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Abstract: This paper presents a constraint programming (CP) approach for
solving the team orienteering problem with time windows and mandatory
visits (TOPTW-MV), which has many real-world implementations, such as
tourist tour planning, routing technicians, and disaster relief routing. In the
TOPTW-MV, a set of locations is given; some locations must be visited,
while others are optional. For each location, the profit, service time, and
service time window information are known. A fleet of homogeneous vehicles
is available for visiting locations and collecting the profits. The objective
in solving this problem is to create a set of vehicle routes that begin and
end at a depot, visit mandatory locations exactly once and optional locations
at most once, while observing other restrictions such as time windows
and sequence-based travel times. The CP-based approach finds 99 of the
best-known solutions and explores 64 new best-known solutions for the
benchmark instances.
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1 Introduction

The team orienteering problem with time windows and mandatory visits (TOPTW-MV)
is a recently proposed version of the orienteering problem (OP), which originated from
a sports game in which multiple players have to start at a control point, collect the
rewards by visiting checkpoints and then return to the control point in a predetermined
amount of time (Campos et al., 2014; Lin and Vincent, 2017; Tsiligirides, 1984). Players
may or may not be able to visit all the nodes due to the time restriction; however,
whoever collects the most rewards wins the game. Example of applications based on the
OP and its extensions involve tourist routing problems (Souffriau et al., 2008; Souffriau
and Vansteenwegen, 2010; Sylejmani et al., 2012), disaster relief logistics (Rath and
Gutjahr, 2014; Kirac, 2016; Kirac and Milburn, 2018), pickup and delivery services
(Gutiérrez-Jarpa et al., 2009; Ramirez-Marquez et al., 2010), and sales representative
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route planning (Tricoire et al., 2010). In this study, we will be using network terms;
checkpoints and control points will be referred to as locations/nodes or visits, and
depots, respectively.

In the TOPTW-MV, sets of mandatory and optional locations are given, each location
with a profit, service time, and time window. A fixed maximum number of vehicle
routes can be constructed, each with a given constant cost, to collect profit from these
locations. Each optional location can be visited at most once, while all mandatory
locations should be visited once within a given time window. Each vehicle route must
start from and end at a depot. The time required to travel between locations is known.
The objective of the TOPTW-MV is to find a set of routes that maximises the total
profit.

The TOPTW-MV was first introduced by Lin and Vincent (2017). They constructed
a mixed-integer linear programming (MIP) model and developed a multi-start simulated
annealing (MSA) heuristic for solving the problem; the MSA heuristic has been updated
from the one used for the TOP in Lin (2013). They also proposed 72 small problem
instances to compare the MIP model and the MSA heuristic, and 168 large problem
instances to compare the performance on the TOPTW of the MSA heuristic, the
simulated annealing (SA) algorithm, and the artificial ant colony (ABC) algorithm
proposed by Cura (2014). The MSA algorithm found better solutions than the ABC
algorithm for 13 of the 72 small problem instances, while the remaining solutions were
the same. For the large problem instances, the MSA heuristic arrived at 94 of the
best-known solutions out of the 168 instances, while the SA and ABC algorithms arrived
at 79 and 67 of the best-known solutions, respectively.

In this paper, we propose a new exact solution technique for the TOPTW-MV. We
formulate the TOPTW-MV using a constraint programming (CP) model and refer to this
model as the CP-TOPTW-MV model. CP has been shown to be an efficient solution
technique for numerous combinatorial optimisation problems, such as parallel machine
scheduling (Gökgür et al., 2018; Hooker, 2007; Jain and Grossmann, 2001; Nachtmann
et al., 2014; Gedik et al., 2018), tournament organisation (Trick and Yildiz, 2011),
kinematics problems (Pedamallu and Ozdamar, 2010), food processing and scheduling
(Wari and Zhu, 2019), staff scheduling and rostering (Topaloglu and Ozkarahan, 2011;
He and Qu, 2012), vehicle routing and traveling salesman problems (TSP) (Pesant et al.,
1998, 1999; Quoc and Anh, 2010; Edirisinghe et al., 2010), and vehicle routing problem
with time windows (VRPTW) (Shaw, 1998; De Backer et al., 2000; Rousseau et al.,
2002, 2004; Guimarans et al., 2013). CP has also been successfully applied for solving
the TOPTW (Gedik et al., 2017) and the multi-objective TOPTW (Hu et al., 2018).

The contributions of this paper are threefold. First, to the best of our knowledge, it
introduces the first CP-based model for solving the TOPTW-MV. Due to the advantages
of CP for expressing complex relationships, very difficult constraints such as mandatory
and optional node visits, subtour elimination, and time windows are represented very
efficiently. Compared with MILP formulations of the TOPTW-MV in Lin and Vincent
(2017), the CP-TOPTW-MV model does not require a large number of decision variables
and constraints. Thus, we are able to run benchmark instances without experiencing any
memory problems. Also, unlike the sophisticated heuristic algorithms in the literature,
the proposed CP model does not require extensive parameter tuning, as those methods
do so. Second, the CP-TOPTW-MV model provides a promising base for other solution
techniques for OP variants and related routing problems, potentially serving as a basis
for new methodological developments. Third, we conducted computational experiments
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on the TOPTW-MV test instances in the literature and found that the CP-TOPTW-MV
model outperforms current approaches in terms of solution quality. On average, it
performs quite efficiently and obtains numerous best-known solutions. We found 99
of the best-known solutions out of 168 benchmark instances, and improved upon the
best-known solution for 64 benchmark instances, finding a solution with an objective
value strictly greater than the incumbent one. Furthermore, the proposed model proves
that the best-known solution values for 15 benchmark test instances are indeed optimal.

The remainder of this paper is organised as follows. Section 2 reviews the latest
literature regarding OPs. Section 3 formally presents the problem being addressed.
Section 4 provides the CP formulation for the TOPTW-MV. Section 5 provides results
for the CP-TOPTW-MV model and compares it to algorithms in the current literature.
Finally, conclusions and future research directions are discussed in Section 6.

2 Literature review

The OP can be formulated as a special case of the well-known TSP (Matai et al.,
2010; Jafari, 2019; Alipour and Razavi, 2019), but it differs from the OP, since the
objective function minimises the traveling costs instead of maximising the total score
collected. The team orienteering problem (TOP) is an extension of the OP; it presents
the opportunity to collect profit by visiting the nodes with multiple vehicles and has also
attracted researchers (Keshtkaran et al., 2016). The TOP is also a generalisation of the
vehicle routing problem (VRP) where only a subset of nodes can be visited by a limited
number of vehicles within a time budget (Sharma et al., 2018; Samadi-Dana et al.,
2017). The orienteering problem with time windows (OPTW) and the team orienteering
problem with time windows (TOPTW) extend the OP and TOP by incorporating time
window constraints (Qian and Andrew, 2014). In the OPTW, every visit has to be
performed within a given time frame (Duque et al., 2015; Kantor and Rosenwein, 1992).
The TOPTW is a version of the OPTW, where profit can be collected with multiple
vehicles to achieve the maximum gain (Cura, 2014; Gedik et al., 2017; Vansteenwegen
et al., 2009). A comprehensive review of applications and solution techniques for the
OP and its extensions are provided in Vansteenwegen et al. (2011) and Gunawan et al.
(2016).

To provide the context for the problem, the latest literature on the OP and its variants
is reviewed here. Gunawan et al. (2017) proposed two algorithms to solve the TOPTW,
iterated local search (ILS) and a hybridisation of simulated annealing and iterated
local search (SAILS). The authors demonstrated that ILS and SAILS improved the
quality of the solutions and discovered 50 new best-known solutions. Park et al. (2017)
presented a branch-and-price (B&P) algorithm for the capacitated team orienteering
problem with time windows (CTOPTW). The authors show that the B&P scheme,
which was originally developed for the TOP, can be applied to the CTOPTW. Verbeeck
et al. (2017) introduced a time-dependent orienteering problem with time windows
(TD-OPTW), where travel time is time-dependent and where each node has a time
window and a service time. The authors proposed a mixed-integer problem formulation
and an ant colony algorithm for the TD-OPTW. Vincent et al. (2017) proposed a new
extension of the TOPTW called the multi-modal team orienteering problem with time
windows (MM-TOPTW). The authors developed a particle swarm optimisation with
multiple social learning terms to solve the MM-TOPTW. They demonstrated that the
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proposed algorithm produced optimal solutions for small and medium-scale instances
and high-quality solutions for large-scale instances.

Pěnička et al. (2017) introduced the Dubins orienteering problem (DOP), which is
a generalisation of the Euclidean OP. In the DOP, the reward-collecting tour has to
accommodate the limited turning radius of the Dubins vehicle. Like the OP, the DOP
maximises the total collected rewards by visiting a subset of the locations within a
time budget. However, the DOP involves determining the vehicle’s heading angle at
each location to minimise the length of Dubins maneuvers between the target locations.
Penicka et al. proposed a variable neighbourhood search (VNS), which was tested using
existing OP benchmark instances. Bianchessi et al. (2018) presented a new compact
formulation for the TOP and solved it by applying a branch-and-cut algorithm; the
proposed algorithm was tested by comparing it with all the previously proposed exact
methods. Archetti et al. (2018) studied the set orienteering problem (SOP), which is a
generalisation of the OP, where nodes are grouped in clusters, and a score is associated
with each cluster, which is collected only if at least one node from the cluster is
visited. The authors proposed a metaheuristic composed of simple greedy and Tabu
search algorithms. Pěnička et al. (2019) employed a VNS for the SOP. In addition, they
proposed an integer linear programming formulation of the SOP to find the optimal
solution for small and medium-sized problems. Santini (2019) applied the adaptive
large neighbourhood search algorithm to solve the OP. The results showed that the
implemented heuristic provided high-quality solutions on long runs, compared to other
state-of-the-art heuristics. Conversely, the exact algorithms found a higher number of
best-known solutions than the proposed heuristic on the short run (with a time limit
of five hours). Gavalas et al. (2019) proposed two cluster-based ILS algorithms for the
tourist trip design problem (TTDP), which is a common variant of the TOPTW. In
this approach, customer locations were grouped based on geographical areas, thereby
increasing the probability of visiting the customers. The authors claimed that their
approach improved the solution quality and execution time for the TTDP instances.
Vincent et al. (2019) studied the team orienteering problem with time windows and
time-dependent scores (TOPTW-TDS), which is an extension of the TOPTW. The
problem maximises the total collected scores based on the time-dependent scores for
different periods of the visited points of interest. They proposed a hybrid algorithm
(HABC) to solve the TOPTW-TDS by hybridising the artificial bee colony algorithm
with a SA-based acceptance rule. None of these studies considers a set of mandatory,
with some optional, nodes.

To the best of our knowledge, Lin and Vincent (2017) is the only published work
on the TOPTW-MV in the literature. However, some studies of other variants of the
TOPTW-MV have been reported. Tricoire et al. (2010) modelled the multi-period OP
with multiple time windows to plan the routes of sales representatives, involving both
mandatory and optional customers. Mandatory customers were long-term customers that
were visited on a regular basis, while optional customers were potential new customers.
Each customer had several time windows, which could change from day to day. A VNS
algorithm was developed to solve the problem. Salazar-Aguilar et al. (2014) studied the
multi-district team orienteering problem (MDTOP), which was introduced to support
road maintenance activities. In this problem, the maintenance region is divided into
districts, and activities are classified as either mandatory or optional within each district.
The problem was formulated as a mixed-integer linear problem and solved with an
adaptive large neighbourhood search algorithm. Palomo-Mart́ınez et al. (2017b) inspired
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the work of Salazar-Aguilar et al. (2014); they proposed the orienteering problem with
mandatory visits and exclusionary constraints (OPMVEC), which involves mandatory
visits and optional nodes. A hybrid algorithm based on a reactive GRASP and a general
VNS were developed to solve the problem. Palomo-Mart́ınez et al. (2017a) adapted
five mixed-integer linear formulations from the TSP literature to solve the the OP
with mandatory visits and conflicts (OPMVC), which handled the subtour elimination
constraints were handled differently. These five different formulations for the OPMVC
were compared and tested. Most recently, Lu et al. (2018) proposed a memetic algorithm
(MA) for the OPMVEC. The computational results demonstrate that in terms of the
number of best-known solutions found, the MA outperformed both the VNS algorithm
and the exact solution methods in the literature.

3 Problem statement

The formal definition of the TOPTW-MV can be given as follows. Let’s assume that
we have a directed graph denoted as G = (N ,A), in which N = {0, 1, ..., n} stands for
the set of nodes (customers) and A = {(i, j) : i ∈ N , j ∈ N , i ̸= j} for the set of arcs
connecting nodes. Among customers, set K represents the set of important customers
that must be visited, such that K ⊂ N . The remaining set of customers (N \K) can
be visited selectively. The depot is represented as the node i = 0. The time it takes
to travel between node pairs i and j is denoted as tij . Furthermore, pi and si stand
for the profit collected and the service time spent, respectively, upon visiting customer
i ∈ N . The time interval [bi, ei] for each node i describes the time window during
which a visit can be performed. Thus, bi and ei are the earliest and latest times when a
visit can be performed, respectively. The number of vehicles is not fixed, and therefore
is a variable defined as δ. We assign a sufficiently large integer δ′ as an upper limit
on this variable. We note that all vehicles are identical. The TOPTW-MV seeks to
identify a set of vehicle tours (H) in which important customers are visited and other
customers are visited only once at most. Each tour h ∈ H should start at the depot
after b0 and end before e0. The fixed cost of using a vehicle is γ, and the objective in
solving the TOPTW-MV is to maximise the total net profit, which can be calculated by
subtracting the δ × γ from the total profit collected from the customers. An extra node
n+ 1 (dummy depot) is created and added to set N , in order to model the return of the
vehicles to the depot. Travel times are created, as in ti,n+1 = ti,0, for all i ∈ N , and
the time windows for visits are set by en+1 = e0 and bn+1 = b0. Furthermore, there is
no profit associated with visiting the depot, and it is assumed that no time is spent at
the depot (p0 = pn+1 = s0 = sn+1 = 0).

4 Methodology

Lin and Yu (2012) demonstrated that solving the TOPTW in polynomial time is unlikely,
since it is proven to be an NP-hard problem. Hence, solving the TOPTW-MV in
polynomial time is not possible, since it can be easily reduced to the TOPTW. For this
reason, only approximate solution approaches have been developed to tackle realistic
size instances of the TOPTW-MV (see Lin and Vincent, 2017).
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Pure CP modelling (Gedik et al., 2017) and hybrid CP and mathematical
programming applications (Gedik et al., 2016) have been very successful at efficiently
solving combinatorial scheduling and routing problems. Focacci et al. (2002) pointed
out that CP models perform more efficiently compared to their mathematical model
counterparts on combinatorial problems when more side constraints are added to
the problem. More specifically, a traditional branch-and-cut approach is much more
successful at solving instances of the TSP than the pure CP model. However, CP models
have become more competitive at solving the TSP with time windows. Gedik et al.
(2017) reported that the same behaviour exists for tackling the TOPTW with pure CP
models. Their CP model dominated both pure mathematical model formulations and
other state-of-the-art heuristics. This section describes our efforts to develop a pure CP
model formulation to solve the TOPTW-MV.

The mathematical formulation of the TOPTW-MV can be seen in Lin and Vincent
(2017), and therefore, it is not given in this paper. interval variable, which is a CP-based
decision variable that represents the start, end, duration time, and resource usage of a
scheduling activity or task (Laborie et al., 2018), is utilised to produce the necessary
CP model formulation. The interval variable can also carry binary existence information
for activities, which is a key feature that enables us to model whether or not an activity
is scheduled/visited on/by a specific resource/vehicle. More specifically, an interval
variable can be made optional, and therefore would be present in the solution and absent
if not (IBM, 2014). Since the binary feature is already embedded in the definition of the
interval variable via optionality, no extra effort is necessary to model it, as in traditional
mathematical programming (Laborie and Rogerie, 2008). An interval variable’s final
status can be easily retrieved by using presenceOf(Interval Variable), which will return
true/1 or false/0, depending on the application domain.

We defined and used the following list of interval variables in the CP formulation.

• For each vehicle h ∈ H , we define uh as an optional interval variable.

• For each i ∈ N \K ∪ {i = 0, i = n+ 1}, yi is defined as an optional interval
variable. For other nodes {i|i ∈ K ∪ {i = 0, i = n+ 1}}, yi is defined as a
mandatory interval variable (i.e., it must be present in the solution). Note that the
corresponding service time si is automatecially assigned to yi.

• For each customer {i ∈ N|i ̸= 0, i ̸= n+ 1}, we define xih as an optional
interval variable that represents the possibility of visiting customer i with vehicle
h and spending a duration of service time of si.

• Zi = {xi1, xi2, ..., xih, ..., xiδ} represents the combination of all vehicles in terms
of interval variables that can be used to visit node {i ∈ N|i ̸= 0, i ̸= n+ 1}. Note
that δ is a decision variable.

• Qh = {x1h, x2h, ..., xih, ..., xnh} stands for the customers {i ∈ N|i ̸= 0,
i ̸= n+ 1} that can possibly be visited by vehicle h ∈ H . This structure is also
referred to as the interval sequence variable.

The domains of the interval variables are the times when activities may start, end,
or lapse. A feasible solution is obtained in a CP model when the domains of all of
the decision variables, including the interval variables, are filtered (propagated) into a
single value. Unlike traditional mathematical programming, CP is much more expressive
and can model complex restrictions via its global constraints. A global constraint is a



Solving the team orienteering problem with time windows 27

collection of simple constraints, such as =, ≤, ≥, and logical functions. Each global
constraint has powerful domain-filtering algorithms that run simultaneously on the set
of restrictions defined in the global constraint to reduce the domains of each associated
decision variable to a single value (Viĺım, 2007). However, there is no standard way
to define a global constraint across all CP platforms. Thus, a CP model generated via
IBM’s CP Optimizer may not be generated in the exact same way in other CP solvers
such as Gecode. This study utilises IBM’s CP Optimizer and its global constraints to
formulate and solve the TOPTW-MV, since there has been extensive research conducted
to solve a variety of combinatorial problems on this platform (see Laborie et al., 2018
for several applications). More specifically, we used alternative, cumulative, NoOverlap,
and span global constraints in the pure CP model (CP-TOPTW-MV) to capture the
restrictions of the TOPTW-MV. We refer the reader to Laborie and Rogerie (2008) and
Laborie and Rogerie (2008) for the mathematical descriptions and other potential usages
of these global constraints. The resulting CP model is as follows:

maximise
i=n∑
i=1

piyi − δ × γ

subject to (CP-TOPTW-MV)

δ =

h=δ′∑
h=1

presenceOf(uh) (1)

Alternative(yi, Zi) i ∈ N , i ̸= 0, i ̸= n+ 1 (2)

Cumulative({y0, y1, ..., yn+1}, 1, δ) (3)

yi.StartMin = bi i ∈ N (4)

yi.StartMax = ei i ∈ N (5)

NoOverlap(Qh, (tij |i ∈ N, j ∈ N)) h ∈ H (6)

Qh.F irst(y0) h ∈ H (7)

Qh.Last(yn+1) h ∈ H (8)

Span(uh, Qh) h ∈ H (9)

The objective of the CP-TOPTW-MV model is to maximise the total net profit. The
number of vehicles used is determined in constraint (1). Recall that uh is defined as an
optional interval variable, and that there is one for each vehicle h. If a vehicle is used,
its corresponding uh variable will be in the final solution and thus presenceOf(uh)
will return one. The sum of these queries across all vehicles is made equal to δ in
constraint (1). Constraint (2) ensures that each important customer is visited by exactly
one vehicle and that other regular customers are visited by at most one vehicle. This
relationship can be represented by one alternative global constraint, as indicated in
constraint (2), due to the definitions of the interval variables. Note that yi for each
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i ∈ K is defined as a mandatory interval variable and therefore must be present in the
solution. Consequently, one of the vehicles represented as an interval variable in Zi

must be assigned to visit customer i ∈ K. For all of the other customers (i ∈ N \K ∪
{i = 0, i = n+ 1}), this constraint reserves only one vehicle from the set Zi if yi to
be present in the solution. Ensuring that the total number of busy vehicles may not
exceed δ is handled by the cumulative global constraint (3). Constraints (4) and (5)
assign the earliest and latest visit start times, respectively, for each customer in i ∈ N .
The NoOverlap global constraint ensures that the necessary travel time (tij) is used to
visit customer j after visiting customer i. Constraint (6) also ensures that the interval
variables in set Qh (the set of customer visits) do not overlap with each other. This
guarantees the sequential visiting of the customers. Constraints (7) and (8) make the
depot the first and the last visit for each vehicle, respectively. Finally, the span global
constraint is utilised to monitor whether a vehicle, h, is ever used to visit any customer
in Qh. By definition, the interval represented by the optional interval variable uh spans
all present intervals from the set Qh. Since there is no service time assigned to uh, it will
start and end with the first and last visits in Qh. The interval variable uh, representing
vehicle h, will be absent (not used) only when all the interval variables in Qh are absent
from the solution.

As one might realise, the CP-TOPTW-MV formulation is very compact; it includes
a low number of constraints, due to the nature of the interval variable concept.
One interval variable may carry information for the start, end, duration, and resource
consumption rate of an activity and provide an opportunity to mimic binary behaviour,
unlike continuous or integer decision variables in traditional mathematical programming.
In this way, we were able to load and solve even the largest instances of the
TOPTW-MV with no memory problems.

5 Computational results

This section presents the computational study and its results. We first describe
benchmark instances of the TOPTW-MV, and then present and discuss the computational
results.

5.1 Experiments

For this study, the performance of the CP-TOPTW-MV model was compared with that
of the MSA, the SA, and the ACO algorithms discussed by Lin and Vincent (2017)
on the TOPTW-MV test instances from Lin and Vincent (2017), which were generated
based on the OPTW instances designed by Righini and Salani (2009). Among these
instances, 56 large problem instances were converted from ‘the Solomon instances’
(Solomon, 1987) (sets c* 100, r* 100, rc* 100, c* 200, r* 200 and rc* 200), as they
are referred to in the literature. These 56 large problem instances were run for a path
cost of 75, 100, and 125. Therefore, a total of 168 large problem instances were used.
All of these TOPTW-MV instances had 100 nodes and 5 mandatory visits.

The time it took to visit each location pair was rounded down to the first decimal
for the TOPTW-MV instances, as in Lin and Vincent (2017). Recall that the interval
variables defined in Section 4 have the domain values of the visit start, end, or
lapse time. Fractional distance values may therefore initiate domain ranges with an
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infinite range, and therefore, they need to be treated in the CP context. Hence, every
rounded-down travel time value was later multiplied by 10 to limit the domains of the
interval variables to the set of integer values. We also scaled up the other time-related
parameters, such as service time and time window start and end times (i.e., each value
was multiplied by 10). This re-scaling helped the propagation algorithms to start filtering
the domains of the interval variables and move towards a feasible solution, at the cost
of searching in an enlarged domain range.

Table 1 Comparison of CP-TOPTW-MV to state-of-the-art algorithms on TOPTW-MV
instances

Instance set #INS CP-TOPTW-MV MSA SA ACO
(5 mandatory visits) #BKS Gap (%) #BKS Gap (%) #BKS Gap (%) #BKS Gap (%)
γ = 75
c100 9 5 0.48 5 0.59 3 1.03 8 0.12
r100 12 0 3.24 4 0.50 4 0.94 4 0.56
rc100 8 2 3.33 5 0.41 3 0.68 4 0.44
c200 8 8 0.00 0 4.10 0 4.26 0 5.32
r200 11 9 0.81 5 1.85 8 2.10 1 6.21
rc200 8 5 1.05 1 2.75 2 3.17 0 4.18
γ = 100
c100 9 5 0.81 2 1.25 3 1.11 8 0.13
r100 12 3 3.02 3 1.47 3 1.69 4 0.95
rc100 8 3 4.33 1 1.27 3 0.87 4 1.06
c200 8 8 0.00 0 3.97 0 4.06 0 7.45
r200 11 10 0.13 6 1.70 7 2.63 1 9.17
rc200 8 5 1.75 4 1.03 1 3.67 1 5.26
γ = 125
c100 9 2 1.63 2 1.41 2 1.41 9 0.00
r100 12 8 1.29 2 3.02 2 3.02 3 2.74
rc100 8 4 4.55 4 2.07 4 2.07 0 2.65
c200 8 8 0.00 0 3.66 0 3.66 0 8.71
r200 11 10 0.05 4 4.08 4 4.08 2 10.83
rc200 8 4 3.11 6 0.12 6 0.12 3 2.49
All 168 99 1.64 54 1.96 55 2.25 52 3.79

Table 2 Optimal solution values for Solomon TOPTW-MV instances proved by
CP-TOPTW-MV

Instance name γ # path Optimal solution Time (s)
c201 75 3 1,585 3.1
c202 75 3 1,585 15.6
c204 75 3 1,585 30.0
c205 75 3 1,585 3.7
c206 75 3 1,585 13.1
c208 75 3 1,585 4.0
r204 75 2 1,308 2,925.3
c201 100 3 1,510 3.3
c205 100 3 1,510 3.9
c206 100 3 1,510 14.3
c208 100 3 1,510 4.0
c201 125 3 1,435 3.7
c202 125 3 1,435 16.6
c205 125 3 1,435 4.7
c208 125 3 1,435 4.3
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The CP-TOPTW-MV model was implemented in C++, using IBM ILOG CP Optimizer
12.6. All of the experiments were conducted on an Intel Core i5 equipped with 2.70
GHz and 8 GB of RAM. The CP-TOPTW-MV model provides the optimal solution
if it can be found in less than 30 minutes. If an optimal solution is not identified in
30 minutes then the CP-TOPTW model ends the search with the best feasible solution
identified within the time limit.

5.2 Results

To ensure fair comparisons, the solutions for each algorithm were compared with the
best-known solutions (BKS) among MSA, SA, ACO, and CP-TOPTW-MV. While for
these approaches, the average objective value over 5 replicates is presented, as reported
in Lin and Vincent (2017), the CP does not require replications, so the results reported
represent only a single objective value for each test instance.

Table 1 summarises the results for the TOPTW-MV instances for path costs (γ)
of 75, 100, and 125. The #INS column gives the number of instances in a set.
The gap (%) column shows the average percentage gap between solutions produced
by the algorithm and the best-known solutions obtained across all the algorithms.
The number of best-known solutions found by each algorithm is given in the #BKS
column. We can see from Table 1 that, on average, the CP-TOPTW-MV model offers
the best performance on this metric, with an average gap of of 1.64%, while MSA,
SA, and ACO provide average gaps of 1.96%, 2.25%, and 3.79%, respectively. The
CP-TOPTW-MV model obtained best-known solutions for 99 out of 168 instances,
whereas MSA, SA, and ACO could found the best-known solutions for only 54, 55,
and 53 instances, respectively. Overall, the CP-TOPTW-MV model outperforms the
other three approaches in terms of the number of best-known solutions found and the
average gap from the best-known solutions. When γ is increased, the CP-TOPTW-MV
model outperforms other algorithms even more in terms of the number of best-known
solutions. For example, when γ is 125, the number of best-known solutions obtained by
the CP-TOPTW-MV model (36) is double the number of best-known solutions obtained
by both the MSA heuristic (18) and the SA algorithm (18).

Table 3 Paired t-test

Problem set Difference StDev Dof p-value

CP vs. MSA γ = 75 8.75 44.02 55 0.071
γ = 100 6.66 41.9 55 0.120
γ = 125 9.54 48.76 55 0.075
Overall 8.32 44.73 167 0.009

CP vs. SA γ = 75 12.34 47.93 55 0.030
γ = 100 14.54 47.67 55 0.013
γ = 125 17.34 57.19 55 0.014
Overall 14.74 50.86 167 0.000

CP vs. ACO γ = 75 24.48 52.09 55 0.000
γ = 100 37.98 67.26 55 0.000
γ = 125 38.29 85.5 55 0.001
Overall 33.58 69.51 167 0.000
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Table 4 Detailed results for Solomon instances with five mandatory visits and γ = 75
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Table 4 Detailed results for Solomon instances with five mandatory visits and γ = 75
(continued)
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Table 5 Detailed results for Solomon instances with five mandatory visits and γ = 100
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Table 5 Detailed results for Solomon instances with five mandatory visits and γ = 100
(continued)
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Table 6 Detailed results for Solomon instances with five mandatory visits and γ = 125
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Table 6 Detailed results for Solomon instances with five mandatory visits and γ = 125
(continued)
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There are 15 instances for which the CP-TOPTW-MV model was able to prove the
optimality of the solution obtained. The optimalities of these instances were previously
unreported in the literature. Table 2 provides the optimal solution value, along with
the number of paths and the time required by the CP-TOPTW-MV model to return the
solution and prove its optimality for each instance. The average computation time of the
CP-TOPTW-MV model for the set of instances reported in Table 2 is 203.3 seconds.
Without the instance of r204 when γ = 75, the average computation time is even
less, only 8.9 seconds. Another primary advantage of the CP-TOPTW-MV model over
any other heuristic algorithm is that it states whether the obtained solution is optimal,
whereas the heuristic algorithms cannot.

Detailed results for all of the algorithms for the TOPTW-MV instances are given
in Tables 4, 5, and 6 for the cases when γ was 75, 100, and 125, respectively. The
first column provides the instance name, and the second gives the best-known solution
value, BKS. The second (best) and third [gap (%)] columns provide the objective
function value and percent gap to BKS for each instance, respectively. The third column
(#visited) illustrates the number of jobs visited in a given problem instance. Finally,
the fourth column (#path) presents the number of paths generated for the best solution
identified. Bolded text indicates the new best-known solutions found in Tables 4, 5, and
6. The CP-TOPTW-MV model discovered 64 new best solutions. Judging from these
results, the model usually achieves a better average percentage gap than MSA, SA, and
ACO for all of these instances. The gap percentage performance of the CP-TOPTW-MV
model for a cost of path of 125 is better than for a cost of path of 100, and only 6%
worse than for a path cost of 75. The complexity of the model increases to enable it
to find the optimal solution with an increase in the cost of path; the CP-TOPTW-MV
model is the only model that can handle this increase in complexity.

In order to analyse whether the performance difference between the CP-TOPTW-MV
model and the MSA heuristic, the SA algorithm, and the ACO algorithms is significant,
we performed one-sided paired t-tests with a 95% confidence interval. The results
are illustrated in Table 3 for cost-of-path scenarios of 75, 100, 125, and overall.
These statistical analyses were conducted using the best objective function values
found by the algorithms. The difference column shows that the difference between
the CP-TOPTW-MV model and the other approaches is always positive, meaning
that the average objective function value calculated for the problem instances by the
CP-TOPTW-MV model is always greater in comparison to the others. The statistical
results of the paired t-test, in the p-value column, show that, at a confidence level
of 95%, there is a statically significant mean difference between the CP-TOPTW-MV
model and the SA and ACO algorithms (p-value < 0.05). This indicates that the
CP-TOPTW-MV model statistically outperforms the SA and ACO algorithms in terms
of maximising overall profit. While there is no significant mean difference between the
CP-TOPTW-MV model and the MSA heuristic when γ = 75, 100, and 125 individually,
for the overall results, the performance of the CP-TOPTW-MV model is statistically
better (p-value < 0.05) than that of the MSA heuristic. In summary, the proposed
CP-TOPTW-MV statistically produces results superior to those of MSA, SA, and ACO
for the benchmark instances.

The proposed CP-based model outperforms other approaches in the literature in
solving a very practical problem, the TOPTW-MV. Depending on the context, businesses
can use our model to boost their profitability by using our model. This will lead
to a competitive advantage over their competitors. An increase in profitability can
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be transferred to the shareholders as well as customers by reducing costs due to
improved profit margins. Moreover, governments may end up receiving more corporate
income taxes due to higher net incomes, as well as an increase in tax revenues from
increased dividends. Furthermore, planning customer visits with a more efficiently use
of the CP-TOPTW-MV model can help reduce emissions. Another important managerial
implication of our results is that companies, like Amazon, need to deliver products daily,
and a consideration of time windows may take advantage of the running speed of the
CP-TOPTW-MV model to run day-to-day operations more efficiently by taking into
account potentially rapid changes in time windows. Furthermore, the CP-TOPTW-MV
model could be much more productive in disaster relief, because being able to run
an optimisation model much faster and more efficiently will save more lives, possibly
hundreds, depending on the nature of the disaster. Our results clearly showed that
adopting the CP-TOPTW-MV model as a solution method will magnify benefits (e.g.,
increasing profits or saving lives) even further, which makes it eminently applicable to
complex real-life situations.

6 Conclusions

In this paper, we examine the TOPTW-MV, develop a CP model and compare the
results of this model with state-of-the-art algorithms using benchmark instances. The
new model, the CP-TOPTW-MV model, employs only a few constraints by taking
advantage of interval variables. By carrying multiple information on interval variables,
such as start times, end times, durations, and usage rates, the CP-TOPTW-MV model
is able to solve instances of complex routing in the TOPTW-MV. The computational
results indicate that the model outperforms the current approaches in the literature in
terms of average performance and the number of identified best-known solutions. Our
CP-TOPTW-MV model found 64 new best solutions. Moreover, the proposed model
proved that 15 of the best-known solutions are optimal. The new results we report
herein can serve as benchmarks for future studies. The framework is robust and can
accommodate additional problem components. If the components were to be adapted to
accept new constraints, the framework would also be applicable to solving other variants
of the OP.

This study possesses some limitations and can be extended in several future
directions. We observed that the CP-TOPTW-MV model fails to identify, within a given
time limit, whether a solution is just a feasible solution or an optimal solution. This
is due to the initiation of several possible domain-filtering attempts during the search
for a better solution. We believe that the CP-TOPTW-MV model’s performance can
be improved in a hybrid setting where more challenging feasibility-related constraints
are handled by CP, and the objective function or the constraints related to solution
quality are handled via a bounding technique such as linear relaxation. A logic-based
Benders decomposition approach may very well improve the quality of the solutions
if the feasibility sub-problems are solved efficiently. Similarly, an adaptive heuristic
method may very well be used to guide the search towards better objective function
values, while feasibility constraints are handled through the use of a CP-based approach.
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