ⊂ I retailers 
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Wo = {0}, Wo ⊂ I central warehouse 

DN = {1, 2, …, NW, NW + 1, NW + 2, …, NW + NR}, DN ⊂ I demand nodes 
(regional warehouses 
and retailers) 

SN = {0, 1, 2, …, NW}, SN ⊂ I supply nodes (central 
warehouse and 
regional warehouses). 

Note that W0 ∪ W ∪ R = I. 

4.4 Parameters 

BGM a large positive number 

PDijt product demand of product i at entity j in time period t (note that product 
demand is a random value normally distributed that occurs at the 
retailers), defined as 2( , )ikt iktN μ SDCD  

HOCij unitary holding cost of the product i at entity j 

HTCijk unitary holding in transit cost of the product i from entity j to entity k 
(note that holding in transit is for shipping operations and for 
transshipping operations) 

Itoij initial inventory level of the product i at entity j 

LSCijt unitary lost sale cost of the product i at entity j in time period t 
U

ijNLT  upper bound of net lead time of product i of entity j 

OCij ordering cost of the product i at entity j (note that ordering cost is 
independent of quantity of product i) 

Rikt guaranteed service time of product i of entity k in time period t 
2
ijSDCD  variance of product demand of the product i at entity j (it occurs only at 

the retailers but not at the warehouses) 
U
ijS  upper bound of guaranteed service time of product i of entity j 

SIi0 guaranteed service time of product i of central warehouse 

SSFij safety stock factor of the product i at entity j 

STCjt storage capacity at entity j in time period t 

T1ijk order processing time of product i of entity k served by entity j, including 
material handling time in entity k and transportation time from entity j to 
entity k 

TRACMAXjk maximum transportation capacity from entity j to entity k 

TRACMINjk minimum transportation capacity from entity j to entity k 



   

 

   

   
 

   

   

 

   

   102 J.J. Vicente et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

TRCijk unitary transportation cost of the product i from entity j to entity k (note 
that transportation is for shipping operations and for transshipping 
operations) 

U
ijXV  upper bound of auxiliary variable XVijt of product i of entity j 

μikt mean product demand of the product i at entity k in time period t (it 
occurs only at the retailers but not at the warehouses). 

4.5 Non-negative continuous variables 

FIijt inventory of product i at entity j at the end of the time period t (at the regional 
warehouses and retailers) 

LSijt lost sales of product i at entity j at the end of the time period t (note that lost sales 
only occur at the retailers) 

NLTijt net lead time of product i at entity j in time period t (at the regional warehouses 
and retailers) 

Sijt guaranteed service time of product i of entity j in time period t (note that the 
guaranteed service time is only a variable for the regional warehouses) 

SQijkt shipping quantity of product i from entity j to entity k during time period t 
(among all entities of the supply chain) 

SSij safety stock level of the product i at entity j (at the regional warehouses and 
retailers). 

4.6 Non-negative auxiliary continuous variables 

Xijkt auxiliary variable for linearisation of the bilinear term NLWijt × BV2ijkt 

XVijt auxiliary variable for reformulation of the term 2
ijktiktk R

SDCD X
∈

×  

Yijkt auxiliary variable for linearisation of the bilinear term Sijt × BV2ijkt. 

4.7 Binary variables 

BV1ijt = 1 if an order of product i is placed by entity j in time period t, 0 otherwise 

BV2ijkt = 1 if there is a shipping quantity of product i from entity j to entity k in time 
period t, 0 otherwise. 

Our aim is then to minimise the expected value of the total cost. This leads to the 
objective function (1). 

( )( )

( )( )

Minimise total expected cost

1

1

ij ijt ij ijt ij ijt ijt
i P j I t T

ijk jk ijk ijkt
i P j I k I t T

OC BV HOC FI SS LSC LS

HTC T TRC SQ
∈ ∈ ∈

∈ ∈ ∈ ∈

= × + × + + ×

+ × + ×





 (1) 
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The first term of the objective function (1) represents the ordering costs, holding costs (in 
stock and in safety stock) and lost sale costs. Note that ordering costs are product quantity 
independent. The holding in transit costs and the transportation costs are the second term. 
Note that holding in transit costs are order processing time dependent. 

4.8 Constraints 

The model developed consists of different types of constraints. These are grouped into: 
inventory; shipping; link flow; single sourcing; storage capacities; transportation 
capacities; net lead time; safety stock policy and non-negativity and binary conditions. 

Note that we use the deterministic order processing time on the determination of the 
inventory. However, for compute the safety stock we must use the net lead time to deal 
with the uncertainty. Constraints will be presented grouped by type. 

4.9 Inventory constraints 

Inventory constraints have to be defined for both warehouses and retailers, taking into 
account all inputs and outputs at each time period. 

4.9.1 Regional warehouses 
The total incoming quantity at each regional warehouse j is equal to the shipping quantity 
from the central warehouse, plus the sum of the transshipping quantities from the other 
regional warehouses l, at time period t, considering the order processing time. The total 
outgoing quantity at each regional warehouse j is equal to the sum of shipping quantities 
to the retailers k plus the sum of the transshipping quantities to the other regional 
warehouses l, at time period t. For t = 1 the inventory of product i at the end of this time 
period t at regional warehouses j is given by constraints (2), which takes into account the 
initial inventory level of product i at each regional warehouse j (Itoij). 

01 1,0, , 1 1 0

1 , , , 1 1 0 , , , 1

j oj

lj lj

ij ij ijki j t T T
k R

ijl i l j t T T
l W l j l W l j

FI Ito SQ SQ

SQ SQ i P j W t

− =
∈

− =
∈ ∧ ≠ ∈ ∧ ≠

= + −

− + ∈ ∈ =


 

 (2) 

For the remaining time periods the inventory at the end of these time periods at regional 
warehouses is given by constraint (3). 

0, , 1 ,0, , 1 1

, , , 1 1 , , , \{1}

j oj

lj lj

ijt i j t ijkti j t T T t
k R

ijlt i l j t T T t
l W l j l W l j

FI FI SQ SQ

SQ SQ i P j W t T

− − <
∈

− <
∈ ∧ ≠ ∈ ∧ ≠

= + −

− + ∈ ∈ ∈


 

 (3) 

4.9.2 Retailers 
At each retailer k, the incoming quantity is equal to the sum of the shipping quantity from 
the regional warehouses j, plus the sum of the transshipment quantities from the others 
retailers m, at time period t, considering the order processing time. At each retailer k, the 
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outgoing quantity is equal to the product demand minus the lost sale of that retailer k plus 
the sum of the transshipping quantities to the others retailers m, at time period t. For t = 1 
the inventory of product i at the end of this time period t at the retailers k is given by 
constraint (4), which accounts for the initial inventory level of product i at retailer k (Itoik) 
whereas constraint (5) is applicable for the remaining time periods. 

( )1 1 1, , , 1 1 0

1 , , , 1 1 0 , , , 1

jk jk

mk mk

ik ik ik iki j k t T T
j W

ikm i m k t T T
m R m k m R m k

FI Ito SQ PD LS

SQ SQ i P k R t

− =
∈

− =
∈ ∧ ≠ ∈ ∧ ≠

= + − −

− + ∈ ∈ =



 
 (4) 

( ), , 1 , , , 1 1

, , , 1 1 , , , \{1}

jk jk

mk mk

ikt i k t ikt ikti j k t T T t
j W

ikmt i m k t T T t
m R m k m R m k

FI FI SQ PD LS

SQ SQ i P k R t T

− − <
∈

− <
∈ ∧ ≠ ∈ ∧ ≠

= + − −

− + ∈ ∈ ∈



 
 (5) 

4.10 Shipping constraints 

Since transportation occurs after an order has been placed from a destination to its source, 
it is assumed that the fixed ordering cost is always incurred when the transportation 
occurs. Hence, if the transportation amount is not zero the binary variable BV1ijt equals 1, 
as implied in constraint (6). The left hand side of this constraint represents the quantity 
received by a regional warehouse j, which can come from the central warehouse (first 
term) or any other regional warehouse l (second term). 

0 1 , , ,i jt iljt ijt
l W l j

SQ SQ BGM BV i P j W t T
∈ ∧ ≠

+ ≤ ≤ ∈ ∈ ∈  (6) 

Equivalent constraints are defined for retailers, constraint (7). The BGM value will have 
a value that is valid as an upper bound of any quantity that can be ordered by a regional 
warehouse or retailer. 

1 , , ,ijkt imkt ikt
j W m R m k

SQ SQ BGM BV i P k R t T
∈ ∈ ∧ ≠

+ ≤ × ∈ ∈ ∈   (7) 

4.11 Link flow 

When BV2ijkt equals to 1, it represents the link flow for product i between entity j and 
entity k at time period t, otherwise the entity j is not linked to entity k. Thus, if there is not 
a link flow between two entities, the binary variable BV2ijkt equals 0, then SQijkt also 
equals 0, as implied in constraint (8). The left hand side of this constraint represents the 
shipping quantity of product i between entity j and entity k in each time period t. 

2 , , , , ,ijkt ijktSQ BGM BV i P j I k I j k t T≤ × ∈ ∈ ∈ ≠ ∈  (8) 
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4.12 Single sourcing 

Each regional warehouse is served by the central warehouse [constraint (9)] and each 
retailer is only served, by one regional warehouse [constraint (10)], by product i and by 
time period t. 

02 1, , ,i jtBV i P j W t T= ∈ ∈ ∈  (9) 

2 1, , ,ijkt
j W

BV i P k R t T
∈

= ∈ ∈ ∈  (10) 

4.13 Storage capacities 

The total inventory stored at any node, given by the sum of the inventory level of each 
product i, must respect the storage capacity in each demand node j at any time period t 
which is enforced by constraint (11). The capacity is shared among products. 

, ,ijt jt
i P

FI STC j DN t T
∈

≤ ∈ ∈  (11) 

4.14 Transportation capacities 

At any time period t, the sum of the shipping quantity of each product i must respect the 
transportation lower and maximum limits between each two nodes j and k, as stated in 
constraints (12) and (13). 

, , , ,ijkt jk
i P

SQ TRACMAX j DN k DN j k t T
∈

≤ ∈ ∈ ≠ ∈  (12) 

, , , ,jk ijkt
i P

TRACMIN SQ j DN k DN j k t T
∈

≤ ∈ ∈ ≠ ∈  (13) 

4.15 Net lead time 

The next constraints (14) and (15) are used to define the net lead time of the regional 
warehouses and retailers, following the concept and approach used on the works by You 
and Grossmann (2010, 2011). The replenishment lead time of warehouses should be 
equal to the guaranteed service time SIi0 of product i of central warehouse, which serves 
regional warehouse j, plus the order processing time T1i0j. Note that the guaranteed 
service time SIi0 of product i of central warehouse is treated as parameter and represents 
the worst case supply uncertainty delay of central warehouse. When BV2i0jt equals to 1, it 
represents the link flow for product i between central warehouse and regional warehouse 
j at time period t, otherwise the regional warehouse j is not linked to central warehouse. 
Thus, the net lead time of product i of regional warehouse j at time period t (NLTijt) 
should be greater than its replenishment lead time minus its guaranteed service time to its 
successor retailers, Sijt, which is a variable. 

Net lead time of regional warehouses for shipment operation is given by  
constraint (14). 
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( )0 0 01 2 , , ,ijt i i j i jt ijtNLT SI T BV S i P j W t T≥ + × − ∈ ∈ ∈  (14) 

Similarly, the net lead time of product i of retailer k at time period t (NLTikt) is greater 
than its replenishment lead time minus its maximum guaranteed service time, Rikt, which 
is given by the next nonlinear inequality (15). Note that we consider Rikt as a parameter. 

Net lead time of retailers for shipment operation is given by constraint (15). 

( )1 2 , , , ,ikt ijt ijk ijkt iktNLT S T BV R i P j W k R t T≥ + × − ∈ ∈ ∈ ∈  (15) 

There is a nonlinearity on constraint (15) – term Sijt × BV2ijkt. In order to solve the 
nonlinearity on the right end-side of constraint (15), we define the auxiliary variable Yijkt 
(non-negative continuous variable) that represents the guaranteed service time of regional 
warehouse j to its successive retailers k by product i at each time period t. 

Thus, the nonlinear term is replaced by the non-negative continuous variable Yijkt in 
constraint (15). The value of this auxiliary variable is given by equation (16). 

2 , , , ,ijkt ijt ijktY S BV i P j W k R t T= × ∈ ∈ ∈ ∈  (16) 

Using the definition of variable Yijkt it is possible to impose the logical conditions (17) 
and (18). If the binary variable BV2ijkt is 0, then the auxiliary variable Yijkt is also 0 
[condition (17)]. If, on the other hand, the binary variable BV2ijkt is equal to 1, we want to 
ensure that the new auxiliary variable takes the value of the guaranteed service time in 
the current time interval (Sijt), as expressed in condition (18). 

2 0 0, , , ,ijkt ijktBV Y i P j W k R t T=  = ∈ ∈ ∈ ∈  (17) 

2 1 , , , ,ijkt ijkt ijtBV Y S i P j W k R t T=  = ∈ ∈ ∈ ∈  (18) 

To translate these logical conditions into the MILP model, we need to add the extra 
constraints (19)–(22). 

2 0, , , ,U
ijkt ijktijY S BV i P j W k R t T− × ≤ ∈ ∈ ∈ ∈  (19) 

0, , , ,ijt ijktS Y i P j W k R t T− + ≤ ∈ ∈ ∈ ∈  (20) 

2 , , , ,U U
ijt ijkt ijktij ijS Y S BV S i P j W k R t T− + × ≤ ∈ ∈ ∈ ∈  (21) 

0, , , ,ijktY i P j W k R t T≥ ∈ ∈ ∈ ∈  (22) 

where U
ijS  is the upper bound for Sijt (and hence also for Yijkt). 

Constraints (19) and (20) ensure that the auxiliary variable takes the value of 0 if the 
binary variable is equal to 0 [constraint (19)]. If this variable is equal to 1, then the 
auxiliary variable takes, at most, the value of Sijt [constraint (20)]. In order to ensure that 
in this situation the auxiliary variable takes exactly the value of Sijt, we add  
constraint (21). Note that this equation only becomes active whenever BV2ijkt = 1. Thus, 
Constraint (15) is replaced by constraints (19)–(23). 

1 2 , , , ,ikt ijkt ijk ijkt iktNLT Y T BV R i P j W k R t T≥ + × − ∈ ∈ ∈ ∈  (23) 

Note that, for the net lead time constraints we only use the shipping operations (links 
between entities on different echelons of the supply chain). Because of the single 
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sourcing assumption, we do not take into account the transshipping operations (links 
between entities on the same echelon of the supply chain). 

4.16 Safety stock policy 

The product demand at retailer k ∈ R follows a given normal distribution with mean μikt 
and variance 2 .iktSDCD  Because of the risk pooling effect proposed by Eppen (1979), the 
product demand over the net lead time NLTijt at regional warehouse j ∈ W is also 
normally distributed with a mean of 2ijt ikt ijktk R

NLT μ BV
∈

× ×  and a variance 
2 2 ,ijt ijktiktk R

NLT SDCD BV
∈

× ×  obtained considered the demand of all retailers 

assigned to this regional warehouse. Thus, the safety stock required in the regional 
warehouse j ∈ W with a safety stock factor SSFij is given by constraint (24). 

2 2 , , ,ij ij ijkt ijtikt
k R

SS SSF SDCD BV NLT i P j W t T
∈

≥ × × × ∈ ∈ ∈  (24) 

There are two nonlinearities on the right end-side of constraint (24): a bilinear term and a 
square root term. First we solve the nonlinearity related to the bilinear term and later on 
the square root term. In order to solve the bilinear term we define the auxiliary variable 
Xijkt (non-negative continuous variable) that represents the net lead time of regional 
warehouse j to its successive retailers k by product i at each time period t. 

Thus, the nonlinear term NLTijt × BV2ijkt is replaced by the non-negative continuous 
variable Xijkt in constraint (24). The value of this auxiliary variable is given by  
equation (25). 

2 , , , ,ijkt ijt ijktX NLT BV i P j W k R t T= × ∈ ∈ ∈ ∈  (25) 

Using a similar approach for the previous nonlinearity for the net lead time, we need to 
add the extra constraints (26)–(29). 

2 0, , , ,U
ijkt ijktijX NLT BV i P j W k R t T− × ≤ ∈ ∈ ∈ ∈  (26) 

0, , , ,ij ijktNLT X i P j W k R t T− + ≤ ∈ ∈ ∈ ∈  (27) 

2 , , , ,U U
ijt ijkt ijktij ijNLT X NLT BV NLT i P j W k R t T− + × ≤ ∈ ∈ ∈ ∈  (28) 

0, , , ,ijktX i P j W k R t T≥ ∈ ∈ ∈ ∈  (29) 

where U
ijNLT  is the upper bound for NLTijt (and hence also for Xijkt). 

Thus, constraint (24) is replaced by constraints (26)–(30) 

2 , , ,ij ij ijktikt
k R

SS SSF SDCD X i P j W t T
∈

≥ × × ∈ ∈ ∈  (30) 

To further reduce the nonlinear terms in the constraint (30), the term 
2

ijktiktk R
SDCD X

∈
×  is replaced by a new non-negative continuous variable XVijt, in 

constraint (31). 
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2 , , ,ijt ijktikt
k R

XV SDCD X i P j W t T
∈

= × ∈ ∈ ∈  (31) 

0, , ,ijtXV i P j W t T≥ ∈ ∈ ∈  (32) 

So, constraint (30) now becomes as constraint (33). 

, , ,ij ij ijtSS SSF XV i P j W t T≥ × ∈ ∈ ∈  (33) 

Similarly, the product demand over the net lead time NLTikt of retailer k ∈ R is normally 
distributed with a mean of NLTijt × μikt and a variance of NLTijt × 2 .iktSDCD  Thus, the 
safety stock required in the retailer k ∈ R with a safety stock factor SSFik is given by 
constraint (34). 

, , ,ik ik ikt iktSS SSF SDCD NLT i P k R t T≥ × × ∈ ∈ ∈  (34) 

In order to solve the nonlinearity on the right hand side of constraints (33) and (34), we 
use a similar approach as introduced by Falk and Soland (1969) for a univariate square 
root term ,x  in which the variable x has lower bound 0 and upper bound xU, its secant 

U

x
x

 represents the convex envelope and provides a valid lower bound of the square 

root term. As our model is a minimisation problem, replacing the univariate square root 
terms with their secants in constraints (33) and (34) will lead to the following linear 
constraints (35) and (36). 

, , ,ijt
ij ij

U
ij

XV
SS SSF i P j W t T

XV
≥ × ∈ ∈ ∈  (35) 

, , ,ikt
ik ik ikt

U
ik

NLTSS SSF SDCD i P k R t T
NLT

≥ × × ∈ ∈ ∈  (36) 

4.17 Non-negativity and binary conditions 

As defined above, the model uses both non-negative continuous variables (37)–(39) and 
binary variables (40)–(41). 

, , 0, , , ,ijkt ijt ijtSQ FI LS i P j I k I t T≥ ∈ ∈ ∈ ∈  (37) 

0, , ,ijtS i P j W t T≥ ∈ ∈ ∈  (38) 

, 0, , ,ijt ijNLT SS i P j DN t T≥ ∈ ∈ ∈  (39) 

1 {0, 1}, , ,ijtBV i P j DN t T∈ ∈ ∈ ∈  (40) 

2 {0, 1}, , , ,ijktBV i P j I k I t T∈ ∈ ∈ ∈ ∈  (41) 

The above model formed by constraints (2)–(14), (19)–(23), (26)–(29), (31), (32), and 
(35)–(41) using the objective function (1) describes the proposed multi-echelon 
distribution and inventory planning model under demand uncertainty. 
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5 Case study 

In this section we present a case study based on a retail company. Due to confidentiality 
reasons the data provided has been changed but still describes the real operation. 

The model was implemented in GAMS 24.2 modelling language and solved using 
CPLEX 12.3 solver in an Intel Core i7 CPU 3.40 GHz and 8GB RAM. The stopping 
criteria were either a computational time limit of 3,600 seconds or the determination of 
the optimal solution. 
Table 1 General case study parameters  

Parameters Values (€) 

Ordering cost (OCij, j ∈ DN, ∀i) 20 

Holding cost (HOCij, j ∈ W, ∀i) 0.2 

Holding cost (HOCik, k ∈ R, ∀i) 0.6 

Holding in transit cost (HTCi0j, j ∈ W, ∀i) 0.3 

Holding in transit cost (HTCijl, j ∈ W, l ∈ W, j ≠ l, ∀i) 0.3 

Holding in transit cost (HTCijk, j ∈ W, k ∈ R, ∀i) 0.9 

Holding in transit cost (HTCikm, k ∈ R, m ∈ R, k ≠ m, ∀i) 0.9 

Lost-sales cost (LSCikt, k ∈ R, ∀it) 25 

Table 2 Unitary products transportation costs (euro) 

 Warehouse 
1 

Warehouse 
2 

Retailer 
1 

Retailer 
2 

Retailer 
3 

Retailer 
4 

TRC Warehouse 0 0.55 0.22 0 0 0 0 
Warehouse 1 0 0.7 0.22 0.2 0.32 0.38 
Warehouse 2 0.7 0 0.68 0.52 0.34 0.1 
Retailer 1 0 0 0 0.2 0.8 1.3 
Retailer 2 0 0 0.2 0 0.3 1.0 
Retailer 3 0 0 0.8 0.3 0 0.36 
Retailer 4 0 0 1.3 1.0 0.36 0 

Table 3 Initial inventory level (Ito) on warehouses and retailers (unit) 

 Warehouse 
1 

Warehouse 
2 

Retailer 
1 

Retailer 
2 

Retailer 
3 

Retailer 
4 

Ito Product 1 45 30 24 22 20 18 
Product 2 15 11 16 14 12 10 
Product 3 11 9 8 4 6 9 

Table 4 Product demand parameters (PD) data for product 1/product 2/product 3 (unit) 

 Mean demand Standard deviation 
PD Retailer 1 12/8/6 4/4/4 

Retailer 2 11/7/9 4/4/4 
Retailer 3 10/6/7 3/3/3 
Retailer 4 9/5/6 3/3/3 
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Table 5 Order processing time (T1) of all products (time period) 

 Warehouse 
1 

Warehouse 
2 

Retailer 
1 

Retailer 
2 

Retailer 
3 

Retailer 
4 

T1 Warehouse 0 2 1 0 0 0 0 
Warehouse 1 0 1 1 1 1 1 
Warehouse 2 1 0 2 2 1 0 
Retailer 1 0 0 0 1 1 1 
Retailer 2 0 0 1 0 1 1 
Retailer 3 0 0 1 1 0 1 
Retailer 4 0 0 1 1 1 0 

The supply chain considered involves one central warehouse, two regional warehouses 
and four retailers. Three main types of product families are considered. The safety stock 
factors (SSFij) for regional warehouses and retailers were considered the same and equal 
to 1.96, which corresponds to 97.5% service level considering that the product demand is 
normally distributed. This service level is common in the industry sector of the company 
in study. The guaranteed service time of the central warehouse (SIi0) is 1 time period. As 
the last echelon, representing the retailers, is an exogenous input (which can be treated as 
a parameter), the guaranteed service time of retailers (Rikt) are set to 0 in order to have an 
immediate response. The maximum storage capacity for warehouses is of 5,000 units and 
for retailers is of 500 units. The transportation quantity limit between entities is 
considered between 0 and 500 units. A seven time period planning horizon was assumed 
to test our model (modelled in Section 4), which uses a variable order quantity covering 
the demand of variable length time periods. Tables 1 to 5 present the parameters’ values 
considered for this case study, including general model parameters, transportation costs, 
initial inventory levels, product demand and order processing time. Customer demands at 
retailers are random values of the normal distribution (Table 4), generated in GAMS 24.2 
modelling language. 

6 Results and analysis 

The retail company wants to compare two options for order management in the supply 
chain: 

• Option A: Regional warehouse order and retailer order fulfilment flows per product 
can be formed by several flows of that product from any entity of the supply chain 
(e.g., on a per product perspective, each retailer could be served by any of the 
regional warehouses (a single combination) and by all others retailers). 

• Option B: Regional warehouse order and retailer order fulfilment flows by product 
are formed by only one flow of that product from only one entity in a different 
echelon of the supply chain (e.g., on a per product perspective, each retailer is only 
served by one regional warehouse and transshipment is not allowed). 

As results, Table 6 provides the total costs and costs per nature for both options, for the 
complete planning horizon of seven-time periods considered for this case study. The most 
significant costs are the lost sale costs for option B. This is due to the fact that 
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transshipment is not allowed and the initial inventory is not sufficient to accommodate 
the demand in the first time periods and the order processing times on the first periods of 
time. Regarding to total costs, the option B (transshipment is not allowed) presents a 
higher value, it is at least 23% higher that option A (transshipment is allowed). Also, in 
option B note that, for transshipping operation, the costs are zero as transshipping is not 
allowed. In case A, the highest cost is related to ordering. 
Table 6 Total costs and by nature of product 1/product 2/product 3 for seven-time period 

planning horizon (euro) 

Order management 
Option A  Option B 

Value Percentage  Value Percentage 
Ordering 600.00 27.55  520.00 19.40 
Holding in stock 330.00 15.16  361.60 13.50 
Holding in safety stock 229.99 10.56  229.99 8.58 
Holding in transit shipment 446.70 20.52  469.80 17.53 
Holding in transit transshipment 49.50 2.27  0 0 
Transportation shipment 221.08 10.15  223.62 8.34 
Transportation transshipment 50.28 2.31  0 0 
Lost sale 250.00 11.48  875.00 32.65 
Total 2,177.55 100  2,680.01 100 

The inventory profiles by product at the end of each time period at regional warehouses 
and retailers for option A and option B are respectively shown in Figures 2 and 3. As we 
can see, for both options of order management by product and for all planning time 
horizon, the retailers echelon (Figure 3) hold more inventory (aggregated by echelon and 
by all time periods) than the regional warehouses echelon (Figure 2). 

Figure 2 Inventory profile at regional warehouses by product and by time period of planning 
horizon (see online version for colours) 
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The safety stocks by product required in regional warehouses and retailers throughout the 
planning time horizon for both options are showed in Table 7. This safety stock is the 
same for all time periods of the planning time horizon and for both options of order 
management. This is due to the fact that safety stock is independent of order management 
option being only dependent of the safety stock factor, standard deviation of product 
demand and the net lead time. This is materialised by incurring in the same holding costs 
related with safety stock for both order management options (Table 6). 
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Figure 3 Inventory profile at retailers by product and by time period of planning horizon  
(see online version for colours) 
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Table 7 Safety stock by product at regional warehouses and retailers throughout the planning 
time horizon for both options (unit) 

Product P1 P2 P3 
Regional warehouse 1 15 15 15 
Regional warehouse 2 7 7 7 
Retailer 1 4 4 4 
Retailer 2 4 4 4 
Retailer 3 3 3 3 
Retailer 4 0 0 0 

Table 8 Net led time by product at regional warehouses and retailers throughout the planning 
time horizon for both options (time period) 

Product P1 P2 P3 
Regional warehouse 1 3 3 3 
Regional warehouse 2 2 2 2 
Retailer 1 1 1 1 
Retailer 2 1 1 1 
Retailer 3 1 1 1 
Retailer 4 0 0 0 

For all products, the guaranteed service time of regional warehouses is zero and the net 
lead time by product of regional warehouses and retailers are shown in Table 8, 
throughout the planning time horizon for both options. They are determined by the model 
and they are constant for all time periods. The regional warehouses have a higher net lead 
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time and hold the most level of safety stock to ensure their guaranteed service time are 
zero, so they work as a ‘push’ echelon. 

Lost sales for both options at retailers are shown in Table 9. In option A, there are not 
lost sales for product 1 and product 2. For option B, product 1 is the only one that has not 
lost sales. Note that retailer 4 does not present any lost sales for both options. 

Service levels for both options at retailers are shown in Table 10. As we can see, 
option A presents a better service level. Retailer 4 has a 100% of service level for all 
products in both options. 

These lost sales and related service levels occur because of the insufficient initial 
inventory and the order processing time on the first time periods of the planning horizon. 
When transshipment operation is allowed (only on option A), it is also possible to have 
less lost sales on the first periods of the time horizon, given the higher flexibility of the 
network to react to demand widening the number or sourcing nodes. 
Table 9 Lost sales at retailers by product aggregate on seven-time period planning horizon 

(unit) 

Order management Option A  Option B 
Product P1 P2 P3  P1 P2 P3 
Retailer 1 0 0 6  0 9 10 
Retailer 2 0 0 4  0 10 5 
Retailer 3 0 0 0  0 0 1 
Retailer 4 0 0 0  0 0 0 

Table 10 Service level at retailers by product aggregated for the seven-time period planning 
horizon (percentage) 

Order management Option A  Option B 
Product P1 P2 P3  P1 P2 P3 
Retailer 1 100 100 83.8  100 81.6 73.0 
Retailer 2 100 100 94.1  100 83.3 92.6 
Retailer 3 100 100 100  100 100 97.7 
Retailer 4 100 100 100  100 100 100 

Table 11 Computational statistics of product1/product2/product3 for seven-time period 
planning horizon 

Order management Option A Option B 
MIP solution 2,177.55 2,680.01 
Best possible 2,177.55 2,680.01 
Relative gap 0% 0% 
Single equations 2,437 2,731 
Single variables 1,828 1,828 
Discrete variables 357 357 
Computational time used (s) 26.27 14.88 
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After analysing the obtained results it can be said that the company should decide by 
operating under option A. This option presents lower total costs and a higher service 
level. Although option B presents zero holding in transit and transportation transshipment 
costs, however it presents high lost sale costs. 

Table 11 shows the computational statistics for option A and option B. We obtain 
both optimal solutions (0% of relative gap), in less than 30 seconds. 

7 Conclusions 

This paper addresses an inventory planning model to determine the optimal inventory and 
distribution plan over a multi-echelon and multi-period planning time horizon under 
product demand uncertainty to support the decision making process in short-term process 
planning. The guaranteed service approach policy is selected to deal with uncertainty and 
is used to model the safety stock inventory system of a distribution company. The risk 
pooling effect is also taken into account in the model by relating the probability 
distribution functions of the demands in the downstream nodes to their upstream nodes. 

The proposed MILP model considers the safety stock level as a variable to be 
optimised and the service level as a parameter so as to reduce shortage occurrence in 
inventories. 

The theoretical implications are as follows. In the proposed uncertainty management 
policy, safety stock level at different supply chain entities is considered, which 
guarantees a certain desired service level. This approach avoids the creation of multiple 
scenarios so as to determine optimal expected costs, and which contribute to increase 
drastically the model size. 

As the unique contributions of the present paper enhances the usage of the guaranteed 
service level approach in a supply chain inventory planning problem treated at an 
operational and multi-period setting, which was lacking in the related literature. 

As managerial implications, a case study is explored and the inventories, safety 
stocks, lost sales and service levels obtained by the model optimisation under uncertain 
product demands for two options of order management area analysed. The difference 
between options is related to the transshipment operation occurrence. Order management 
with transshipment operation resulted in lower total costs and a higher service level. 
There are some limitations of the research, namely on the validation of the proposed 
model with more complex distribution supply chain structures. 

Future research directions of the present work could be considered. Firstly the 
guaranteed service time of central warehouse and retailers could be studied as variables. 
Also the study of the transshipment operation, in terms of net lead time and its influence 
on the safety stocks, among all entities in the supply chain should be analysed. Finally, 
lost sales related with the demand uncertainty could be also explored. 
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